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Robotic Disassembly Sequence Planning using Enhanced Discrete Bees 

Algorithm in Remanufacturing 

Increasing attention is being paid to remanufacturing due to environmental 

protection and resource saving. Disassembly, as an essential step of 

remanufacturing, is always manually finished which is time-consuming while 

robotic disassembly can improve disassembly efficiency. Before the execution of 

disassembly, generating optimal disassembly sequence plays a vital role in 

improving disassembly efficiency. In this paper, to minimize the total 

disassembly time, an enhanced discrete Bees algorithm (EDBA) is proposed to 

solve robotic disassembly sequence planning (RDSP) problem. Firstly, the 

modified feasible solution generation (MFSG) method is used to build the 

disassembly model. After that, the evaluation criterions for RDSP are proposed to 

describe the total disassembly time of a disassembly sequence. Then, with the 

help of mutation operator, EDBA is proposed to determine the optimal 

disassembly sequence of RDSP. Finally, case studies based on two gear pumps 

are used to verify the effectiveness of the proposed method. The performance of 

EDBA is analyzed under different parameters and compared with existing 

optimization algorithms used in disassembly sequence planning (DSP). The result 

shows the proposed method is more suitable for robotic disassembly than the 

traditional method and EDBA generates better quality of solutions compared with 

the other optimization algorithms. 

Keywords: remanufacturing; robotic disassembly sequence planning; enhanced 

discrete bees algorithm; disassembly sequence planning; intelligent optimization 

1. Introduction 

The traditional manufacturing industry has the disadvantages of low resource utilization 

and high environmental pollution. Cloud manufacturing (Tao et al. 2017a, 2017b) and 



remanufacturing (Diallo et al. 2017) etc. are regarded as the future trends of 

manufacturing industry, they can make full use of manufacturing resources (Tao et al. 

2008) such as manufacturing equipments, manufactured products etc. Improper 

handling of the End-of-Life (EoL) products which have been used for many years 

usually leads to environmental pollution and resources-wasting (Ren et al. 2017). 

Remanufacturing takes both environmental protection and economic development into 

considerations by reusing EoL products (Guide 2000). When EoL products need to be 

remanufactured, disassembly should be firstly considered. Due to the complexities of 

disassembly process, disassembly process is always manually finished. Recently, 

robotic disassembly has been paid much attention due to high efficiency. The cognitive 

robot was proposed to handle uncertainties in dynamic disassembly process 

(Vongbunyong, Kara, and Pagnucco 2012). Afterwards, the basic behavior control 

(Vongbunyong, Kara, and Pagnucco 2013a) and the advanced behavior control 

strategies (Vongbunyong, Kara, and Pagnucco 2015) of cognitive robot were proposed. 

Based on LCD screens, robotic disassembly system which consists of reasoning, 

execution monitoring, learning/revision strategy (Vongbunyong, Kara, and Pagnucco 

2013b) was proposed to realize automated disassembly. 

The disassembly process mainly contains two parts: disassembly planning and 

disassembly execution. In the disassembly planning, obtaining the optimal disassembly 

sequence plays a vital role in reducing disassembly time and disassembly cost, etc. (Luo, 

Peng, and Gu 2016). Many researchers have studied DSP problem to find the optimal 

disassembly sequence. However, most of existing researches focus on solving DSP for 



manual disassembly. For RDSP, the traditional DSP model is not adaptable because of 

different characteristics of humans and robots. To avoid the obstacle caused by contour 

of EoL products, the moving path of industrial robot’s end-effector should be considered. 

It also has influence on the total disassembly time. In this paper, an optimization 

algorithm named EDBA is proposed to solve RDSP to minimize the total disassembly 

time. 

The rest of this paper is organized as follows: firstly, we briefly review the related 

works in Section 2. After that, feasible disassembly sequence is obtained by modified 

space interference matrix. In Section 4, in order to minimize the total disassembly time, 

the evaluation criterions for RDSP are proposed. EDBA is proposed to solve RDSP in 

Section 5. Furthermore, case studies based on two gear pumps are used to verify the 

proposed method. The performance of EDBA is analyzed under different parameters 

and compared with some existing optimization algorithms. Finally, conclusions are 

made in Section 7.  

2. Related works 

Nowadays, there are many researches focus on DSP problems. In the reference (Xing, 

Wang, and Liu 2012), the changes of disassembly direction, total disassembly distance 

and length of disassembly sequence were simultaneously considered. DSP was solved 

by ant colony algorithm. Considering the changes of disassembly tool, the changes of 

disassembly direction, the part volume and the maintainability, Kheder used genetic 

algorithm to obtain optimal disassembly sequence of a rear axle (Kheder, Trigui, and 

Aifaoui 2015). To disassemble heavy, hazardous and high-value components as early as 



possible, brute-force method was proposed to obtain the optimal disassembly sequence 

based on waste electrical and electronic equipments (Jin et al. 2015). To simultaneously 

optimize the disassembly level, recovery options and disassembly sequence, an 

improved co-evolutionary algorithm was used to find the optimal disassembly solutions 

(Meng et al. 2016). In the parallel disassembly environment, an integer programming 

model and an optimal branch and bound algorithm were used to minimize the operation 

cost and the sequence-dependent set-ups under selective disassembly mode (Kim and 

Lee 2017). 

