UNIVERSITY^{OF} BIRMINGHAM

University of Birmingham Research at Birmingham

Predictive Biomarkers for Endocrine Therapy

Roseweir, Antonia K; Bennett, Lindsay; Dickson, Ashley; Cheng, Kelvin; Quintayo, Mary-Anne; Bayani, Jane; McMillan, Donald C; Horgan, Paul G; van de Velde, Cornelis J H; Seynaeve, Caroline; Hasenburg, Annette; Kieback, Dirk G; Markopoulos, Christos; Dirix, Luc Y; Rea, Daniel; Mallon, Elizabeth A; Bartlett, John M S; Edwards, Joanne

10.1093/jnci/djx255

License:

Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):

Roseweir, AK, Bennett, L, Dickson, A, Cheng, K, Quintayo, M-A, Bayani, J, McMillan, DC, Horgan, PG, van de Velde, CJH, Seynaeve, C, Hasenburg, A, Kieback, DG, Markopoulos, C, Dirix, LY, Rea, D, Mallon, EA, Bartlett, JMS & Edwards, J 2018, 'Predictive Biomarkers for Endocrine Therapy: Retrospective Study in Tamoxifen and Exemestane Adjuvant Multinational (TEAM) Trial', *Journal of the National Cancer Institute*, vol. 110, no. 6, pp. 616-627. https://doi.org/10.1093/jnci/djx255

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

Checked for eligibility: 28/06/2018

This is a pre-copyedited, author-produced version of an article accepted for publication in JNCI: Journal of the National Cancer Institute following peer review. The version of record: Antonia K Roseweir, Lindsay Bennett, Ashley Dickson, Kelvin Cheng, Mary-Anne Quintayo, Jane Bayani, Donald C McMillan, Paul G Horgan, Cornelis J H van de Velde, Caroline Seynaeve, Annette Hasenburg, Dirk G Kieback, Christos Markopoulos, Luc Y Dirix, Daniel W Rea, Elizabeth A Mallon, John M S Bartlett, Joanne Edwards; Predictive Biomarkers for Endocrine Therapy: Retrospective Study in Tamoxifen and Exemestane Adjuvant Multinational (TEAM) Trial, JNCI: Journal of the National Cancer Institute, Volume 110, Issue 6, 1 June 2018, Pages 616–627 is available online at: https://doi.org/10.1093/jnci/djx255

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes

- •Users may freely distribute the URL that is used to identify this publication.
- •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
- •User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 25. Apr. 2024

JNCI 17-0891R2

Article

Predictive Biomarkers for Endocrine Therapy: Retrospective Study in Tamoxifen and Exemestane Adjuvant Multinational (TEAM) Trial

Antonia K Roseweir^{a,b,*}, Lindsay Bennett^{a,b}, Ashley Dickson^b, Kelvin Cheng^b, Mary-Anne Quintayo^c, Jane Bayani^c, Donald C McMillan^a, Paul G Horgan^a, Cornelis JH van de Velde^d, Caroline Seynaeve^e, Annette Hasenburg^f, Dirk G Kieback^g, Christos Markopoulos^h, Luc Y Dirixⁱ, Daniel W Rea^j, Elizabeth A Mallon^k, John MS Bartlett^c, Joanne Edwards^b

^aSchool of Medicine, University of Glasgow, Glasgow, UK

^bInstitute of Cancer Sciences, University of Glasgow, Glasgow, UK

^cOntario Institute of Cancer Research, MaRS Institute, Toronto, Canada

^dLeiden University Medical Centre, Leiden, Netherlands

^eErasmus MC Cancer Institute, Rotterdam, Netherlands

^fUniversity Hospital Mainz, Mainz, Germany

^gHelios Medical Centre, Schleswig, Germany

^hAthens University Medical School, Athens, Greece

ⁱSt Augustinus Hospital, Antwerp, Belgium

^jUniversity of Birmingham, Birmingham, UK

^kDepartment of Pathology, Queen Elizabeth University Hospital, Glasgow, UK

*Corresponding Author: Dr Antonia Roseweir, Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom, antonia.roseweir@glasgow.ac.uk,

ABSTRACT

Background: Aromatase inhibitors improve disease-free survival compared with tamoxifen in postmenopausal women with hormone-receptor-positive breast cancer. The Tamoxifen and Exemestane Adjuvant Multinational (TEAM) trial compared exemestane monotherapy versus sequential therapy of tamoxifen followed by exemestane. The trial failed to show a statistically significant difference between treatment arms. A robust translational program was established to investigate predictive biomarkers.

Methods: A tissue microarray was retrospectively constructed using a subset of patient tissues (n=4631) from the TEAM trial (n=9766). Immunohistochemistry was performed for biomarkers, classed into three groups: MAPK pathway, NF-kappa B pathway, and ER phosphorylation. Expression was analysed for association with relapse-free survival (RFS) at 2.5 and 10 years and treatment regimen using Kaplan-Meier curves and log-rank analysis. All statistical tests were two-sided.

Results: On univariate analysis, ER^{167} (HR 0.71 95% CI 0.59-0.85, p<0.001), IKKα (HR 0.74 95% CI 0.60-0.92, p=0.005), Raf-1³³⁸ (HR 0.64 95% CI 0.52-0.80, p<0.001), and p44/42 MAPK^{202/204} (HR 0.77 95% CI 0.64-0.92, p=0.004) were statistically significantly associated with improved RFS at 10 years in patients receiving sequential therapy. Associations were strengthened when IKKα, Raf-1³³⁸ and ER^{167} were combined into a cumulative prognostic score (HR 0.64 95% CI 0.52-0.77, p<0.001). Patients with an all negative IKKα, Raf-1³³⁸ and ER^{167}

score, favoured exemestane monotherapy (OR 0.56 95% CI 0.35-0.90). On multivariate analysis, the IKK α , Raf-1³³⁸ and ER¹⁶⁷ score (p=0.001) was an independent prognostic factor for RFS at 10 years in patients receiving sequential therapy.

Conclusions: The IKK α , Raf-1³³⁸ and ER¹⁶⁷ score is an independent predictive biomarker for lower recurrence on sequential therapy. Negative expression may further offer predictive value for exemestane monotherapy.

