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Abstract  

Optical bandgap properties of the VACNT array were probed through its interaction with 

white light, with the light reflected from the rotating arrays measured by a spectrometer. The 

precise deterministic control over the structure of vertically-aligned carbon nanotube arrays 

through electron beam lithography and well-controlled growth conditions brings with it the 

ability to produce exotic metamaterials over a relatively large area. The characterisation of 

the behaviour of these materials in the presence of light is a necessary first step toward 

application. Relatively large area array structures of high quality VACNTs were fabricated in 

square, hexagonal, circular and pseudorandom patterned arrays with length scales on the 

order of those of visible light for the purpose of investigating how they may be used to 

manipulate an impinging light beam. In order to investigate the optical properties of these 

arrays a set of measurement apparatus was designed which allowed accurate measurement of 

their optical bandgap characteristics. Patterned samples were rotated under the illuminating 

white light beam, revealing interesting optical bandgap results caused by the changing 

patterns and relative positions of the scatterers (VACNTs). 

Introduction 

The electrons in a plasma or free electron gas, when subject to an impulse, will undergo a 

shift in distribution density under the force of the impulse. The corresponding charge 

imbalance caused by the movement of electrons relative to heavier ions in the substance 

induces a restoring electrostatic force; the electrons, moving under the influence of this force, 

exchange potential for kinetic energy and hence oscillate at some characteristic plasma 

frequency [1]. Metals are reflective in the optical range of the electromagnetic spectrum, as 

their plasma frequency is in the ultraviolet range. Metamaterials are structures with 

subwavelength features relative to a periodic external stimulus such as electromagnetic or 

acoustic waves. Pendry et al [2] show that when a metamaterial of thin metallic wires is 



manufactured the effective plasma frequency of the structure can be lowered from that of the 

bulk material by up to six orders of magnitude, allowing the cutoff frequency for reflection of 

electromagnetic waves by the metamaterial to fall within the optical range. The range of 

frequencies which are screened can be selected by engineering structural parameters of the 

material; finely dividing a bulk metal into thin wires brings surface plasmons into play whose 

plasma frequency depends on the diameter of the wire and the proximity of its neighbours. 

The metallic nature of the VACNT arrays designed for these experiments allow them to 

interact similarly with an impinging EM wave [2]. Modification of the parameters of the 

CNT arrays will alter the effective surface plasmon frequency of the metamaterials formed by 

the array, changing the frequency at which it will allow an electromagnetic signal to pass [3]. 

 

Dielectric metamaterials may also exhibit frequency-dependent behaviour. When the 

refractive index of a dielectric metamaterial is periodically modulated over a length scale 

comparable with that of the wavelengths of impinging electromagnetic radiation then that 

material may be referred to as a photonic crystal, after the work of Sajeev John and Eli 

Yablonovitch in 1987 [2, 3]. In such a metamaterial certain frequencies of EM radiation may 

be completely reflected, either at certain angles of incidence (partial photonic bandgap) or all 

angles of incidence (complete photonic bandgap). The optical band gap, like the electronic 

band gap, has its origin in Bragg reflection [4]. The periodicity of photonic crystals can be 

one, two or three dimensional with physical examples being a Bragg reflector, a silicon oxide 

substrate with periodically etched holes and the naturally occurring stone opal, respectively.  

 

Photonic crystals are materials which, like semiconductor or other crystals, have a periodic 

variation in their structure. In crystals this variation is due to the arrangement of the atoms 

and their electronic shells and is of the order of 0.1nm; its effects may be seen in the 



diffraction of X-rays or in the formation of the bandgap in semiconductors. Photonic crystals 

however are formed from a periodic variation in refractive index contrast on the scale of 

hundreds of nanometres, that of the wavelengths of light. Crystals have a discrete rather than 

a continuous translational symmetry; they are invariant over some multiple of a fixed length.  

