

University of Birmingham

An improved multi-objective discrete bees
algorithm for robotic disassembly line balancing
problem in remanufacturing
Liu, Jiayi; Zhou, Zude; Pham, Duc Truong; Xu, Wenjun; Yan, Junwei; Liu, Aiming; Ji,
Chunqian; Liu, Quan
DOI:
10.1007/s00170-018-2183-7

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Liu, J, Zhou, Z, Pham, DT, Xu, W, Yan, J, Liu, A, Ji, C & Liu, Q 2018, 'An improved multi-objective discrete bees
algorithm for robotic disassembly line balancing problem in remanufacturing', International Journal of Advanced
Manufacturing Technology, pp. 1-26. https://doi.org/10.1007/s00170-018-2183-7

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is a post-peer-review, pre-copyedit version of an article published in The International Journal of Advanced Manufacturing Technology.
The final authenticated version is available online at: http://dx.doi.org/10.1007/s00170-018-2183-7

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 14. May. 2024

https://doi.org/10.1007/s00170-018-2183-7
https://doi.org/10.1007/s00170-018-2183-7
https://birmingham.elsevierpure.com/en/publications/cbedb65b-d69c-476e-9bad-506dbdbc2a4f

An improved multi-objective discrete Bees algorithm for robotic

disassembly line balancing problem in remanufacturing
Jiayi Liu1,2, Zude Zhou1,2, Duc Truong Pham3, Wenjun Xu1,42,

Junwei Yan1,42,*
, Aiming Liu1,2, Chunqian Ji3, Quan Liu1,2

1School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
2Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks (Wuhan

University of Technology), Wuhan 430070, China
2Key Laboratory of Fiber Optic Sensing Technology and Information Processing (Wuhan

University of Technology), Ministry of Education, Wuhan 430070, China
3Department 3Department of Mechanical Engineering, University of Birmingham, Birmingham

B15 2TT, UK
4Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks (Wuhan

University of Technology), Wuhan 430070, China
Email: jyliu@whut.edu.cn; zudezhou@whut.edu.cn; d.t.pham@bham.ac.uk;

xuwenjun@whut.edu.cn; junweiyan@whut.edu.cn; liuaiming@cbmi.com.cn; c.ji@bham.ac.uk;
quanliu@whut.edu.cn

Abstract Remanufacturing is an effective way to realize the reutilization of resources. Disassembly, as an
essential step of remanufacturing, is usually finished by manual work which is low efficiency and high
labor cost. Robotic disassembly provides an alternative way to reduce labor intensity and disassembly
cost. Disassembly line is an efficient method to deal with end-of-life products on a large scale. To balance
the workload of robotic workstations is the main objective of robotic disassembly line balancing problem.
In this paper, an improved multi-objective discrete Bees algorithm is proposed to solve robotic
disassembly line balancing problem. The feasible disassembly sequence is obtained by space interference
matrix method. It is used to generate robotic disassembly line solution by robotic workstation assignment
method. After that, the multi-objective robotic disassembly line balancing problem is proposed. With the
help of efficient non-dominated Pareto sorting method, improved multi-objective discrete Bees algorithm
is proposed to find Pareto optimal solutions. Based on a gear pump and a camera, the performance of
improved multi-objective discrete Bees algorithm is analyzed under different parameters and compared
with the other optimization algorithms. In addition, Pareto fronts of robotic disassembly line balancing
problem are also compared with those of the other two cases. The result shows the proposed method can
find better quality of solutions using comparable running time compared with the other optimization
algorithms.

Keywords Remanufacturing·Robotic disassembly line balancing problem·Improved multi-objective
discrete bees algorithm·Robotic disassembly·Optimization problems

1. Introduction

Traditional manufacturing industry has the disadvantages of high environmental pollution and low
resource utilizations. Under this condition, sustainable manufacturing [1] and remanufacturing [2, 3] are
the future trends of manufacturing industry. In China, according to statistics, there are approximately 5
million cars, 20 million mobile phones and 500 million tons of solid waste to be scrapped every year [4].