When DSP is considered together with robotic disassembly, the characteristics of 

industrial robots should be considered. The total disassembly time, as the major 

optimization objective in RDSP, contains four parts: basic disassembly time (Song et al. 

2014), penalty time of disassembly direction change, penalty time of disassembly tool 

change (Xia et al. 2014a) and moving time of the end-effector between different 

disassembly points (ElSayed et al. 2011). To disassemble personal computers, ElSayed 

used genetic algorithm to get optimal disassembly sequence for robotic disassembly 

(ElSayed, Kongar, and Gupta 2010). After that, an online genetic algorithm was used to 

solve DSP, it can handle dynamical disassembly process (ElSayed et al. 2012). These 

researches consider range-sensing camera, image segmentation algorithm and 

movement of industrial robot’s end-effector in the disassembly process. For the 

movement of industrial robot’s end-effector, the moving time between different 

disassembly points (ElSayed et al. 2011) was a part of total disassembly time, it was 

calculated by Euclidean distance between different disassembly points and moving 



speed of the end-effector. After that, Alshibili et al. (2015) used tabu search to obtain 

optimal disassembly sequence, the moving time between different disassembly points 

was also calculated by the same way. However, during robotic disassembly process, the 

moving path between different disassembly points should not be straight-line path, the 

obstacle-avoidance moving path of the end-effector should be considered to avoid 

physical collisions. 

To obtain optimal disassembly sequence, optimization algorithms such as Genetic 

Algorithm (GA) (Lambert 2003), Ant Colony Optimization (ACO) etc. are usually used. 

In reference (Go et al. 2012), the disassembly sequences were coded into chromosomes 

and the selection/mutation/crossover operators were used. Based on a machine vise, Xu 

used adaptive particle swarm optimization to solve DSP, the inertia weight and mutation 

probabilities were adaptively determined (Xu, Zhang, and Fei 2011). With the help of 

multi-layer representation method, based on a single-speed reduction gearbox, the 

optimal disassembly sequence was obtained by ACO (Luo, Peng, and Gu 2016). Bees 

algorithm (BA) (Pham and Ghanbarzadeh 2007) is an optimization algorithm inspired 

by the foraging behavior of bees. Compared with existing optimization algorithms, BA 

has its great competitiveness (Yuce et al. 2013). To the best of our knowledge, BA has 

not been used in RDSP field yet. 

3. Disassembly model 

After years of usage, the disassembly precedence relationship of EoL product may be 

different from its original status. For the EoL product with unknown structure, it is 

difficult to build its disassembly model in advance. In this paper, the following 



assumptions are made: 1. the proposed method is applicable to repetitive disassembly of 

the same product with known components and geometric information (Xia et al. 2014a); 

2. All parts of EoL product can be disassembled through corresponding disassembly 

operations. 

To obtain feasible disassembly sequence, disassembly model should be firstly 

established to describe the disassembly precedence relationships. In the existing 

researches, the disassembly model is mainly established by graph-based methods (Tian, 

Zhou, and Chu 2013), Petri net methods (Xia et al. 2014b) and matrix-based methods 

(Percoco and Diella 2013) etc. In robotic disassembly, the disassembly direction of each 

part should be provided for the industrial robot. In this paper, MFSG which contains the 

modified space interference matrix and the interference matrix analysis is used to build 

disassembly model.  

3.1 Modified space interference matrix 

Jin, Li, and Xia (2013) used space interference matrices along six directions (X+, X-, 

Y+, Y-, Z+, Z-) to describe disassembly precedence relationships between different 

parts. In the space interference matrix Smd, element sij indicates whether component j 

impedes the movement of component i along md (md = X+, X-, Y+, Y-, Y+ or Y-) 

direction. If component j impedes the movement of component i along md direction, sij 

is 1, otherwise sij is 0. In their works, space interference matrix along negative axis 

(such as X-) was regarded as the transposed matrix of space interference matrix along 

corresponding positive axis (such as X+). However, when the bolt is considered, the 

space interference matrix needs to be modified. A simple case is studied as shown in 



Figure 1. 
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Figure 1. A simple case for modified space interference matrix 
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For this case, the space interference matrices along six directions are described by 

Equation (1). According to interference matrix analysis mentioned in Section 3.2, if 

both bolt C and component D have been removed along Z+ direction, the traditional 

space interference matrix Sx,y,z is shown in Equation (2). For the remaining parts ABE, 

based on interference matrix analysis and Equation (2), component E can be removed 

along X- direction before bolt B is removed. However, it is at variance with the reality. 