 

There are naturally occurring photonic crystals but, as with semiconductors, those which are 

of practical use are usually man-made. An instance of a one-dimensional photonic crystal is 

the Bragg reflector, a stack of layers of alternating refractive indices whose properties can be 

chosen to reflect a select range of frequencies and thus act as an optical band stop filter. A 

plane wave travelling through the layers will be scattered at each interface, and the forward 

and backward propagating waves will interfere to form standing waves within the crystal. A 

standing electromagnetic wave existing within the stack can, due to the symmetry of the unit 

cell, either have its nodes centred in the low or the high refractive index layers [5].  

 

As the velocity of the wave in a high refractive index must be lower than that of the wave in a 

low refractive index a bandgap appears of an energy equal to that of the difference between 

the two velocities. In order to model such a field in a 1D layered structure the 1D Helmholtz 

equation is solved by the plane wave expansion method [6]. The boundary conditions are 

determined at each layer by considering the transmitted and reflected waves and their 

tangential electric field component. The amplitude of the incident wave defines the first 

boundary condition at the interface which the wave strikes and the final boundary condition is 

set by the lack of reflection after the final interface. 

Results and Discussion 



A set of procedures were developed utilising a sophisticated combination of nanoscale 

patterning with electron beam lithography, deposition of catalyst layers and subsequent 

growth of vertically aligned carbon nanotubes. The procedures were optimised to make the 

most efficient possible use of the Nanobeam system, as this system was in very high demand 

for the duration of this experimental work. Deposition equipment designed and built within 

the Department of Engineering was used throughout the development of the process for 

sputtering and PECVD. SEM was used to characterise the height and spacing of the VACNT 

arrays, and the electron micrographs produced were analysed with a combination of freely 

available software and scripts written in MATLAB. Figure 1(a-d) shows the SEM images of 

fabricated VACNT arrays generated in square, hexagonal, circular and pseudorandom 

patterns using the MATLAB script written specifically for the purpose. 

 
Figure 1: VACNT symmetry variation. (a) square, (b) hexagonal, (c) circular, (d) 

pseudorandom arrays of VACNTs 



The effect of the arrays on white light were measured using a xenon lamp and a spectrometer 

[7]. To measure optical absorption, the xenon white light source is launched into a multimode 

optical fibre via a system of lenses mounted in a 30mm optical cage assembly attached to an 

optical bench. As the white light source for the measurement is a xenon lamp (Newport 6255, 

150W), it should be switched on and allowed to stabilise for 30 mins before the start of 

experimentation [8]. The cage assembly allows the placement of filters before the launch lens 

to control the illumination level. The exit end of the fibre is mounted on an arm which allows 

adjustment of the angle of elevation. On exit from the fibre the light beam is collimated and 

polarised before impinging on the sample, and another arm-mounted fibre gathers the 

reflected light (Figure 2a). This fibre leads to an Ocean Optics HR2000 spectrometer. The 

sample is mounted on a rotation stage, driven by a computer controlled stepper motor. The 

sample is centred on the stage with the spectrometer in “live” mode. The initial angle of the 

sample is at zero degrees, i.e. an edge of the array is facing the light beam at the start of the 

experiment.   

The collimated light beam forms an ellipse on the sample surface due to the angle of 

incidence. The receiving arm of the system, holding the fibre linked to the spectrometer, is 

adjusted to maximise the signal from the sample. A rapid, full rotation of the sample is 

carried out to check that the beam falls completely onto the array at the centre of the sample 

at all times, without hitting the bare silicon substrate. The level of signal at the spectrometer 

is checked to ensure that the spectrometer CCD is not saturating. If the signal saturates the 

CCD (> 4000 counts) then neutral density filters can be introduced into the light path to 

attenuate the beam before entering the fibre to the rig. After these checks, the stage is reset to 

zero. A baseline spectrum is recorded and the subsequent changes in transmission are 

recorded relative to this baseline. The angle of the sample is incremented by the required 



amount and a spectral measurement taken. The rotation and measurement steps are repeated 

until the sample has undergone one full rotation.  