INTRODUCTION

Treatment of breast cancer has evolved and tamoxifen is no longer the only adjuvant endocrine therapy available for postmenopausal women with estrogen receptor-positive (ERpositive) (1). Third generation aromatase inhibitors (AIs, anastrozole, exemestane and letrozole), which induce suppression of circulating estrogens increase disease free survival in postmenopausal hormone receptor-positive breast cancer. Treatment with AIs for 5 years improved disease-free survival compared with tamoxifen for 5 years (2, 3). In the Intergroup Exemestane Study (IES), patients who switched to exemestane after 2–3 years of tamoxifen had statistically significantly improved disease-free survival and overall survival compared to those remaining on tamoxifen (4). Therefore AIs alone or in sequence with tamoxifen are now recommended as adjuvant therapy for postmenopausal breast cancer (5).

Although currently there are established recurrence score such as Oncotype DX, Pam50 and the combined endocrine score (6-8), there are no biomarkers available to predict which patients will gain maximum benefit from each treatment strategy. NICE guidelines suggest that decisions should be based on discussions between the patient and oncologist, focussing on benefits and risks of each option, risk of recurrence and previous tamoxifen use (5). Clearly biomarkers are required to aid clinician decision-making. The Tamoxifen and Exemestane Adjuvant Multinational (TEAM) trial compared exemestane monotherapy versus sequential therapy of tamoxifen followed by exemestane for a total of five years (9), providing an ideal cohort to retrospectively investigate biomarkers that predict patients most likely to benefit from either exemestane monotherapy or tamoxifen followed by exemestane. The TEAM trial did not show a specific benefit of one therapeutic regimen over the other, both after 5 and 10 years (9).

The current study investigated potential predictive biomarkers for endocrine therapy,

classed into three groups; MAPK pathway (10), NF-kappaB pathway (11), and phosphorylation of ER (12, 13) that have been previously reported as prognostic in postmenopausal hormone receptor-positive (HRec-positive) breast cancer.

PATIENTS AND METHODS

Patients and study design

The TEAM trial is a multinational, randomized, open-label, phase III trial in postmenopausal women with HRec-positive early breast cancer (Trial registration number NCT00032136) (9). Women randomly received either exemestane (25mg) once daily for five years or tamoxifen (20mg) once daily for 2.5 years followed by exemestane for a total of five years. The study complied with the Declaration of Helsinki, individual ethics committee guidelines, and the International Conference of Harmonization and Good Clinical Practice Guidelines. All patients provided informed consent. Further details are in the **Supplementary Methods**.

From the 9766 patients from the TEAM trial, only five of the nine eligible TEAM countries (n=6210) agreed to provided tumour samples. 4781 patients had available tissue from surgical resections for tissue microarray (TMA) construction with linked clinicopathological data (14). Of these 4631 patient samples were eligible for biomarker staining (**Figure 1**). 86 patients were ER-negative, and 101 had cores missing for all stains and were therefore excluded leaving 4444 eligible patients for analysis.

Immunohistochemistry

Immunohistochemical expression of IKKα, p65⁵³⁶, N-Ras, Raf-1³³⁸, p44/42 MAPK^{202/204}, ER¹¹⁸, and ER¹⁶⁷ was conducted on a TMA using the Benchmark XT (Ventana Medical Systems, Roche, Tucson, Arizona) automated staining platform (14). Stained TMA sections were scanned using a Hamamatsu NanoZoomer at x20 magnification and visualized on Slidepath Digital Image Hub (Leica Biosystems, Newcastle, UK). If cores were missing or contained less than 10% tumour tissue they were excluded from analysis (**Figure 1**). Assessment of cytoplasmic IKKα expression was performed by a single examiner (LB) blinded to clinical data at x20 magnification (total magnification x400) using the weighted histoscore and 10% double scored by JE. The interclass coefficient (ICC) was 0.95. All other proteins were assessed using an automated computer algorithm of the weighted histoscore for nuclear expression, except N-Ras and Raf-1³³⁸ were cytoplasmic expression was assessed (Leica Biosystems). 10% of tumours were manually scored by a single examiner (JE) blinded to the clinical data. The ICC for each biomarker was ER¹¹⁸ 0.79, ER¹⁶⁷ 0.99, p65⁵³⁶ 0.98, N-Ras 0.96, Raf-1³³⁸ 0.92, and p44/42 MAPK^{202/204} 0.99. Further details are in the **Supplementary Methods**.

Outcomes

The co-primary outcomes were relapse-free survival at 2.5 years (RFS; defined as time to earliest documentation of disease relapse or death due to breast cancer) and RFS at 10 years. Secondary outcomes included biomarker associations with clinicopathological factors and treatment regimen.

Statistical Analysis

The prospectively powered outcome analysis for this study compared high expression (approximately 50%) and low expression (approximately 50%). By using a two-sided α =0.05 analysis and assuming a hazard ratio (HR) of 1.2 and a low expression prevalence of 50%, a sample size of >1000 patients gave >90% power to detect a treatment-biomarker interaction. Therefore the 4646 eligible samples from this trial population would be adequate to identify treatment-biomarker interactions, with at least 90% power.

Histograms were assessed for each protein and IKKα, ER¹⁶⁷, Raf-1³³⁸ and p44/42 MAPK^{202/204} histograms determined that negative and positive expression was the appropriate threshold. p65⁵³⁶, N-Ras, and ER¹¹⁸ were analysed using ROC analysis in a discovery cohort and validated using the current cohort, the following thresholds were determined for each protein: 25 for p65⁵³⁶, 100 for N-Ras, and 110 for ER¹¹⁸. SPSS (version 22, IBM, Armonk, New York) was used for statistical analysis unless otherwise stated. Pearson's χ2 test assessed associations between biomarkers, treatments, and clinicopathological features. Odds ratios compared biomarker associations with treatment regimens using tamoxifen followed by exemestane as the control group and exemestane monotherapy as the experimental group and were displayed as Forrest Plots (showing I² for heterogeneity and Z-score for overall effect) with each biomarker as a separate study (RevMan 5.3, Cochrane, London, UK). Kaplan-Meier and log-rank analysis compared RFS at both time points. HRs and CIs were calculated from univariate cox regression survival analysis. Multivariate cox regression survival analysis using a backward conditional elimination model and a statistical significance threshold of p<0.01 was performed to identify independent prognostic biomarkers. The study conformed to the REMARK guidelines (15) and statistical significance was set as p<0.01. All statistical tests were two-sided.