Formatted: Font: Not Italic

 1

mailto:jyliu@whut.edu.cn
mailto:zudezhou@whut.edu.cn
mailto:d.t.pham@bham.ac.uk
mailto:xuwenjun@whut.edu.cn
mailto:junweiyan@whut.edu.cn
mailto:liuaiming@cbmi.com.cn
mailto:C.Ji@bham.ac.uk

Products are usually incinerated or buried after exceeding the service life. This always leads to resource
waste and environmental pollution. Remanufacturing, which aims to recover the size and performance of
used products [5], closes the materials loop and forms a closed-loop manufacturing system. According to
statistics, the energy and resource consumption of remanufacturing a product are respectively a half and
seven tenths of manufacturing a new one [6]. Thus, remanufacturing provides an economically and
environmentally sound way to realize sustainable developments of manufacturing industry [7, 8]. In all
steps of remanufacturing, disassembly is an inevitable process to handle end-of-life products (EoLP)
[9-11]. Due to the uncertainty of EoLP’s quality, traditional disassembly process is always finished by
manual works [12]. To reduce labor intensity, much attention has been paid to robotic disassembly [13,
14]. The cognitive robotics used for robotic disassembly was proposed to handle uncertainties in the
dynamic disassembly process [12]. Afterwards, the basic behavior control [8] and learning/revision
strategies [15] of cognitive robotics were proposed to disassemble the liquid-crystal display (LCD)
screens.
 Successful production planning helps to improve capacity utilization [16, 17]. In the production
planning process, a well-designed assembly/disassembly line [18] helps to improve production efficiency.
The assembly/disassembly line balancing problem is a non-negligible problem for the
assembly/disassembly line. The key problem of line balancing problem is to assign manufacturing tasks
to a set of workstations in a balanced way [10]. Disassembly line consists of several disassembly
workstations which are assigned different disassembly tasks [19]. The core objective of disassembly line
balancing problem (DLBP) is to balance the workload of workstations. To find optimal disassembly line
balancing solution of an EoLP with n parts, it requires investigating all the permutations of disassembly
sequence (n! possible solutions). Searching this solution space is bounded by exponential time. The
decision version of DLBP has been proven to be NP-complete problem and its optimization version is
NP-hard problem [20]. Many researchers have studied DLBP. To disassemble smart phones, a linear
physical programming method was proposed to balance the mixed-model disassembly line [21]. Based on
a cell phone which contains 25 parts, Ding et al. [22] used multi-objective ant colony algorithm to
simultaneously minimize the number of workstation, the demand rating and the measure of balance. After
that, to optimize the balancing index and the design cost of disassembly line, genetic algorithm was used
to find the optimal solutions of stochastic DLBP [23]. The reinforcement learning algorithm was also
used to solve multi-objective DLBP within reasonable computation time [24]. Bentaha et al. [25] used
known probability distributions to describe the disassembly task time and solved DLBP by two-stage
stochastic linear mixed integer program and sample average approximation method. To minimize the
number of workstations, Hezer et al. [26] used the shortest route model to solve parallel DLBP.
Considering the uncertainties in disassembly process, hybrid discrete artificial bee colony algorithm was
proposed to solve fuzzy DLBP [27]. To find optimal disassembly line balancing solutions within
reasonable computation time, Mete et al. [28] used beam search algorithm to minimize the number of
workstations. Recently, sequence-dependent DLBP (SDDLBP) is gradually paid more attention. In
SDDLBP, if task A interacts with another task B (such as physical obstruction etc.), additional
disassembly time should be considered. Kalayci et al. [29] used ant colony optimization to minimize the
number of workstation, the demand rating, hazardous rating and balancing index of disassembly line.
Particle swarm optimization algorithm with neighborhood-based mutation operator was also used to find
multi-objective optimal solutions of SDDLBP [30]. Improved artificial bee colony algorithm was used to
find optimal disassembly line balancing solutions with minimum environmental impact and maximum
profit [31]. After that, tabu search [32], hybrid genetic [33] and artificial bee colony [34] algorithms were
used to solve SDDLBP.