Because for the practical disassembly process, component E can be removed only after 

bolt B has been disassembled along X+ direction. Thus, each interference matrix should 

be considered separately instead of using the transposed matrix. In the modified 

interference matrix Smd, element sij indicates whether component i can be disassembled 

along md direction when component j exists, if component i can be disassembled along 

md direction when component j exists, element sij is 0, otherwise, it is 1. The modified 

interference matrices are expressed by Equation (3). For example, element SBE is 0 in 

the modified space interference matrix Sx+, although component E has contact 

relationships with bolt B, bolt B can be removed along X+ direction by unscrewing 

operations. Element SEB is 1 in the interference matrix Sx-, because component E can not 

be removed along X- direction before bolt B has been removed. 

3.2 Interference matrix analysis 

Based on the modified space interference matrix, interference matrix analysis is used to 

obtain the feasible disassembly sequences. Interference matrices Sx+, Sx-, Sy+, Sy-, Sz+, Sz- 

are integrated into interference matrix Sx,y,z as shown in Equation (4) by the following 

method. The element sx,y,z(i, j) in the integrated matrix Sx,y,z is a string of six digits of 0 



and 1 representing the elements sij of the six interference matrices listed in the order of 

entries in matrices Sx+, Sx-, Sy+, Sy-, Sz+ and Sz- respectively. The Boolean operator ‘OR’ 

acts on each row of interference matrices (Sx+, Sx-, Sy+, Sy-, Sz+, Sz-) to obtain the column 

result as shown in Equation (4). For instance, the third element of column result is 

111101, each bit is calculated by Boolean operator acts on the third row of each 

interference matrix (in order of Sx+, Sx-, Sy+, Sy-, Sz+, Sz-). Each element of column result 

has 6 bits, if the first bit is 0, it means this component can be disassembled along X+ 

direction, otherwise, it can not (first bit for X+ direction, second bit for X- direction, 

third bit for Y+ direction, etc.). In the array ‘111101’, the fifth bit is 0, it means bolt C 

can be disassembled along Z+ direction. Thus, according to this rule and Equation (4), 

bolts B and C can be disassembled along X+ direction and Z+ direction respectively. If 

bolt B has been disassembled along X+ direction, the second column and the second 

row of Sx,y,z in Equation (4) are deleted as shown in Equations (5).  
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From Equation (5), it is obvious that component A can be disassembled along X+, Y+, 

Y-, Z+ or Z- direction, component C can be disassembled along Z+ direction. If 

component C has been removed along Z+ direction, the corresponding column and row 

of Sx,y,z in Equation (5) are deleted. Then the interference matrix Sx,y,z is described by 

Equation (6). It is obvious component A can be removed along X+, Y+, Y-, Z+ or Z- 

direction, component D can be removed along X+, X-, Y+, Y- or Z+ direction, 

component E can be removed along X-, Y+, Y-, or Z- direction. If component A has 

been removed along X+ direction, the interference matrix Sx,y,z is obtained as shown in 

Equation (7). From Equation (7), component D can be removed along X+, X-, Y+, Y- or 

Z+ direction and component E can be removed along X+, X-, Y+, Y- or Z- direction. If 

component D has been removed along Z+ direction, the remaining component E can be 

removed along any direction (We choose Z+ direction here). The feasible disassembly 

sequence is B/C/A/D/E, the corresponding disassembly direction is X+/Z+/X+/Z+/Z+. 

During the generation of disassembly solutions (Equations (4) through (7)), the 

disassembly solutions are not unique. Many other alternative disassembly solutions can 

also be generated by the same method. Without capturing these alternatives, high quality 

of disassembly solutions could be missed. 

4. Evaluation criterions for RDSP 

In this paper, the optimization objective of RDSP is to minimize the total disassembly 

time for disassembling an EoL product. The total disassembly time mainly contains the 

basic disassembly time, the penalty time for disassembly direction changes, the penalty 

time for disassembly tool changes and the moving time between different disassembly 



points.  

For the basic disassembly time, it is described as disassembling a component by 

the industrial robots (separating a component, unscrewing a screw etc.). In this paper, 

the basic disassembly time for disassembling each component is assumed to be constant 

(Luo, Peng, and Gu 2016). 

During the disassembly process, to deal with disassembly direction changes, it 

takes additional time for the industrial robot to adjust its posture. In this paper, the 

penalty time for disassembly direction change is directly added to the total disassembly 

time, it is expressed by Equation (8). 