RESULTS

Study group

Of the 9766 patients from the TEAM trial treated for HRec-positive early breast cancer, 4444 patients were included in this study (**Figure 1**). Patient characteristics are shown in **Table 1**. In brief, 100.0% were ER-positive, 68.3% PR-positive, 39.1% HER2-positive, and 67.7% 60 years or older at surgery. 51.4% had grade II disease and 30.8% had grade III/IV disease. 57.6% were node positive and 8.9% had lymphovascular invasion. 2240 patients received exemestane monotherapy (50.4%) and 2204 patients received tamoxifen followed by exemestane therapy (49.6%). The median follow-up of survivors was 8.8 years (range 1.0-13.9 years) with 1054 recurrences and 1161 deaths. When compared to the full TEAM trial, the characteristics of the patients were similar. However, the patients in the present study appeared to have higher grade, larger tumors and more nodal involvement. Nevertheless, the present cohort was a fair representation of the full TEAM trial.

Associations between biomarkers and relapse-free survival at 2.5 and 10 years.

Univariate analysis of biomarker associations with relapse-free survival (RFS) at 2.5 and 10 years are shown in **Table 2**. ER¹¹⁸ phosphorylation was not associated with RFS at either time point. However, ER¹⁶⁷ phosphorylation statistically significantly associated with improved RFS at both 2.5 years (HR 0.73 95% CI 0.59-0.92, p=0.007) and 10 years (HR 0.82 95% CI 0.71-0.94, p=0.004). For the NF-kappaB pathway, p65⁵³⁶ phosphorylation did not associate with RFS at either time point. However, positive IKKα expression statistically significantly associated with improved RFS at 10 years (HR 0.80 95% CI 0.69-0.93, p=0.003). For the MAPK pathway,

N-Ras did not associate with RFS at either time point. However, phosphorylation of Raf-1³³⁸ (HR 0.62 95% CI 0.48-0.81, p<0.001) and p44/42 MAPK^{202/204} (HR 0.70 95% CI 0.56-0.88, p=0.002) strongly associated with improved RFS at 2.5 years. Both Raf-1³³⁸ (HR 0.69 95% CI 0.59-0.80, p<0.001) and p44/42 MAPK^{202/204} (HR 0.76 95% CI 0.66-0.86, p<0.001) associations with improved RFS were strengthened at 10 years.

A cumulative prognostic score of the NF-kappa B and MAPK pathways was examined (IKKα and Raf-1³³⁸). Patients with positive IKKα expression and phosphorylation of Raf-1³³⁸ were classified as both-positive, patients with positive IKKα expression or Raf-1³³⁸ phosphorylation as one-positive and patients with negative IKKα and Raf-1³³⁸ expression as both-negative. A both-positive IKKα and Raf-1³³⁸ score strengthened the association with improved RFS at 10 years (HR 0.78 95% CI 0.71-0.87, p<0.001) and 2.5 years (HR 0.77 95% CI 0.65-0.91, p=0.005) as shown in **Table 2.** ER¹⁶⁷ phosphorylation was added to the cumulative prognostic score. Patients with negative IKKα, Raf-1³³⁸ and ER¹⁶⁷ were defined as all-negative, patients with positive expression of one or two from IKKα, Raf-1³³⁸ or ER¹⁶⁷ as one/two-positive and patients with positive IKKα, Raf-1³³⁸ and ER¹⁶⁷ as all-positive. Patients with an all-positive IKKα, Raf-1³³⁸ and ER¹⁶⁷ score strengthened associations with improved RFS at 10 years (HR 0.73 95% CI 0.64-0.85, p<0.001).

Associations between biomarkers, treatment regimens, and relapse-free survival at 2.5 and 10 years.

Univariate analysis was performed for treatment by biomarker interaction and its associations with RFS at 2.5 and 10 years as shown in **Table 3**. Patients receiving tamoxifen followed by exemestane therapy had a statistically significant improvement in RFS at 10 years

with phosphorylation of ER¹⁶⁷ (HR 0.71 95% CI 0.59-0.85, p<0.001). This was not observed in patients receiving exemestane monotherapy (HR 0.96 95% CI 0.79-1.16, p=0.66). Similarly, patients receiving tamoxifen followed by exemestane therapy had a statistically significant improvement in RFS at 10 years with positive IKKα expression (HR 0.74 95% CI 0.60-0.92, p=0.005) (Figure 2A). This was not observed in patients receiving exemestane monotherapy (HR 0.86 95% CI 0.69-1.07, p=0.17) (**Figure 2A**). Furthermore, patients receiving tamoxifen followed by exemestane therapy had improved RFS at 2.5 years when Raf-1³³⁸ (HR 0.58 95% CI 0.41-0.83, p=0.003) or p44/42 MAPK^{202/202} (HR 0.66 95% CI 0.49-0.89, p=0.006) is phosphorylated, which was not observed in patients receiving exemestane monotherapy (Raf- 1^{338} : HR 0.68 95% CI 0.47-0.98, p=0.04 or p44/42 MAPK^{202/204}: HR 0.77 95% CI 0.56-1.06, p=0.11). Similarly, patients receiving tamoxifen followed by exemestane therapy had a statistically significant improvement in RFS at 10 years for both Raf-1³³⁸ (HR 0.64 95% CI 0.52-0.80, p<0.001) and p44/42 MAPK^{202/204} expression (HR 0.77 95% CI 0.64-0.92, p=0.004) as shown in **Table 3**. However, the different pattern between treatment regimens for Raf-1³³⁸ and p44/42 MAPK^{202/204} was lost by 10 years with patients receiving exemestane monotherapy also having a statistically significant improvement in RFS (Raf-1³³⁸: HR 0.74 95% CI 0.60-0.91, p=0.004 or p44/42 MAPK^{202/204}: HR 0.75 95% CI 0.62-0.90, p=0.002). Furthermore, no biomarker by treatment associations (Figure 3) were observed at 10 years for either Raf-1³³⁸ (OR 0.97 95% CI 0.83-1.12) or p44/42 MAPK^{202/204} (OR 0.96 95% CI 0.83-1.11).

For the IKK α and Raf-1³³⁸ score, patients with a both-positive score receiving tamoxifen followed by exemestane therapy also showed a statistically significant improvement in RFS at 10 years (HR 0.73 95% CI 0.63-0.84, p<0.001) (**Figure 2B**). However, when assessing biomarker by treatment interactions, patients with negative IKK α expression receiving tamoxifen

followed by exemestane therapy had shorter RFS than patients receiving exemestane monotherapy, although this did not reach statistical significance (HR 1.24 95% CI 0.1.02-1.51, p=0.03) (**Figure 4A**). Furthermore, patients with a both-negative IKKα and Raf-1³³⁸ score do statistically significantly worse on tamoxifen followed by exemestane compared to exemestane monotherapy (HR 1.35 95% CI 1.08-1.68, p=0.009) (**Figure 4B**). These results were then confirmed with forest plots for biomarker by treatment interactions (**Figure 3**) with both negative IKKα expression (OR 0.79 95% CI 0.63-0.99) and a both-negative IKKα and Raf-1³³⁸ score (OR 0.72 95% CI 0.55-0.93) favouring exemestane monotherapy.