 2

The robotic disassembly line is different from manual disassembly line. For manual disassembly line,
the working efficiency of each workstation is influenced by the workload while for robotic disassembly
line, it is not. In addition, in manual disassembly line, current researches always ignore the moving time
between different parts in each workstation. When robotic disassembly line balancing problem (RDLBP)
is considered, the moving path of industrial robot’s end-effector should be considered to avoid obstacles
caused by the contour of EoLP. However, it is always ignored in the existing researches. Until now, there
is no research studies RDLBP. But there are similar researches in robotic disassembly sequence planning.
Based on the personal computer, Alshibli et al. [35] used tabu search and genetic algorithm to find
optimal disassembly sequence with minimum disassembly time. ElSayed et al. [36] used genetic
algorithm to solve robotic disassembly sequencing problem and an intelligent disassembly cell was also
proposed [37]. Based on the personal computer, an online genetic algorithm was used to minimize the
total disassembly time [38]. Generally, the moving time of industrial robot’s end-effector between
different parts should be a part of total disassembly time for each workstation. However, in the
aforementioned methods, the moving time is calculated by Euclidean distance between different parts and
the moving speed of industrial robot’s end-effector. It ignores obstacle caused by the contour of EoLP.
When robotic disassembly is considered, the obstacle-avoiding path of industrial robot’s end-effector
should be considered.

Many meta-heuristic algorithms are used to solve DLBP such as genetic algorithm [20], ant colony
optimization [39], etc. It is the first application of BA to solve RDLBP. BA is derived from the foraging
behavior of bees and has been successfully applied in many fields. The Pareto-based multi-objective Bees
algorithm (MOBA) was used to solve welded beam design problem [40]. To maximize the slackness
index and the efficiency of the assembly line, BA was used to solve two-sided assembly line balancing
problem under constrained fuzzy environment [41]. Ercin et al. [42] used multi-objective BA and
artificial Bees colony algorithm to solve proportional-integral-derivative (PID) tuning problems. To
minimize the total lead-time and the total cost, BA was used to find optimal configuration of supply chain
networks [43]. Lu et al. [44] used BA to solve quality-of-experience (QoE) based spectrum allocation
optimization problem of cognitive radio networks. Based on motorcycle assembly process, Xu et al. [45]
used multi-objective BA to solve correlation-aware service aggregation optimization problem. The
performance of BA was compared with multi-objective genetic algorithm and multi-objective particle
swarm optimization algorithm.

DLBP is multi-objective optimization problem which can be solved by lexicographical optimization
methods, objective weighting optimization methods and Pareto based optimization methods [46].
Comparing with the former two methods, Pareto based multi-objective optimization method treats all the
objectives equally and provides several non-dominated solutions for the decision-makers to choose.
However, recently, most of optimization algorithms used for solving DLBP is lexicographic-based
multi-objective optimization algorithms [32-34] and few studies have reported Pareto-based
multi-objective optimization algorithms to solve DLBP.
 The major contribution of this paper is to solve robotic disassembly line balancing problem which
has not been studied yet. Until now, no research considers the moving time between different parts as a
part of total working time of robotic workstation, which can be calculated by the obstacle-avoiding path
and moving speed of industrial robot’s end-effector. In this paper, the significance and related works are
discussed in section 1. The notations used in this paper are summarized in Section 2. In Section 3,
disassembly model is built by space interference matrix method (SIMM) and robotic disassembly line
solution is obtained by robotic workstation assignment method. In Section 4, multi-objective robotic
disassembly line balancing problem is described. Then, improved multi-objective discrete Bees algorithm

 3

(IMODBA) are introduced in Section 5. In Section 6, case studies based on a gear pump and a camera are
used to verify the effectiveness of proposed method and conclusions are drawn in Section 7.