To begin the experiment, the sample is rotated and a transmission spectrum gathered after 

each rotation step. CNT array samples of triangular and square symmetries with several 

different lengths were measured at various elevation angles. An angle step of 0.3 degrees was 

typically chosen, giving 1200 spectra of 2046 data points each per 360˚ rotation. The 

spectrometer has a wavelength range from 190 to 1100nm, giving a resolution of 

approximately 0.44nm per pixel. The full angular dependent transmission spectrum dataset 

thus consists of 2455200 data points, which was found to be presented in the most 

illuminating manner using a 2D greyscale image (Figure 2d) generated using a MATLAB 

script.  

 

 

 

Figure 2: a) Diagram of transmission spectrum measurement system. b) CAD model of 

measurement system (some components omitted for clarity). The arms are individually 



adjustable for elevation to allow for maximum signal. The stepper-driven rotation 

mount and spectrometer are under software control (LabVIEW). (c-d) Comparison of 

3D plot vs. 2D intensity display for spectral absorption analysis, counts are represented 

by intensity, scaled to 256 bit greyscale. The positions of the red traces in the left panel 

are displayed as lines in the right, with some corresponding spectral features marked 

with arrows. 

In Error! Reference source not found.2c the 3D plot contains a small subset of the data 

with spectra separated by 30˚; denser 3D plots tend to obscure spectral features. Therefore, in 

order to best present the results the whole experiment is converted into an intensity map. In 

the 2D intensity plot (Error! Reference source not found.2d) the individual spectra can be 

retrieved by taking the intensity profile along a vertical line with its base on the x-axis falling 

at the desired angle; for instance, the red traces in the 3D plot are obtained from the intensity 

profile of the red vertical line intersecting the x-axis at the 30˚ interval on the 2D image plot 

and the red horizontal line intersecting the Y axis at 538nm. 

Transmission properties of square and hexagonal arrays were measured as described above. 

Figure 3a shows an SEM image of a typical square array of VACNTs respectively which 

were measured with the system. Each array measured was 2.5x2.5mm, to ensure that the light 

beam interacts entirely with the array. If the light beam impinges on the bare silicon 

substrate, the shape of the array becomes apparent in the 2D intensity map (Figure 3b-c). 



 
Figure 3: (a)Wafer 3 chip B0 – 635nm spaced square array, average tube length 561nm 

SEM image (tilt angle: 30 degrees), showing foreshortening along the y-axis due to the 

stage tilt. The azimuthal angle is zero degrees. (b) Transmission spectrum of a square 

VACNT array with 581nm spacing and 561nm length. The incident light beam is 70 

degrees from normal. (c) Detail of transmission spectra for square arrays with varying 

apertures and VACNT lengths. Each detail section is a sample over 180°. 

 

The rotation of the square array through 360° under illumination from white light results in 

an intensity map with a fourfold symmetry. The spectral emission of the illumination system 

(from about 400-900nm) limits the range in which the response of the array can be probed; 

the sensitivity of the spectrometer extends above and below this range. Reflected frequencies, 

failing to reach the spectrometer, appear as dark bands on the intensity map. Figure 4a-c 

shows an SEM image of a hexagonal array of VACNTs and the respective 2D intensity maps. 



 
 

Figure 4: (a) SEM image of hexagonal arrays of VACNTs (b) Transmission spectrum of 

hexagonal VACNT array with 581nm spacing and 651nm length. The incident light 

beam is 70 degrees from normal. (c) Detail of transmission spectra for hexagonal arrays 

with varying apertures and VACNT lengths. Each detail section is a sample over 180°. 