To assess how interactions between all three pathways associate with treatment regimen, the IKK α , Raf-1³³⁸ and ER¹⁶⁷ score was assessed (**Table 3**). Patients receiving tamoxifen followed by exemestane therapy with an all-positive IKK α , Raf-1³³⁸ and ER¹⁶⁷ score had statistically significantly improved survival at 10 years (HR 0.64 95% CI 0.52-0.77, p<0.001) (**Figure 2C**). This was not observed for exemestane monotherapy (HR 0.75 95% CI 0.70-1.04, p=0.27) (**Figure 2C**). When assessing biomarker by treatment associations, patients with an all-negative IKK α , Raf-1³³⁸ and ER¹⁶⁷ score favoured exemestane monotherapy (OR 0.56 95% CI 0.35-0.90, **Figure 3**).

Associations between biomarkers and common clinicopathological characteristics

Since IKK α , Raf-1³³⁸, p44/42 MAPK^{202/204}, and ER¹⁶⁷ associated with RFS and patient treatments, associations with common clinicopathological factors were assessed (**Supplementary Table 1**). ER¹⁶⁷ phosphorylation_statistically significantly associated with lower grade (p=0.001), whereas IKK α statistically significantly associated with lower nodal status (p<0.001) and Ki67 index (p=0.008). Raf-1³³⁸ statistically significantly associated with

lower grade (p<0.001), lower nodal status (p<0.001), smaller size (p<0.001), increased PR status (p<0.001), and decreased Ki67 index (p=0.004). Whereas p44/42 MAPK $^{202/204}$ statistically significantly associated with lower age (p=0.001), lower grade (p<0.001), lower nodal status (p<0.001), and decreased lymphovascular invasion (p<0.001).

Multivariate analysis of biomarkers, treatment regimen, clinicopathological characteristics and relapse-free survival at 2.5 and 10 years

IKKα, Raf-1³³⁸, p44/42 MAPK^{202/204}, and ER¹⁶⁷ were then taken forward into multivariate analysis along with age, grade, nodal status, size, PR status and Ki67 index (Table 4). In the full cohort, multivariate survival analysis for RFS at 2.5 years (n=2827) showed age (p<0.001), nodal status (p<0.001), size (p=0.002), and Ki67 index (p<0.001) were independent prognostic factors. Whereas multivariate survival analysis for RFS at 10 years (n=1963) demonstrated that age (p<0.001), size (p<0.001), HER2 status (p=0.001), and Ki67 index (p=0.006) were independent prognostic factors. Patients were then split by treatment regimen and multivariate analysis performed for each cohort (Table 4). For patients receiving exemestane monotherapy, RFS at 2.5 years (n=1429) showed age (p=0.004), nodal status (p=0.001), size (p=0.008), and Ki67 index (p=0.001) were independently prognostic. Similarly, RFS at 10 years (n=980) showed age (p<0.001), size (p<0.001), and PR status (p=0.001) were independent prognostic factors. Whereas for patients receiving tamoxifen followed by exemestane therapy, RFS at 2.5 years (n=1398) showed age (p<0.001), nodal status (p=0.008), and Ki67 index (p=0.001) were independently prognostic. However, RFS at 10 years (n=983) showed age (p=0.001), size (p=0.001), ER^{167} phosphorylation (p=0.002), the $IKK\alpha$ and $Raf-1^{338}$ score (p=0.008), and the IKK α , Raf-1³³⁸ and ER¹⁶⁷ score (p=0.001) were independent prognostic factors.

DISCUSSION

The current study demonstrated that an all-positive IKK α , Raf-1³³⁸ and ER¹⁶⁷ score is an independent predictor of response to sequential therapy of tamoxifen followed by exemestane. Furthermore, an all-negative IKK α , Raf-1³³⁸ and ER¹⁶⁷ score is predictive for response to exemestane monotherapy. Utilizing IKK α , Raf-1³³⁸ and ER¹⁶⁷ could ensure the most effective endocrine therapy regimen is administered to patients.

Bennett *et. al.* reported that high IKK α expression was associated with shorter RFS in ER-positive tamoxifen-treated patients (11). In contrast, the present study reports that IKK α expression is associated with improved RFS in ER-positive patients receiving tamoxifen followed by exemestane. This discordance may be explained by differences in the thresholds employed; Bennett et al. (11) employed the median whereas the present study used positive and negative, making direct comparisons difficult. Nevertheless, the data suggests that the addition of exemestane changes the prognostic power of IKK α . During long-term tamoxifen treatment (5 years), blockade of ER lead to higher free estrogen levels promoting the formation of an ER/IKK α complex to enhance transcriptional activity, which results in reduced RFS after 2 years as observed by Bennett *et al.* (16). However, if exemestane is administered following short-term tamoxifen treatment (2.5 years), estrogen levels fall and the ER/IKK α complex is released to phosphorylate ER in a ligand-independent manner resulting in improved RFS as observed in the

current study (16). This is not observed in the exemestane monotherapy patients, as the initial formation of the $ER/IKK\alpha$ complex is required to improve RFS.

Of interest, McGlynn et al. reported that high Raf-1³³⁸ was associated with shorter RFS on tamoxifen (10). However, in the present study, patients that received tamoxifen for 2.5 years showed an increase in RFS, which was also observed for both treatments at 10 years. Again, this discordance may be due to differences in the thresholds used for the two studies; McGlynn et al. used the upper quartile whereas the present study assessed negative or positive, making direct comparisons difficult. Therefore it would appear that depending on the threshold employed slightly different results may be obtained. Of note, these studies are retrospective and may be subject to selection biases. However, other studies observed that when estrogen production is ablated, p44/42 MAPK phosphorylates ER¹⁶⁷ to induce transcription of alternative ER-dependent genes (17). When tamoxifen is administered long-term, the partial agonist activity of tamoxifen causes activation of ER, which in turn activates Raf-1 causing increased tumor growth as observed by McGlynn et al. However, when estrogen production is ablated by exemestane alone or following short-term tamoxifen treatment, ER-independent phosphorylation of Raf-1³³⁸ can promote p44/42 MAPK to phosphorylate ER¹⁶⁷ resulting in up-regulation of alternative gene transcription, conveying good prognosis to the patients as observed in the present study (18).