°
1

°

0 direction is not changed
( , ) 1 direction is changed by 90

2 direction is changed by 180
i idt x x +


= 



                     (8) 

1 1,2 1,3 1,4 1,5 1,6

2,1 2 2,3 2,4 2,5 2,6

3,1 3,2 3 3,4 3,5 3,6

4,1 4,2 4,3 4 4,5 4,6

5,1 5,2 5,3 5,4 5 5,6

6,1 6,2

                      Sp Sc Gr Pl EC Ha
TT tt tt tt tt ttSp
tt TT tt tt tt ttSc
tt tt TT tt tt ttGr

TT
tt tt tt TT tt ttPl
tt tt tt tt TT ttEC
tt tt tHa

=

6,3 6,4 6,5 6t tt tt TT

 
 
 
 
 
 
 
 
  

                        (9) 

1,2 1,3 1,

2,1 2,3 2,

3,1 3,2 3,1

,1 ,2 ,3

                 1   2   3  ...
0 ...1

0 ...2
0 ...3

... ... ... ... ......
... 0

n

n

n

n n n

M M M Mn
tta tta ttaM

tta tta ttaM
tta tta ttaTT M

tta tta ttaMn

 
 
 
 =
 
 
  

                     (10) 

Disassembly tool changes also cause more disassembly time for the industrial 

robots. From Figure 2(a), different disassembly tools are used for different disassembly 

operations. The penalty time for disassembly tool change is described by Equation (9) 

(Sp, Sc, Gr, Pl, EC, Ha mean spanner, screwdriver, gripper, plier, electrical cutting and 

hammer respectively). For the same disassembly operation, to disassemble different 



components, different disassembly tools need to be considered. For example, when 

unscrewing operation is considered, to disassemble different bolts (M1, M2, M3 etc.), 

different spanners (M1, M2, M3 etc.) need to be considered, the corresponding penalty 

time of disassembly tool change is described by Equation (10). 

 

Figure 2. The disassembly tools and moving path between different disassembly points 

Strictly, to calculate the moving time, the obstacle-avoidance path should be firstly 

considered, after that, the collision free trajectory planning should also be considered 

(Constantinescu and Croft 2000). The moving time of industrial robot’s end-effector 

between different disassembly points is decided by not only the complexity of EoL 



products, position of the product in the robot workspace, but also the types of industrial 

robots. All the factors have impacts on the moving time between different disassembly 

points and should be considered in robotic disassembly. In this paper, for simplicity, the 

moving time is calculated by the length of moving path between different disassembly 

points and the linear velocity of industrial robot’s end-effector. Assumption 1 mentioned 

in Section 3 ensures the geometric and structure information of EoL product can be 

provided in advance. Thus, the length of moving path between different disassembly 

points can be decided in advance so that industrial robot’ end-effector can move along 

the predefined path. Besides, assumption 2 ensures no non-removable part exists. A 

simple case is considered as shown in Figure 2(b). Firstly, the safe distance needs to be 

considered to ensure that the industrial robot’s end-effector can move without collisions 

with the product. The contour of safe moving path is described by the dotted line in 

Figure 2(b). In addition, the length matrix MP is described by Equation (11), the length 

of moving path between point A and point B, point A and point C, point B and point C 

are expressed as a12, a13, a23 respectively. 
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After the length matrix MP is determined, the moving time between different 

disassembly points is calculated by Equation (12) (vend-effector is the line velocity of 



industrial robot’s end-effector). 

1 1( , ) ( , ) /i i i i end effectormt x x MP x x v+ + −=                      (12) 

 In summary, the total disassembly time to disassemble an EoL product is calculated 

by Equation (13).  

1 2 2 2

1 1 1
0 0 0 0

( ) ( ) ( , ) ( , ) ( , )
n n n n

i i i i i i i
i i i i

f X bt x dt x x tt x x mt x x
− − − −

+ + +
= = = =

= + + +∑ ∑ ∑ ∑          (13) 

Where n represents the number of total parts, bt(xi) means the basic disassembly time 

for disassembling part xi, while dt(xi, xi+1), tt(xi, xi+1) and mt(xi, xi+1) respectively mean 

the penalty time for disassembly direction changes, the penalty time for disassembly 

tool changes and the moving time between part xi and part xi+1. 
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 An example is used to calculate the fitness value of the disassembly sequence. If 

the disassembly sequence is B/C/A/D/E, the corresponding disassembly direction is 

X+/Z+/X+/Z+/Z+ (Equation (8) is used for calculate the penalty time for disassembly 



direction changes). The corresponding disassembly tool is Ta/Ta/Td/Td/Te (Equation (15) 

is used for calculate the penalty time for disassembly tool changes, Ta, Tb, Tc, Td and Te 

respectively mean spanner-I, spanner-II, spanner-III, gripper-I and gripper-II). The 

moving time is described by Equation (14). Because the basic disassembly time is 

assumed to be constant, only latter three factors in Equation (13) are variable factors, 

only the latter three factors in Equation (13) are calculated. The fitness value of this 

example is calculated by Equation (16).  