As the sample rotates, the reciprocal lattice rotates with it. In this way the wave vectors of the 

beam track through the Brillouin zone symmetry points and changes in the spectrum of light 

reflected from the sample will convey information about its optical band structure. The 

symmetries of the square and hexagonal arrays result in the respective fourfold and six fold 

replication of the transmission spectra in the intensity map which encompasses the full 360° 

revolution of the sample. The cosine patterns visible in the 2D map track the movement of 



the frequency bands which are reflected by the array on the presentation of a particular 

configuration of scatterers to the incoming light beam. Looking in detail at the square array of 

sample W3-B0, cosine features with three distinct amplitudes can be seen (highlighted,  (a, d) 

Detail of three transmission spectra from a square array with 4.5 degrees rotation difference. 

The top panel shows spectral measurement in wavelengths and counts, the bottom panel 

contains the corresponding section of the intensity map.  5a and 5d). 

 

Figure 5: (a, d) Detail of three transmission spectra from a square array with 4.5 

degrees rotation difference. The top panel shows spectral measurement in wavelengths 

and counts, the bottom panel contains the corresponding section of the intensity map. 

(b) Highlighted reflections from a square array of VACNTs. The transmission intensity 

map has been duplicated to simulate a 𝟒𝝅 rotation of the sample. (c) Rotating the 

sample rotates the Brillouin zone (thick green square). The wave vector reflected by the 

first Brillouin zone increases in magnitude between 0 and 45 degrees, decreasing again 

from 45 to its original value at 90 degrees. (e-g) Sample W3-F4, square array with 

576nm CNT spacing and 492nm length. The source and detector angle from the plane of 

the sample is increased from left to right. 

The amplitude of the features is measured in nanometres, the phase and period in degrees. 

Feature Amplitude Period Phase 



(nm) (degrees) (degrees) 

a 900 610 0 

b 190 180 60 

c 120 180 0 

d 120 180 35 

Table 1: Square array reflection cosine features 

Sample W3-B0 is a square array with VACNTs spaced at 581nm; this is the aperture, a. The 

reciprocal lattice spacing is  
𝟐𝝅

𝒂
= 𝟏. 𝟎𝟖𝟕𝐦−𝟏. As sample and hence the Brillouin zone rotates 

the scattering face of the Brillouin zone shifts. As the sample rotates up to 45°, gradually 

higher frequencies are reflected. 

The sharp spectral features visible in the square and hexagonal arrays as the sample is rotated 

have their greatest contrast in the intensity maps when the light beam is as close as possible 

to the plane of the substrate on which the arrays are grown. The interaction of the light beam 

with the array would theoretically be at a maximum at zero degrees (cosine dependence); 

however, the short length of the VACNTs would present extreme challenges for coupling the 

light into the array. The dimensions of the measurement system limit the angle to a minimum 

of 20°. The spectral features are seen to diminish as the elevation angle is increased away 

from the plane of the substrate; the peaks of the features are virtually indistinguishable from 

the background at an elevation of 40 degrees. 

As the angle of elevation is increased, the interaction of the light beam with the VACNTs 

decreases. When the beam is normal to the array, no band structure effects will be seen as the 

array is rotated as it becomes effectively homogeneous to the beam path. Diffraction of the 

beam will still be observed. 

Changing the angle of the probe beam relative to the array will produce a change in the wave 

vector of the beam. This should produce a shift in the reflected frequencies. This shift is 



visible between the spectra taken at 20˚ and 30˚, however the lack of interaction at 40˚ 

elevation makes it impossible to accurately determine the degree of shift. Table 2 details the 

measured shifts for two of the reflection peaks. As the elevation angle is increased, the peak 

reflection shifts to shorter wavelengths, i.e. longer wavelengths can now be transmitted 

through the array. Increasing the angle of elevation effectively increases the array spacing in 

the direction in which the light is travelling, which reduces the reciprocal lattice spacing and 

therefore the Brillouin zone. This reduction allows the transmission of the longer 

wavelengths. 