The cumulative prognostic score demonstrated that patients with both-positive IKK α and Raf-1³³⁸ expression had a better prognosis on tamoxifen followed by exemestane therapy compared to patients with negative expression of one of the biomarkers, suggesting it could be used as a predictive biomarker for patients receiving sequential therapy. Previous studies have demonstrated that IKK α can phosphorylate p44/42 MAPK suggesting IKK alpha may work with Raf-1 to enhance ER¹⁶⁷ phosphorylation (19). To assess this ER¹⁶⁷ phosphorylation was added to

the cumulative prognostic score. Associations with improved RFS were enhanced in patients receiving tamoxifen followed by exemestane therapy, suggesting IKK α and Raf-1 independently phosphorylate ER¹⁶⁷. This was confirmed in exemestane monotherapy patients as no improvement in RFS was observed suggesting the addition of the primed ER/IKK alpha complex enhances the beneficial effects of ER¹⁶⁷. This data suggest that an all-positive IKK α , Raf-1³³⁸ and ER¹⁶⁷ score could be utilized as a predictive biomarker for lower recurrence in patients receiving tamoxifen followed by exemestane therapy.

Conversely, patients with an all-negative IKK α , Raf-1³³⁸ and ER¹⁶⁷ score favored exemestane monotherapy with_statistically significantly improved RFS. This suggests that when IKK α and Raf-1 are not present, the build-up of free estrogens during tamoxifen treatment promote tumour progression by competing for ER and exemestane is unable to stop this detrimental effect without IKK α and Raf-1. However, in the exemestane monotherapy patients, estrogens never activate ER, inhibiting tumour recurrence. These results suggest that an all-negative IKK α , Raf-1³³⁸ and ER¹⁶⁷ score might be utilized to select patients for exemestane monotherapy.

The present study also assesses HER2 status and uses 10-year follow-up, which was not available when the trial was originally reported. The main limitation of this study is its retrospective nature and that of the 9766 patients included in the TEAM trial, only 4444 patients had tissue available for use in this study. Furthermore, of the 4444 patient in the present cohort, only 2827 were included in the multivariate analysis due to missing data. However, even with these limitations the IKK α , Raf-1³³⁸ and ER¹⁶⁷ score was demonstrated to predict recurrence in postmenopausal breast cancer patients treated with endocrine therapy. Patients with an all-positive score should be treated with sequential therapy of tamoxifen followed by exemestane,

whereas patients with an all-negative score should be treated with exemestane monotherapy. As the results describe predictive biomarkers for response to different endocrine therapy regimens and not prognostic biomarkers of general recurrence, it is not clear how the present work may be incorporated into existing recurrence models.

In conclusion, although validation is warranted in other translational studies of comparative clinical trial patients, utilizing the IKK α , Raf-1³³⁸ and ER¹⁶⁷ score could ensure the most effective endocrine therapy regimen is administered to patients most likely to gain maximum benefit. Furthermore, this cumulative score is readily translatable to the clinical scenario as it utilizes techniques already in daily use and is scored as negative or positive which is easily automated within this setting. These observations may only apply to a minority of patients, however applying the correct treatment at the correct time is a key goal in personalised medicine and is likely to improve the outcome of patients with breast cancer.

Funding: This work was supported by Ontario Institute of Cancer Research, Western Infirmary Breast Cancer Research Fund and European Association of Cancer Research.

Notes

The funders had no role in the design of the study; the collection, analysis, and interpretation of the data; the writing of the manuscript; and the decision to submit the manuscript for publication. No conflicts to declare.

REFERENCES

- 1. Shaikh AJ, Kumar S, Raza S, *et al.* Adjuvant Hormonal Therapy in Postmenopausal Women with Breast Cancer: Physician's Choices. Int J Breast Cancer 2012;2012:849592.
- 2. Arimidex TAoiCTG, Forbes JF, Cuzick J, *et al.* Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 100-month analysis of the ATAC trial. Lancet Oncol 2008;9(1):45-53.
- 3. Coates AS, Keshaviah A, Thurlimann B, *et al.* Five years of letrozole compared with tamoxifen as initial adjuvant therapy for postmenopausal women with endocrine-responsive early breast cancer: update of study BIG 1-98. J Clin Oncol 2007;25(5):486-92.
- 4. Coombes RC, Kilburn LS, Snowdon CF, *et al.* Survival and safety of exemestane versus tamoxifen after 2-3 years' tamoxifen treatment (Intergroup Exemestane Study): a randomised controlled trial. Lancet 2007;369(9561):559-70.
- 5. https://www.nice.org.uk/guidance/cg80/chapter/1-guidance-footnote_10, 16th February 2017.
- 6. Carlson JJ, Roth JA. The impact of the Oncotype Dx breast cancer assay in clinical practice: a systematic review and meta-analysis. Breast Cancer Res Treat 2013;141(1):13-22.
- 7. Chia SK, Bramwell VH, Tu D, *et al.* A 50-gene intrinsic subtype classifier for prognosis and prediction of benefit from adjuvant tamoxifen. Clin Cancer Res 2012;18(16):4465-72.
- 8. Campbell EJ, Tesson M, Doogan F, *et al.* The combined endocrine receptor in breast cancer, a novel approach to traditional hormone receptor interpretation and a better discriminator of outcome than ER and PR alone. Br J Cancer 2016;115(8):967-973.
- 9. van de Velde CJ, Rea D, Seynaeve C, *et al.* Adjuvant tamoxifen and exemestane in early breast cancer (TEAM): a randomised phase 3 trial. Lancet 2011;377(9762):321-31.

- 10. McGlynn LM, Kirkegaard T, Edwards J, *et al.* Ras/Raf-1/MAPK pathway mediates response to tamoxifen but not chemotherapy in breast cancer patients. Clin Cancer Res 2009;15(4):1487-95.
- 11. Bennett L, Quinn J, McCall P, *et al.* High IKKalpha expression is associated with reduced time to recurrence and cancer specific survival in oestrogen receptor (ER)-positive breast cancer. Int J Cancer 2016; 10.1002/ijc.30578.
- 12. Cheng KK, Dickson A, Gujam FJ, *et al.* The relationship between oestrogen receptoralpha phosphorylation and the tumour microenvironment in patients with primary operable ductal breast cancer. Histopathology 2016; 10.1111/his.13134.
- 13. Murphy LC, Seekallu SV, Watson PH. Clinical significance of estrogen receptor phosphorylation. Endocr Relat Cancer 2011;18(1):R1-14.
- 14. Bartlett JM, Brookes CL, Robson T, *et al.* Estrogen receptor and progesterone receptor as predictive biomarkers of response to endocrine therapy: a prospectively powered pathology study in the Tamoxifen and Exemestane Adjuvant Multinational trial. J Clin Oncol 2011;29(12):1531-8.
- 15. McShane LM, Altman DG, Sauerbrei W, *et al.* REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer 2005;93(4):387-91.
- 16. Park KJ, Krishnan V, O'Malley BW, *et al.* Formation of an IKKalpha-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol Cell 2005;18(1):71-82.
- 17. Lannigan DA. Estrogen receptor phosphorylation. Steroids 2003;68(1):1-9.
- 18. Ross-Innes CS, Stark R, Teschendorff AE, *et al.* Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 2012;481(7381):389-93.