2. Notation

A Allocation matrix used for robotic workstation assignment method
bt Basic disassembly time
bdn Number of solutions which dominate the provided solution
CT Cycle time of robotic disassembly line
Dset A set of solutions which is dominated by the provided solution
di The Euclidean distance between ith member of obtained non-dominated solutions and its

nearest member of Pareto optimal solutions
dt The direction-change time
FSeq Feasible disassembly sequences generated by SIMM
Fr Set of Pareto rankings
Fri Pareto ranking i
hpi Demand; quantity of part pi requested
iter Iteration number
m Number of robotic workstation
md Length of moving path between different disassembly parts
ms Moving speed of industrial robot’s end-effector
mt Moving time between different disassembly parts
n Number of parts in an EoLP
nd Number of non-dominated solutions
nes Number of elite sites
ns Number of selected sites
P Population set
P* Sorted population set
PFr Pareto sorted population set
rnes Number of follower bees around elite sites
rns Number of follower bees around non-elite selected sites
scoutn Number of scout bee
Seq Disassembly sequences
Sd Space interference matrix (d = x+, x-, y+, y-, z+, z-)
Sx,y,z Integrated space interference matrix
ti,total Total working time of ith

 robotic workstation
tpi Basic disassembly time for part pi
tta, tt Tool-change time

3. Disassembly model for EoLP

The disassembly model is always built by graph-based method [47, 48], Petri Net method [49] and
matrix-based method [50, 51], etc. For robotic disassembly, feasible disassembly direction of each part
should be provided for industrial robots. In this paper, SIMM [50, 51] which consists of space
interference matrix and interference matrix analysis is used to generate feasible disassembly sequence and

 4

disassembly direction.

3.1 Space interference matrix

Firstly, six interference matrices along six directions (x+, x-, y+, y-, z+ and z-) are described by
Equation (1).
 In the matrix Sd, element si,j means whether component Ci can be removed along d direction (d = x+,
x-, y+, y-, z+ or z-) when component Cj exists. If component Ci can be removed along d direction when
component Cj exists, element si,j in the matrix Sd is 0. Otherwise, it is 1. As shown in Figure 1, six
interference matrices of this example are described by Equation (2). For instance, in the matrix Sz+,
element sAG is 0, because bolt A can be removed along z+ direction by unscrewing operation although
component G has contact relationships with bolt A. In the matrix Sz-, element sGA is 1, it is because
component G cannot be removed along z- direction when bolt A exists.

1 2

1,1 1,2 1,1

2,1 2,2 2,2

,1 ,2 ,

 ...
...
...

...
...

n

n

n
d

n n n nn

C C C
s s sC
s s sC

S

s s sC

 
 
 =
 
 
  

x or x
d or y or y

or z or z

+ −
= + −

+ −
 (1)

A
B

C

D

E

F

HGx
y

z

 Fig. 1 An example of SIMM

0 0 0 1 0 0 1 1
0 0 1 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

=
0 0 0 0 0 0 1 1
0 0 0 0 1 0 1 1
1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 0

x

A B C D E F G H
A
B
C
D

S
E
F
G
H

+

 
 
 
 
 
 
 
 
 
 
 
  

0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 1 0 0 0 0 1 1
1 0 0 0 0 0 1 1

=
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 0

x

A B C D E F G H
A
B
C
D

S
E
F
G
H

−

 
 
 
 
 
 
 
 
 
 
 
  

 5

0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

=
0 0 1 0 0 0 1 1
0 1 0 0 0 0 1 1
1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 0

y

A B C D E F G H
A
B
C
D

S
E
F
G
H

+

 
 
 
 
 
 
 
 
 
 
 
  

0 0 0 0 0 0 1 1
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1
0 0 0 0 0 0 1 1

=
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 0

y

A B C D E F G H
A
B
C
D

S
E
F
G
H

−

 
 
 
 
 
 
 
 
 
 
 
  

 (2)

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

=
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0

z

A B C D E F G H
A
B
C
D

S
E
F
G
H

+

 
 