Elevation 
(deg) 

Rotation 
(deg) Peak 𝜆 (nm) 

shift 
(deg) 

20 90 606 
 30 90 587 -19 

20 63 538 
 30 63 527.5 -10.5 

Table 2: Shift in peak absorption with elevation angle 

Circular and pseudorandom arrays (Figure 6c top and bottom) were measured as systems 

with no symmetry. The pseudorandom array shows some variation in intensity as the array is 

rotated, but this is a broadband shift which may be explained by a slight tilt of the sample or 

stage causing a variation in the amount of light falling upon the spectrometer input. The 

circular array shows two bands of light, one centred around ~460nm and the other around 

~480nm. The frequency of the band does not vary as the array is rotated, as would be 

expected from the array’s circularity. On close inspection some slight banding can be seen; 

this is caused by the slight phase difference between the annular rings of the array. An 

interesting feature of this intensity map is the lack of oscillation seen at long wavelengths in 

all other measurements, between 800nm and 900nm. This array seems to be capable of 

uniform scattering except within the bluish bands of light previously mentioned. 



 

Figure 6: (a) Detail of square sample optical band structure measurement. The yellow 

line shows the peak of a cosine feature measured at 20 degrees elevation; the red line 

shows the new position of the peak when the measurement is carried out at an elevation 

of 30 degrees. The peak has shifted downward by approximately 19nm. (c) SEM image 

of Circular (top) and pseudorandom arrays (bottom) (d) Optical band structure 

measurements for pseudorandom (left panel) and circular VACNT arrays (right panel). 

Note the lack of banding between 800 and 900nm in the case of the circular array 

spectral map, detailed in the graph above (b) 

The rotation of the array around its centre presents a changing view of the nanotube elements 

depending on the spacing and symmetry of the array. Each nanotube in the array describes an 

arc around the centre of rotation, with the arc described dependent upon the distance from the 

centre, r (the arc radius) and the angle through which the array is rotated in radians. Taken 

from the centre, the movement for a nanotube is 𝜃r for a rotation through 𝜃 degrees. Taking 

the example of the square array, at the initial azimuthal angle of 0˚ with the light beam 

impinging at an angle of 30˚ from the normal the array is presented as shown in the above 



SEM image (Figure 3a).  Increasing the tilt angle increases the apparent length of the tubes 

whilst foreshortening the apparent distance along the plane perpendicular to that of the tilt. 

This will increase the interaction of the light with the nanotubes and decrease the interaction 

with (reflection from) the substrate (Figure 7).  

As the angle of incidence of the light beam deviates from the normal the interaction with the 

nanotube array will increase (Figure 7b). This allows a more accurate measurement of the 

bandgap as the signal to noise ratio (SNR) increases (Figure 5e-g). In this figure the decrease 

in contrast as the elevation angle from the plane of the substrate is increased in figures from 

left to right is clear. The square symmetry of the array is evident in the 90˚ periodicity of the 

scan features. As the angle is increased there is a slight decrease in wavelength of the 

absorption peaks, for instance that seen at an angle of 90˚. 

MATLAB was used to model the periodic arrays of vertically-aligned carbon nanotubes as 

Bragg scatterers.  A square array of scatterers is modelled in MATLAB. A vector, v, holds a 

range of values centred around zero. The MATLAB function REPMAT is used to duplicate 

the vector to produce a 2D array of x co-ordinates, which is then transposed to produce the 

corresponding array of y-co-ordinates for each scatterer in the square array. The angle and 

distance of each co-ordinate point from the centre is calculated. The Bragg condition for 

diffraction is calculated for each point for each angle of rotation of the array. As the array is 

square it exhibits fourfold symmetry so 𝜋/2 rotation captures the complete range of optical 

interaction. 

 



 
 

 

Figure 7: (a)Interaction of light beams with nanotube arrays at several azimuthal angles 

(b) shows a plan view of the rotating array (top) Light interaction at several elevation 

angles (bottom) (c,d) Comparison of optical band structure complexity when number of 

scatterers in a square array is increased from 9 (left panel) to 25.  