19. Dhawan P, Richmond A. A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. J Biol Chem 2002;277(10):7920-8.

FIGURE LEGENDS

Figure 1. Flow diagram showing criteria for exclusion of patients from study. Tissue Micro Array = TMA, Estrogen receptor = ER, Inhibitory Kappa Kinase = IKK, Mitogen Activated Protein Kinase = MAPK

Figure 2. IKK α , Raf-1³³⁸ and ER¹⁶⁷ score as a prognostic biomarker for recurrence in patients receiving tamoxifen followed by exemestane therapy. (A) Kaplan Meier showing RFS at 10 years for IKK α in patients receiving either exemestane monotherapy or tamoxifen followed by exemestane therapy. (B) Kaplan Meier showing RFS at 10 years for the IKK α and Raf-1³³⁸ score in patients receiving either exemestane monotherapy or tamoxifen followed by exemestane therapy (C) Kaplan Meier showing RFS at 10 years for the IKK α , Raf-1³³⁸ and ER¹⁶⁷ score in patients receiving either exemestane monotherapy or tamoxifen followed by exemestane therapy. All statistical tests were two-sided. HR=hazard ration; CI=confidence interval.

Figure 3. Biomarker associations with treatment regimen. Forest plot for RFS at 10 years, showing whether a biomarker favours exemestane monotherapy (experimental group) or tamoxifen followed by exemestane therapy (control group), in postmenopausal early breast cancer patients. All statistical tests were two-sided and error bars represent 95% CI. CI=confidence interval; df=degrees of freedom; I²=heterogeneity score; Z=z-score; ■=individual odds ratio ◆=combined odds ratio.

Figure 4. Both negative IKK α and Raf-1³³⁸ score as a predictive biomarker for exemestane monotherapy. (A) Kaplan Meier showing RFS at 10 years for treatment regimen in patients with either negative or positive expression of IKK α . (B) Kaplan Meier showing RFS at 10 years

for treatment regimen in patients with either a both negative or both positive IKK α and Raf-1³³⁸ score. All statistical tests were two-sided. HR=hazard ration; CI=confidence interval.

Table 1. Baseline characteristics of patients

	TEAM study (n=9766)	Pathology substudy (n=6120)	Biomarker substudy (n=4444)										
Characteristics		, ,		Univariate Analysis									
	No. of Patients	No. of	No. of		RFS at 2.5yrs			RFS at 10yrs					
	(%)	Patients (%)	Patients (%)	No. of Events	HR (95% CI)	p value*	No. of Events	HR (95% CI)	p value*				
Age					1.31 (1.16-1.49)	< 0.001		1.42 (1.32-1.53)	< 0.001				
< 50	331 (3.2)	211 (3.4)	115 (2.6)	7			22						
50-59	3017 (30.9)	1874 (30.6)	1322 (29.7)	88			240						
60-69	3731 (38.4)	2373 (38.8)	1703 (38.3)	129			357						
>70	2687 (27.5)	1662 (27.2)	1304 (29.4)	146			435						
Grade	2007 (27.5)	1002 (27.2)	1301 (25.1)	110	1.27 (1.11-1.45)	0.001	133	1.15 (1.07-1.24)	< 0.001				
1	1677 (17.2)	616 (10.1)	520 (11.7)	33	1,2, (1,11 1,10)	0.001	91	1110 (1107 1121)	10.001				
2	4795 (49.1)	3166 (51.8)	2284 (51.4)	168			529						
3-4	2438 (25.0)	1835 (30.0)	1369 (30.8)	150			371						
Unknown	856 (8.7)	503 (8.1)	271 (6.1)	19			63						
Nodal Status					1.62 (1.30-2.02)	< 0.001		1.52 (1.34-1.73)	< 0.001				
absent	5113 (52.4)	2604 (42.5)	1884 (42.4)	117			353						
present	4585 (46.9)	3494 (57.1)	2560 (57.6)	253			701						
unknown	68 (0.7)	22 (0.4)	0 (0)	-			-						
Size					1.95 (1.56-2.42)	< 0.001		1.97 (1.74-2.24)	< 0.001				
<20mm	5697 (58.3)	3028 (49.4)	2139 (48.1)	124			363						
>20mm	4047 (41.4)	3027 (49.4)	2172 (48.9)	237			662						
Unknown	22 (0.3)	65 (1.2)	133 (3.0)	-			-						
PR status	1504 (15.5)	1070 (17.5)	006 (10.6)	101	1.14 (0.99-1.31)	< 0.001	261	1.12 (1.03-1.21)	< 0.001				
absent	1724 (17.7)	1070 (17.5)	826 (18.6)	101			261						
present	7301 (74.8)	4378 (71.5)	3034 (68.3)	224			658						
not performed HER2 Status	741 (7.5)	672 (11.0)	584 (13.1)	45	1 21 (0 06 1 52)	0.11	135	1 22 (1 06 1 40)	0.005				
absent		2796 (45.7)	1776 (39.7)	134	1.21 (0.96-1.52)	0.11	377	1.22 (1.06-1.40)	0.005				
present	-	1908 (31.2)	1778 (39.7)	154			469						
not performed	-	1416 (23.1)	940 (21.2)	139			- 02						
Ki67 status		1710 (23.1)	770 (21.2)		1.87 (1.48-2.36)	< 0.001		1.48 (1.29-1.71)	< 0.001				
low (<15)	_	2308 (37.7)	2277 (51.2)	156	1.07 (1.10 2.30)	\0.001	489	1.10 (1.25 1.71)	\0.001				
high (>15)	_	1064 (17.4)	1027 (23.1)	127			305						
unknown	_	2748 (44.9)	1140 (25.7)	-			-						

Treatment					1.22 (1.00-1.50)	0.05		1.05 (0.93-1.18)	0.45
exemestane	4898 (50.2)	3075 (50.2)	2240 (50.4)	1169			523		
tamoxifen then	4868 (49.8)	3045 (49.8)	2204 (49.6)	1201			531		
exemestane									
Lymphovascular Invasion					0.78 (0.56-1.08)	0.13		0.90 (0.73-1.10)	0.31
no	-	3845 (62.8)	3727 (83.9)	299			881		
yes	-	403 (6.6)	394 (8.9)	40			101		
<u>unknown</u>	=	1872 (30.6)	323 (7.2)	-			-		

RFS = relapse-free survival; HR = Hazard Ratio; CI = Confidence interval; -- = data not available *Kaplan-Meier and log-rank analysis compared RFS at both time points. HRs and CIs were calculated from univariate cox regression survival analysis. All statistical tests were two-sided.