5. Robotic disassembly sequence planning using EDBA 
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Figure 3. The flow chart of EDBA 

The BA is inspired by the foraging process of honey bees. In this paper, the swap/insert 

operators are used to be the neighborhood search strategies. Similar with the other 

optimization algorithms, it is easy to get stuck in the local optimum for BA. Aiming at 

this, the mutation operator is integrated to improve the quality of solutions. The 

neighborhood search strategy mentioned in Section 5.2 is used to obtain new 

disassembly solutions and mutation operator proposed here is used to further improve 

the quality of solutions. The flow chart of EDBA is described in Figure 3.  

Firstly, the scout-bees number scoutn, selected site number m, elite site number n, 

selected site bee number mb, elite site bee number nb and interation number iter are 

initialized. After that, MFSG is used to generate the feasible disassembly sequences to 

ensure that all the bees are feasible solutions. Under this condition, scoutn scout bees 

which indicate the feasible disassembly sequences are generated by MFSG. These bees 

are sent to find the nectar sources (sites) and sorted by fitness value. The nectar sources 

found by the best n scout bees and m scout bees are selected as the elite sites and the 

selected sites respectively. For each elite site, nb elite site bees are obtained by 

neighborhood strategy. Then, mutation operator acts on the best bee of nb elite site bees 

to obtain the mutated bee. If the performance of mutated bee is better than the best Bee, 

the best bee is replaced the mutated bee, otherwise, it remains unchanged. After that, if 

the performance of best bee is better than the elite site, the elite site is replaced by the 

best bee, otherwise, it remains unchanged. For m-n selected sites (non-elite sites but the 

selected sites), the process is similar with the elite sites. For the remaining scoutn-m 



non-selected sites, in order to avoid trapping into local optimal solutions, MFSG is used 

to generate scoutn-m new bees which are all feasible solutions to find new sites. 

 

Figure 4. Representation of the Bee, the swap, insert and mutation operators 

5.1 Initialization of Bees 

A bee which indicates a feasible disassembly solution is represented in Figure 4(a). 

In this paper, the disassembly sequence generation algorithm is only used for the 



purpose of generating feasible disassembly solutions. The feasible disassembly 

sequence and corresponding disassembly direction are obtained by MFSG. The 

disassembly moving time array is determined by the predefined length matrix MP 

(calculated by the Equation (11)), linear velocity of industrial robot’s end-effector and 

the disassembly sequence. The fitness value is calculated by Equation (13). 

5.2 Neighborhood search strategy 

The neighborhood search strategies which contain swap and insert operators are used as 

shown in Figure 4(b) and 4(c).  

The swap operator randomly generates two integers which indicate swap locations 

of the Bee. A new Bee is obtained by exchanging the elements of selected bits as shown 

in Figure 4(b). The insert operator randomly chooses one bit from the Bee and inserts 

the chosen bit to a random location of the Bee as shown in Figure 4(c). The swap/insert 

operators generate new solutions, but the new solutions may not meet disassembly 

precedence relationships. Hence, after the new Bee is obtained, its feasibility should be 

checked by MFSG. If the new Bee is an infeasible solution, the neighborhood search 

strategy should act on the Bee again until the new Bee is a feasible solution.  

5.3 Mutation operator 

During the disassembly process, disassembling a component may have several 

disassembly directions. Based on the analysis and models in Section 3.2, after bolt B, 

bolt C, component A and component D have been removed, several disassembly 

directions can be used for disassembling component E. If the disassembly sequence is 



B/C/A/D/E, the corresponding disassembly direction can be X+/Z+/X+/Z+/Z+ or 

X+/Z+/X+/Z+/Z- etc. Different disassembly directions for disassembling component E 

make the industrial robots take different time to adjust its posture. Thus, the mutation 

operator is added here to increase the diversity of solutions. As shown in Figure 4(d), 

the mutation operator acts on a random bit of disassembly direction array and then the 

corresponding bit changes 180 degrees (eg. from -Z to +Z). After that, the feasibility of 

new Bee should be checked as the same way in Section 5.2. 

5.4 Global search strategy 

The global search strategy is used to avoid trapping into local optimal solutions. For the 

remaining scoutn-n non-selected sites, scoutn-n new Bees are obtained by MFSG and 

they are dispatched to find new sites.  