 
 
 
 
 
 
 
 
 
  

0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

=
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 0 0

z

A B C D E F G H
A
B
C
D

S
E
F
G
H

−

 
 
 
 
 
 
 
 
 
 
 
  

 6

Step 1

, , ,1

000000 000000 000000 100000 000000 000000 111101 111101
000000 000000 1000

=x y z

A B C D E F G H
A
B
C
D

S
E
F
G
H

00 000000 000000 000100 111101 111101
000000 010000 000000 000000 000100 000000 111101 111101
010000 000000 000000 000000 000000 000000 111101 111101
000000 000000 001000 000000 000000 010000 111101 111101
000000 001000 000000 000000 100000 000000 111101 111101
111111 111111 111111 111111 111111 111111 000000 000001
111111 111111 111111 111111 111111 111111 000010 000000

 
 
 
 
 
 
 
 
 
 
 
  

Step 2

, , ,2

000000 000000 100000 000000 000000 111101 111101
000000 000000 000000 000000 000100 111101

=x y z

A B D E F G H
A
B
D

S E
F
G
H

111101
010000 000000 000000 000000 000000 111101 111101
000000 000000 000000 000000 010000 111101 111101
000000 001000 000000 100000 000000 111101 111101
111111 111111 111111 111111 111111 000000 000001
111111 111111 111111 111111 111111 000010 000000

 
 
 
 
 
 
 
 
 
  

Result
111101
111101
111101
111101
111101
111111
111111

Step 3 Step 4

, , ,2

000000 000000 100000 000000 000000 111101 111101
000000 000000 000000 000000 000100 111101

=x y z

A B D E F G H
A
B
D

S E
F
G
H

111101
010000 000000 000000 000000 000000 111101 111101
000000 000000 000000 000000 010000 111101 111101
000000 001000 000000 100000 000000 111101 111101
111111 111111 111111 111111 111111 000000 000001
111111 111111 111111 111111 111111 000010 000000

 
 
 
 
 
 
 
 
 
  

, , ,3

000000 000000 000000 000000 111101 111101
000000 000000 000000 000100 111101 111101
000000 000000 000000 010

=x y z

A B E F G H
A
B
E

S
F
G
H

000 111101 111101
000000 001000 100000 000000 111101 111101
111111 111111 111111 111111 000000 000001
111111 111111 111111 111111 000010 000000

 
 
 
 
 
 
 
 
 

Result
111101
111101
111101
111101
111111
111111

Step 5 Step 6

, , ,3

000000 000000 000000 000000 111101 111101
000000 000000 000000 000100 111101 111101
000000 000000 000000 010

=x y z

A B E F G H
A
B
E

S
F
G
H

000 111101 111101
000000 001000 100000 000000 111101 111101
111111 111111 111111 111111 000000 000001
111111 111111 111111 111111 000010 000000

 
 
 
 
 
 
 
 
 

, , ,4

000000 000000 000000 111101 111101
000000 000000 010000 111101 111101

= 000000 100000 000000 111101 111101
111111 111111 111111

x y z

A E F G H
A
E

S F
G
H

000000 000001
111111 111111 111111 000010 000000

 
 
 
 
 
 
  

Result
111101
111101
111101
111111
111111

Step 7 Step 8

, , ,4

000000 000000 000000 111101 111101
000000 000000 010000 111101 111101

= 000000 100000 000000 111101 111101
111111 111111 111111

x y z

A E F G H
A
E

S F
G
H

000000 000001
111111 111111 111111 000010 000000

 
 
 
 
 
 
  

, , ,5

000000 010000 111101 111101
100000 000000 111101 111101

=
111111 111111 000000 000001
111111 111111 000010 000000

x y z

E F G H
E
F

S
G
H

 
 
 
 
 
 

Step 9 Step 10

, , ,6

000000 111101 111101

= 111111 000000 000001
111111 000010 000000

x y z

E G H
E

S G
H

 
 
 
  