Table 2. Univariate analysis of associations between biomarkers and RFS at 2.5 and 10 years in postmenopausal HRec-positive early breast cancer patients.

D'annankana	Number of	RFS 2.5	RFS 10	Relapse-free surviv	val at 2.5yrs	Relapse-free survival at 10yrs		
Biomarkers	Patients	events	events	HR (95% CI)	p value*	HR (95% CI)	p value*	
phospho ER ¹¹⁸ (n=4218)				0.96 (0.75-1.22)	0.73	0.83 (0.71-0.96)	0.01	
low expression (<110 WHS units)	3157	266	777					
high expression (>110 WHS units)	1061	86	218					
phospho ER ¹⁶⁷ (n=4133)				0.73 (0.59-0.92)	0.007	0.82 (0.71-0.94)	0.004	
negative expression (0 WHS units)	1150	115	304	, ,		, ,		
positive expression (>0 WHS units)	2983	222	670					
IKK alpha (n=3024)				0.86 (0.68-1.11)	0.24	0.80 (0.69-0.93)	0.003	
negative expression (0 WHS units)	1579	144	400					
positive expression (>0 WHS units)	1445	114	298					
phospho p65 ⁵³⁶ (n=4053)				1.03 (0.79-1.34)	0.81	0.89 (0.77-1.04)	0.15	
low expression (<25 WHS units)	857	70	219	,		,		
high expression (>25 WHS units)	3196	271	739					
N-Ras (n=4039)				0.66 (0.28-1.61)	0.36	1.36 (0.94-1.96)	0.11	
low expression (<100 WHS units)	3952	337	929					
high expression (>100 WHS units)	87	5	28					
Raf-1 ³³⁸ (n=4030)				0.62 (0.48-0.81)	< 0.001	0.69 (0.59-0.80)	< 0.001	
negative expression (0 WHS units)	2797	266	728					
positive expression (>0 WHS units)	1233	74	224					
p44/42 MAPK ^{202/204} (n=4055)				0.70 (0.56-0.88)	0.002	0.76 (0.66-0.86)	< 0.001	
negative expression (0 WHS units)	2249	217	590					
positive expression (>0 WHS units)	1806	125	369					
(KK alpha and Raf-1 ³³⁸ (n=2980)				0.77 (0.65-0.91)	0.005	0.78 (0.71-0.87)	< 0.001	
both negative	1154	115	316					
one positive	1158	102	254					
both positive	668	37	116					
IKK alpha, Raf-1 ³³⁸ and ER ¹⁶⁷				0.71 (0.56-0.89)	0.01	0.73 (0.64-0.85)	< 0.001	
(n=2904)	339	37	104					
all negative	2037	178	471					
one or two positive all positive	528	29	93					

RFS = relapse-free survival; HR = Hazard Ratio; CI = Confidence interval; WHS = weighted histoscore .*Kaplan-Meier and log-rank analysis compared RFS at both time points. HRs and CIs were calculated from univariate cox regression survival analysis. All statistical tests were two-sided..

Table 3. Univariate analysis of associations between biomarkers, treatment regimen, and RFS at 2.5 and 10 years in postmenopausal HRec positive early breast cancer patients

	Exemestane										Tamoxifen then e	exemestane		-
Diamankana	Number of	RFS 2.5	RFS 10	Relapse-free survi	ival at 2.5yrs	Relapse-free survi	val at 10yrs	Number	RFS 2.5	5 RFS 10	0 Relapse-free sur	rvival at 2.5yrs	Relapse-free surviv	/al at 10yrs
Biomarkers	Patients	events	events	HR (95% CI)	p value*	HR (95% CI)	p value*	of Patients	events	events	HR (95% CI)	p value [*]	HR (95% CI)	p value*
ER ¹¹⁸				1.22 (0.87-1.71)	0.26	0.87 (0.71-1.07)	0.19				0.77 (0.54-1.09)	0.14	0.78 (0.63-0.97)	0.03
low expression	1587	112	380					1570	154	397				ľ
high expression	550	47	115					511	39	103				,
ER ¹⁶⁷				0.68 (0.49-0.95)	0.02	0.96 (0.79-1.16)	0.66				0.77 (0.57-1.05)	0.10	0.71 (0.59-0.85)	< 0.001
negative expression	594	55	141	•		•		556	60	163	•		,	,
positive expression	1491	96	342					1492	126	342				7
IKK alpha				0.80 (0.55-1.16)	0.23	0.86 (0.69-1.07)	0.17				0.93 (0.67-1.29)	0.66	0.74 (0.60-0.92)	0.005
negative expression	791	65	183					788	79	217				,
positive expression	744	49	150					701	65	148				,
p65 ⁵³⁶				1.19 (0.79-1.79)	0.41	0.83 (0.67-1.02)	0.08				0.93 (0.69-1.32)	0.69	0.97 (0.78-1.20)	0.76
low expression	422	28	112					453	42	107	,		,	,
high expression	1623	127	362					1573	144	377				ŗ
N-Ras				0.26 (0.04-1.87)	0.15	1.22 (0.72-2.08)	0.46				1.10 (0.41-2.96)	0.85	1.55 (0.91-2.64)	0.10
low expression	1991	154	459					1961	183	470				ŗ
high expression	48	1	14					39	4	14				ŗ
Raf-1 ³³⁸				0.68 (0.47-0.98)	0.04	0.74 (0.60-0.91)	0.004				0.58 (0.41-0.83)	0.003	0.64 (0.52-0.80)	< 0.001
negative expression	1390	117	352					1407	149	376				ŗ
positive expression	641	37	120					592	37	104				,
044/42 MAPK ^{202/204}				0.77 (0.56-1.06)	0.11	0.75 (0.62-0.90)	0.002				0.66 (0.49-0.89)	0.006	0.77 (0.64-0.92)	0.004
negative expression	1103	93	286					1146	124	304				!
positive expression	942	62	188	: ::: -2 4 0 0				864	63	181	=: :: == 0.00		0.00	2 204
KK alpha and Raf-1 ³³⁸				0.81 (0.63-1.04)	0.18	0.85 (0.73-0.98)	0.05				0.74 (0.59-0.93)	0.03	0.73 (0.63-0.84)	< 0.001
both negative	570	48	137					584	67	179				!
one positive	590	46	132					568	56	122				!
both positive	346	18	58	0.72 (0.51.1.02)	^ 17	0.55 (0.50 1.04)	2.27	322	19	58	2 = 2 (2 51 0 05)	2.00	2 5 4 (2 52 0 77)	0.001
IKK alpha, Raf-1 ³³⁸ and ER ¹⁶⁷			44	0.73 (0.51-1.03)	0.17	0.75 (0.70-1.04)	0.27	172	22		0.70 (0.51-0.95)	0.08	0.64 (0.52-0.77)	< 0.001
all negative	167	15	41					172	22	63				
one or two positive	1027	80	229					1010	98	242				
all positive	271	13	49					257	16	44				