6. Case study and performance analysis 

6.1 Case study 

In this paper, two gear pumps are used to verify the proposed method as shown in 

Figure 5(a) and 5(c) and the exploded drawings are shown in Figure 5(b) and 5(d). The 

properties of all the components are listed in Table 1. The flow chart of the proposed 

method is shown in Figure 5(e). 

The basic disassembly time of each component is assumed to be constant. The 

penalty time for disassembly direction change is calculated by Equation (8). Three types 
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Figure 5. The two gear pumps and flow chart of the proposed method 

of spanners and two types of grippers are used due to different sizes and different types 

of components. The penalty time for disassembly tool changes is described by Equation 

(15). The safe distance is set to 10 mm and the length matrix MPgp is represented by 

Equation (17). In this matrix, element am,n means the length of moving path between 

disassembly points of component m and component n. Based on the gear pump 2 (Hoge 

2017), from Figure 6(a), it is obvious that a1,11 (manually calculated by Equation (18)) is 

made up of several coplanar line segments. In addition, from Figure 6(b), a1,19 is 



calculated by the summation of length of several non-coplanar line segments as shown 

in Equation (19). According to Equation (20), the moving time mt1,11 is calculated by 

a1,11 and the linear velocity of industrial robot’s end-effector vend-effector which is assumed 

to be 12 mm/s. 

Table 1. The properties of all components of the two gear pumps 

Gear 

pump 
Number Disassembly task 

Basic 

disassembly 

time 

Disassembly 

tool 

Disassembly point 

(mm) 