Figure 7c-d shows plots of the optical band structure of the array of scatterers, as calculated 

from the Bragg law for reflection. The diagram shows that there are no complete band gaps, 

which would be indicated by discontinuities in the curves; i.e. there is no wavelength which 

is always scattered independent of the angle of rotation of the array. 

Conclusions 



The white light transmission measurements performed on square and hexagonal arrays of 

VACNTs demonstrate partial bandgaps in the optical regime. Complete bandgaps might be 

seen when probing the arrays with longer wavelengths. The Brillouin zone of the VACNT 

crystal was clearly evident in the cosine structures which follow troughs in the transmission 

of the probing white light beam. The circular array pattern showed a broadband, uniform 

scattering action. The two pass bands which were visible in the transmission spectrum could 

be moved by altering the growth parameters of the array. The combination of precision 

placing of VACNTs over a large area, high scattering cross section and highly tunable length 

suggests that there may well be applications for these structures in optical devices such as 

filters, switches and pumps. The limit on VACNT spacing for uniform growth with the 

processes used at present is 400nm. Complete photonic bandgaps may be realized with these 

symmetries by decreasing the ratio of aperture: wavelength either by reducing the spacing of 

the VACNTs or increasing the wavelength of light used. The broadband, uniform scattering 

of the circular array as measured in transmission can be further investigated through the 

generation of circular arrays with varied parameters of inter-ring spacing and phase. It should 

also be possible to tune the flat pass bands by varying these parameters. Square arrays may 

exhibit optical bandgaps at wavelengths longer than those in the visible spectrum. 

Measurements should be carried out using a light source whose emission and spectrometer 

sensitivity extends further into the micrometer range. The automation of the transmission 

measurement system, together with the grazing angle of incidence of the probe light beam 

made possible by the large areas of the arrays under scrutiny, have allowed the acquisition of 

high resolution optical transmission datasets. The mapping of these datasets clearly show the 

characteristic cosine curves of optical band structure which follows the rotation of the 

Brillouin zone with the sample. Square and hexagonal arrays show these curves following 

four and sixfold symmetry. Changing the grazing angle of incidence alters the effective shape 



of the reciprocal lattice of the sample under test, with a corresponding change in the shape of 

the Brillouin zone. This change is evident in the lowering in amplitude of the cosine peak, 

which indicates longer wavelengths of light finding paths through the crystal structure. The 

circular array provides further interesting data. Apart from the two bands visible in the 

transmission map, extremely uniform broadband scattering has been achieved. This property 

is well deserving of further attention; circular array co-ordinates with greater spacings and 

phases between concentric rings are easily generated with the same software which created 

the original array. 

Methods 

Laboratory facilities at the Centre for Advanced Photonics and Electronics (CAPE) are used 

to fabricate relatively large area arrays of VACNTs of high quality with length scales on the 

order of those of visible light for the purpose of investigating how they may be used to 

manipulate an impinging light beam. In order to investigate the optical properties of these 

arrays, a set of measurement apparatus was designed which allowed accurate measurement of 

their various characteristics. The automation of the optical band structure measurements 

produced a very high resolution map of the energies reflected and transmitted by the arrays as 

they were rotated under the illuminating white light beam, revealing interesting structures 

caused by the changing relative positions of the scatterers. The interaction of light with the 

array was qualitatively reproduced with a MATLAB model. 

The second system was based around optical cage components purchased from Thorlabs and 

used to measure optical bandgap effects by directing white light onto the array and measuring 

the reflected spectrum. Both of these systems had measurement interfaces written in 

LabVIEW, allowing a higher volume of accurate data to be recorded than would have been 

possible with manual measurements and therefore increasing the quality of the dataset used in 

later analysis. The large, accurate datasets produced became particularly useful in the optical 



bandgap measurements. A step by step summary of sample preparation and characterization 

process is provided in the supporting material. 
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