Step 11 Step 12

, , ,6

000000 111101 111101

= 111111 000000 000001
111111 000010 000000

x y z

E G H
E

S G
H

 
 
 
  

, , ,7

000000 000001

=
000010 000000x y z

G H
G

S
H

 
 
 

Step 13 Step 14

, , ,7

000000 000001

=
000010 000000x y z

G H
G

S
H

 
 
 

, , ,5

000000 010000 111101 111101
100000 000000 111101 111101

=
111111 111111 000000 000001
111111 111111 000010 000000

x y z

E F G H
E
F

S
G
H

 
 
 
 
 
 

Result
000001
000010

Result
111101
111111
111111

Result
111101
111101
111111
111111

, , ,1

000000 000000 000000 100000 000000 000000 111101 111101
000000 000000 1000

=x y z

A B C D E F G H
A
B
C
D

S
E
F
G
H

00 000000 000000 000100 111101 111101
000000 010000 000000 000000 000100 000000 111101 111101
010000 000000 000000 000000 000000 000000 111101 111101
000000 000000 001000 000000 000000 010000 111101 111101
000000 001000 000000 000000 100000 000000 111101 111101
111111 111111 111111 111111 111111 111111 000000 000001
111111 111111 111111 111111 111111 111111 000010 000000

 
 
 
 
 
 
 
 
 
 
 
  

Result
111101
111101
111101
111101
111101
111101
111111
111111

OR

Fig. 2 A feasible disassembly sequence obtained by SIMM

3.2 Interference matrix analysis
 Feasible disassembly sequence and disassembly direction are generated by space interference
matrices and interference matrix analysis method. Based on the example used in Section 3.1, six space
interference matrices are integrated to be matrix Sx,y,z,1 as shown in Figure 2. The column Result is
obtained by step1 in Figure 2. The first element of column Result is 111101, the fifth bit ‘0’ is obtained by
‘OR’ operator acted on the fifth bit of all the elements in the first row. Besides, bit ‘0’ means
corresponding part can be removed from given direction (the first bit for x+ direction, the second bit for

 7

x- direction, the third bit for y+ direction, etc.). Otherwise, it cannot. For instance, the first element of
column Result is 111101, the fifth bit is ‘0’ while the other bits are ‘1’. It means bolt A can only be
removed along z+ direction. Thus, in step 1, it is obvious that all the bolts A, B, C, D, E and F can be
removed along z+ direction. If bolt C has been removed along z+ direction (the red circle in step 1), the
corresponding row and column are deleted as shown in step 2. Under this condition, a new matrix Sx,y,z,2 is
obtained as shown in step 3. It is also obvious that all the components A, B, D, E and F can be removed
along z+ direction. If bolt D has been removed along z+ direction, the corresponding row and column are
deleted as shown in step 4. This procedure continues in the same manner as shown in steps 5 ~ 12. After
bolts A ~ F have been removed, matrix Sx,y,z,7 is obtained in step 13. From the column of Result in step 13,
it is obvious component G can be removed along x+, x-, y+, y- or z+ direction and component H can be
removed along x+, x-, y+, y- or z- direction. If the component G has been removed along y+ direction,
component H can be removed along any direction of x+, x-, y+, y-, z+ or z- (direction z+ is chosen here).
Thus, feasible disassembly sequence (C/D/B/A/F/E/G/H) is obtained and the corresponding disassembly
direction is z+/z+/z+/z+/z+/z+/y+/z+.

4. Multi-objective robotic disassembly line balancing problem

Robotic disassembly line is the flow-oriented production system which consists of several robotic
workstations. The disassembly tasks are consecutively launched down the line and EoLP is sequentially
moved from one workstation to another. For each robotic workstation, disassembly operations are
repeatedly performed within cycle time of robotic disassembly line. The decision problem of optimally
assigning the disassembly tasks to different robotic workstations in a balanced way is defined as RDLBP.