1 

1 Unscrew the Bolt A bt1-1 Spanner-I (Ta) [49.4, -12.6, 105.5] 

2 Unscrew the Bolt B bt1-2 Spanner-I (Ta) [74.4, -12.6, 81] 

3 Unscrew the Bolt C bt1-3 Spanner-I (Ta) [74.4, -12.6, 45] 

4 Unscrew the Bolt D bt1-4 Spanner-I (Ta) [49.4, -12.6, 20.5] 

5 Unscrew the Bolt E bt1-5 Spanner-I (Ta) [24.4, -12.6, 45] 

6 Unscrew the Bolt F bt1-6 Spanner-I (Ta) [24.4, -12.6, 81] 

7 Remove the Cover bt1-7 Gripper-II (Te) [49.4, -20.6, 63] 

8 Remove the Gasket bt1-8 Gripper-I (Td) [49.4, 1.4, 105.5] 

9 Remove the Gear A bt1-9 Gripper-I (Td) [49.4, 3.4, 81] 

10 Remove the Gear B bt1-10 Gripper-I (Td) [49.4, 3.4, 45] 

11 Remove the Driven Shaft A bt1-11 Gripper-I (Td) [49.4, -7.6, 81] 

12 Remove the Base bt1-12 Gripper-II (Te) [49.4, 49.4, 81] 

13 Remove the Driven Shaft B bt1-13 Gripper-I (Td) [49.4, 152.4, 45] 

14 Remove the Packing Gland bt1-14 Gripper-I (Td) [49.4, 91.4, 45] 

15 Unscrew the Gland Nut bt1-15 Spanner-II (Tb) [49.4, 96.4, 45] 

2 

1 Unscrew the Bolt A bt2-1 Spanner-I (Ta) [59.1,-48.4,114] 

2 Unscrew the Bolt B bt2-2 Spanner-I (Ta) [90.3,-48.4,89] 

3 Unscrew the Bolt C bt2-3 Spanner-I (Ta) [90.3,-48.4,33] 

4 Unscrew the Bolt D bt2-4 Spanner-I (Ta) [59.1,-48.4,8] 

5 Unscrew the Bolt E bt2-5 Spanner-I (Ta) [27.9,-48.4,33] 

6 Unscrew the Bolt F bt2-6 Spanner-I (Ta) [27.9,-48.4,89] 

7 Remove the Cover bt2-7 Gripper-II (Te) [59.1,-64.4,82] 

8 Remove the Gasket bt2-8 Gripper-I (Td) [59.1,-31.4,114] 

9 Remove the Gear A bt2-9 Gripper-I (Td) [59.1,-30.9,82] 

10 Remove the Gear B bt2-10 Gripper-I (Td) [59.1,-30.9,40] 

11 Remove the Shaft A bt2-11 Gripper-I (Td) [59.1,136.1,82] 

12 Remove the Base  bt2-12 Gripper-II (Te) [59.1,7.1,114] 

13 Remove the Shaft B bt2-13 Gripper-I (Td) [59.1,-48.9,40] 

14 Remove the Gland A bt2-14 Gripper-I (Td) [59.1,34.1, 94.8] 

15 Remove the Gland B bt2-15 Gripper-I (Td) [59.1,41.1, 94.8] 

16 Remove the Gland C bt2-16 Gripper-I (Td) [59.1,48.1, 94.8] 



17 Remove the Gland D bt2-17 Gripper-I (Td) [59.1,55.1,94.8] 

18 Remove the Gland E bt2-18 Gripper-I (Td) [59.1,79.1,82] 

19 Unscrew the Bolt stud A bt2-19 Spanner-II (Tb) [35.1,89.1,82] 

20 Unscrew the Bolt stud B bt2-20 Spanner-II (Tb) [83.1,89.1,82] 

21 Unscrew the Nut A bt2-21 Spanner-III (Tc) [35.1,84.1,82] 

22 Unscrew the Nut B bt2-22 Spanner-III (Tc) [83.1,84.1,82] 

23 Unscrew the Nut C bt2-23 Spanner-III (Tc) [35.1,87.1,82] 

24 Unscrew the Nut D bt2-24 Spanner-III (Tc) [83,1,87.1,82] 
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B4 

(a) The moving path between bolt A and shaft A (b) The moving path between bolt A and bolt stud A
 

Figure 6. The moving path between different disassembly points 

1 , 2 ,,  , [1,15], , [1, 24]gp i j gp m nMP a MP a i j m n   = = ∈ ∈                (17) 

1,11 1 2 2 3 3 4 4 5 5 6 6 7 10 16 137.5 73.8 17 10 264.3a A A A A A A A A A A A A mm= + + + + + = + + + + + = (18) 

1,19 1 2 2 3 3 4 4 5 5 6 10 16 159.3 48 10 243.3a B B B B B B B B B B mm= + + + + = + + + + =    (19) 

1,11 1,11 / 264.3 /12 / 22.025end effectormt a v mm mm s s−= = =             (20) 

6.2 Performance analysis 

In this section, simulations were taken on PC with 2.30GHz Intel core i5-6200U CPU, 4 

GB memory based on Matlab 2014b. This section contains three parts: 1. the 

performance analysis under different iterations and populations of EDBA; 2. the 

comparisons of results obtained by different methods; 3. the performance comparative 

analysis between EDBA and the other optimization algorithms. 

 For the performance analysis under different iterations and populations of EDBA, 

selected site number m, elite site number n, selected site bee number mb, elite site bee 



number nb were set to 4, 1, 1 and 2 respectively, the running time and the fitness value 

are analyzed under different iterations (100, 200, 300, 400 and 500) and different scout 

bees (10, 20, 30 and 40). Each simulation was repeated 10 times. From Figure 7(a) and 

7(c), when the iteration number iter is fixed, the running time of EDBA increases 

linearly as the number of scout bees, when the number of scout bees scoutn is fixed, the 

running time of EDBA linearly increases with iteration number. The average fitness 

values under different iterations are shown in Figure 7(b) and 7(d). When scoutn is 10 

and iter is 100, it has the worst performance because there are insufficient scout bees 

and iterations for EDBA to obtain high quality solutions. It is obvious that the quality of 

solutions obtained by EDBA increases with iterations and populations. 

 
Figure 7. The performance of EDBA under different iterations and populations 



 Alshibli et al. (2015) used the Euclidean distance (the red dotted line in Figure (6) 

to calculate the moving time between different disassembly points. This method is also 

applied on the gear pumps to obtain the optimal disassembly sequence, the result 

(Result 1) is compared with the optimal solution (Result 2) obtained by proposed 

method in this paper. Due to the large solution space, it is difficult to exhaust all the 

solutions to get the best solutions. Thus, the near-optimal solutions are obtained by the 

following methods. Iteration number iter, scout bees number scoutn, selected site 

number m, elite site number n, selected site bee number mb, elite site bee number nb of 

EDBA were set to 500, 40, 4, 1, 1 and 2 respectively. Simulations were repeated 1000 

times. The solution with the minimum fitness value is the near-optimal solution. The 

results are shown in Table 2 (‘1’ and ‘2’ mean ‘Y+’ and ‘Y-’ respectively). From Table 2, 

it is concluded that Result 1 is obviously different from Result 2 for both the two gear 

pumps. Although the fitness value of Result 1 is smaller than Result 2, Result 1 is 

obtained by using the Euclidean distance to calculate the moving time. It is impractical 

for the industrial robot’s end-effector to move straight-line between different 

disassembly points, it ignores the obstacle caused by contour of EoL product. Thus, 

Result 2 obtained by proposed method is more suitable for practical robotic 

disassembly. 