RFS = relapse-free survival; HR = Hazard Ratio; CI = Confidence interval. *Kaplan-Meier and log-rank analysis compared RFS at both time points. HRs and CIs were calculated from univariate cox regression survival analysis. All statistical tests were two-sided.

Table 4. Multivariate analysis of associations between biomarkers, clinicopathological characteristics, and RFS at 2.5 and 10 years in postmenopausal HRec-positive early breast cancer patients by treatment

Characteristics And Biomarkers		All Patients (n=4444)					ly (n=2240)		Tamoxifen followed by Exemestane (n=2204)				
	Relapse-free survival at 2.5yrs (n=2827)		Relapse-free survival at 10yrs (n=1963)		Relapse-free survival at 2.5yrs (n=1429)		Relapse-free survival at 10yrs (n=980)		Relapse-free survival at 2.5yrs (n=1398)		Relapse-free survival at 10yrs (n=983)		
	HR (95% CI)	p value*	HR (95% CI)	p value*	HR (95% CI)	p value*	HR (95% CI)	p value*	HR (95% CI)	p value*	HR (95% CI)	p value*	
Age	1.43 (1.23-1.67)	< 0.001	1.34 (1 20-1.50)	< 0.001	1.41 (1.11-1.78)	0.004	1.38 (1.18-1.62)	< 0.001	1.48 (1.20-1.83)	< 0.001	1.30 (1.11-1.52)	0.001	
<50/50-59/60-69/>70 Grade 1/2/3/4	1.24 (1.04-1.48)	0.02	1.14 (1.01-1.29)	0.04	1.32 (1.01-1.75)	0.04	1.10 (0.92-1.31)	0.28	1.12 (0.90-1.40)	0.32	1.16 (0.97-1.37)	0.10	
Nodal Status absent/present	1.78 (1.34-2.36)	< 0.001	1.39 (1.08-1.79)	0.01	2.02 (1.31-3.11)	0.001	1.36 (0.93-1.98)	0 12	1.65 (1.14-2.38)	0.008	1.26 (0.87-1.83)	0.22	
Size <20mm/>20mm	1.54 (1.18-2.02)	0.002	1.70 (1.42-2.06)	< 0.001	1.75 (1.16-2.64)	0.008	1.82 (1.37-2.40)	< 0.001	1.44 (1.01-2.06)	0.04	1.61 (1.23-2.11)	0.001	
PR status absent/present	1.13 (0.94-1.36)	0.20	1.17 (1.00-1.38)	0.05	1.33 (1.02-1.72)	0.04	1.46 (1.16-1.85)	0.001	0.96 (0.74-1.25)	0.78	0.98 (0.79-1.22)	0.86	
HER2 status absent/present	-	-	1.39 (1.15-1.62)	0.001	-	-	1.35 (1.04-1.79)	0.02	-	-	1.40 (1.06-1.85)	0.02	
Ki67 status Low/High	1.87 (1.44-2.42)	< 0.001	1.33 (1.09-1.62)	0.006	1.96 (1.32-2.92)	0.001	1.37 (1.04-1.79)	0.03	1.78 (1.27-2.50)	0.001	1.32 (1.00-1.73)	0.05	
phospho ER ¹⁶⁷ negative/positive	0.88 (0.67-1.16)	0.35	0.79 (0.65-0.96)	0.02	0.78 (0.52-1.17)	0.23	0.99 (0.74-1.32)	0.92	1.00 (0.69-1.45)	0.99	0.65 (0.50-0.85)	0.002	
IKK alpha	-	-	0.91 (0.76-1.14)	0.34	-	-	1.09 (0.83-1.42)	0.55	-	-	0.81 (0.63-1.06)	0.11	
absent/present Raf-1 ³³⁸ (n=4030)	0.71 (0.52-0.97)	0.03	0.85 (0.65-1.12)	0.26	0.72 (0.46-1.14)	0.16	1.01 (0.68-1.49)	0.98	0.81 (0.51-1.29)	0.37	0.66 (0.50-0.98)	0.04	
negative/positive p44/42 MAPK ^{202/204}	0.92 (0.70-1.20)	0.53	0.92 (0.76-1.13)	0.45	1.21 (0.81-1.81)	0.36	0.90 (0.70-1.19)	0.46	0.70 (0.49-1.01)	0.06	0.98 (0.74-1.30)	0.90	
negative/positive IKK alpha and Raf-1 ³³⁸ both negative/one	0.82 (0.68-0.99)	0.38	0.89 (0.77-1.04)	0.13	0.79 (0.60-1.05)	0.11	1.03 (0.83-1.27)	0.80	0.81 (0.63-1.05)	0.11	0.76 (0.62-0.93)	0.008	
positive/both positive IKK alpha, Raf-1 ³³⁸ and ER ¹⁶⁷ all negative/one or two positive/all positive	-	-	0.81 (0.68-0.96)	0.01	-	-	0.97 (0.76-1.24)	0.83	-	-	0.67 (0.54-0.85)	0.001	

HR = Hazard Ratio; CI = Confidence interval; -- = not included in analysis. *Multivariate cox regression survival analysis using a backward conditional elimination model and a <u>statistical</u> significance threshold of p<0.01 was performed to identify independent prognostic biomarkers. All statistical tests were two-sided.