Table 2. Comparison of results obtained by different methods 

Gear pump 

1 

Result 

1 

Disassembly 

sequence 
5-4-3-2-1-6-7-11-8-9-10-13-15-14-12 

Disassembly 

direction 
2-2-2-2-2-2-2-2-2-2-2-2-1-1-1 

Fitness value 58.5038 



Result 

2 

Disassembly 

sequence 
5-4-3-2-1-6-7-10-9-11-8-13-15-14-12 

Disassembly 

direction 
2-2-2-2-2-2-2-2-2-2-2-2-1-1-1 

Fitness value 87.5731 

Gear pump 

2 

Result 

1 

Disassembly 

sequence 
24-22-20-23-21-19-18-11-17-16-15-14-1-6-5-4-3-2-7-13-10-9-8-12 

Disassembly 

direction 
1-1-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-2-2 

Fitness value 77.8101 

Result 

2 

Disassembly 

sequence 
24-22-20-23-21-19-1-2-3-4-5-6-7-13-10-9-8-12-14-15-16-17-18-11 

Disassembly 

direction 
1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-1-1 

Fitness value 135.3167 

In addition, the performance of EDBA, EDBA without mutation operator 

(EDBA-WMO), Genetic Algorithm with Precedence Preserve Crossover (GA-PPX) 

(Kheder, Trigui, and Aifaoui 2015) and Self-Adaptive Simplified Swarm Optimization 

(SASSO) (Yeh 2012) are compared. Based on the two gear pumps, for all the 

simulations, selected site number m, elite site number n, selected site bee number mb, 

elite site bee number nb of EDBA and EDBA-WMO were set to 4, 1, 1 and 2 

respectively. The mutation ratio of GA-PPX was set to 0.1 respectively. The parameters 

Cg, Cp and Cw of SASSO were controlled by self-adaptive parameter control (Yeh 2012). 

Each simulation was repeated 10 times. For the gear pump 1, the populations of all the 

optimization algorithms were set to 20, results under different iterations (from 100 to 

400) are compared as shown in Figure 8(a) and 8(b). For the gear pump 2, the 

populations of all the optimization algorithms were set to 40, results under different 

iterations (from 100 to 600) are compared as shown in Figure 8(e) and 8(f). From 



Figure 8(a) and 8(e), GA-PPX and SASSO need the least running time and the most 

running time among all the algorithms respectively. EDBA needs more running time 

than EDBA-WMO, because EDBA needs more time on mutation operator. From Figure 

8(b) and 8(f), it is obvious that the solutions obtained by EDBA have the smallest 

average fitness value than the others. In addition, the quality of solutions obtained by all 

the optimization algorithms increases with iterations, the quality of solution obtained by 

SASSO is improved more obviously than GA-PPX. For both the two gear pumps, with 

the help of mutation operator, EDBA needs more running time but generates better 

quality of solutions than EDBA-WMO under different iterations. After that, for the gear 

pump 1, the iteration was set to 300 and simulations under different populations (from 

10 to 50) are compared as shown in Figure 8(c) and 8(d). For the gear pump 2, the 

iteration was set to 500 and simulations under different populations (from 10 to 50) are 

compared as shown in Figure 8(g) and 8(h). It is obvious that GA-PPX needs the least 

running time but generates the worst quality of solutions. SASSO needs the most 

running time while EDBA generates the best quality of solutions. In all situations based 

on the two gear pumps, EDBA can find the best quality of solutions than the others. 

From the perspective of iteration process, the iteration and population were set to 300 

and 20 respectively for the gear pump 1. For the gear pump 2, the iteration and 

population were set to 500 and 40 respectively. Simulations were repeated 10 times, the 

average fitness value of iterative process is shown in Figure 8(i) and 8(j). It is obvious 

that SASSO has the slowest convergence speed and EDBA converges to the smallest 

fitness value than the others. 
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Figure 8. The performance comparisons of four optimization algorithms 

7. Conclusion 

In this paper, RDSP was solved by EDBA. Firstly, MFSG was used to describe 

disassembly precedence relationships of EoL product. After that, the evaluation 

criterions for RDSP were proposed. Rather than Euclidean distance, considering the safe 

distance between industrial robot’s end-effector and contour of EoL product, the 

obstacle-avoidance moving path was used to calculate the moving time between 

different disassembly points. Afterwards, based on MFSG, to minimize the total 

disassembly time, EDBA was proposed to solve RDSP. Simulations were carried out to 

verify the proposed method. The result shows the proposed method is more adaptable 

for RDSP compared with the traditional method. With the help of mutation operator, 

EDBA can obtain better quality of solutions than the others. However, in this paper, it is 

time-consuming to manually calculate the length matrix MPgp especially when the 

number of component increases. In the future, we will study on how to efficiently obtain 

the length matrix MPgp. In addition, the moving time between different disassembly 

points depends on the factors such as robot types, the position of EoL products etc., the 

future work will include kinematics parameters of industrial robots with RDSP to find 



the optimal disassembly sequence. Besides, because the proposed method is only 

feasible under certain assumptions mentioned in Section 3, in the future, we will also 

add the machine vision systems in robotic disassembly systems to handle uncertain 

problems in disassembly process. 
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