4.1 Assumptions

In this paper, the following assumptions are made. Only single type of EoLP is disassembled on the
robotic disassembly line. The structure and geometric information of EoLP are provided in advance so
that industrial robot’s end-effector can move along the predefined path. Each disassembly task is assigned
to only one robotic workstation. The basic disassembly time, tool-change time and direction-change time
are deterministic and constant [33]. All the EoLPs are used for complete disassembly. The total working
time of robotic workstation should not exceed cycle time (CT) of robotic disassembly line.

4.2 Multi-objective formulation

The traditional DLBP only considers basic disassembly time of parts, tool-change time and
direction-change time between different parts. The moving time between different parts is always ignored.
When RDLBP is considered, the traditional method for solving DLBP is not applicable. The differences
between DLBP and RDLBP are described in Figure 3.

 8

Moving time from part i
to part j

Direction change time from part i to
part jmti,j dti,jtti,j

Tool change time from part i to
part j

R
ob

ot
ic

 w
or

ks
ta

tio
n

m
t3,4

dt3,4
tt3,4

m
t4,3

dt4,3
tt4,3

m
t8,2

dt8,2
tt8,2

m
t2,8

dt2,8
tt2,8

m
t7,5

dt7,5
tt7,5

m
t5,1

dt5,1
tt5,1

m
t1,7

dt1,7
tt1,7

3 4 8 2 6 7 5 1

W
or

ks
ta

tio
n

Idle
time

DLBP

1

2

3

4

3 4

8 2

6

7 5 1

0 CT 0 CT

1

2

3

4

3 4

8 2

6

7 5 1

RDLBP

Disassembly sequence

dt3,4
tt3,4

dt4,3
tt4,3

dt8,2
tt8,2

dt2,8
tt2,8

dt7,5
tt7,5

dt5,1
tt5,1

dt1,7
tt1,7

Fig. 3 The differences between DLBP and RDLBP

In this paper, the multi-objectives of RDLBP are to simultaneously minimize the number of robotic
workstations (f1), balance the workload of robotic workstations (f2) and disassemble high demand parts as
early as possible (f3) as shown in Equations (3) ~ (5). Minimizing the number of robotic workstation helps
to reduce the cost for enterprises. The second objective is used to ensure that idle time of robotic
workstations is similar. It helps to level the workload of robotic workstations. Lower f2 value means more
similar idle time of robotic workstations. For the third objective, it means high demand parts should be
disassembled as early as possible to reduce damage of high demand parts in the disassembly process. In
this paper, lower f3 value is more desirable [34].

1min f m= (3)

2
2 ,

1
min ()

m

i total
i

f CT t
=

= −∑ (4)

3
1

min *
i

n

p
i

f i h
=

= ∑ (5)

 Subject to:

1 2(, ,...,)nSeq p p p FSeq= ∈ (6)

1
i

n

p
i

t
m n

CT
=

 
 
  ≤ ≤
 
  

∑
 (7)

, , , [0,]i totalt CT i Z i m≤ ∈ ∀ ∈ (8)

component is only assigned to , [0,], [0,]j ip RobWork i m j n∀ ∈ ∀ ∈ (9)

 9

In Equations (3) ~ (9), m, n, ti,total and hpj respectively represent the number of robotic workstation,
the number of parts in EoLP, the total working time of ith robotic workstation and the demand value of
part pj. CT is the cycle time of robotic disassembly line which is predefined in this paper. FSeq means the
feasible disassembly sequences generated by SIMM. Equation (6) ensures that the disassembly sequence
is feasible. Equation (7) guarantees the number of workstation is limited within permitted values.
Equation (8) ensures the total working time of any robotic workstation should not exceed cycle time of
robotic disassembly line and Equation (9) means any disassembly task should be assigned to only one
robotic workstation.

For the moving time between different parts, strictly, it is influenced by not only the position of
EoLP in the robot workspace, but also the type of industrial robot and the complexity of EoLP. In this
paper, for simplicity, the moving time (mti,j) is calculated by the length of moving path between part i and
part j (mdi,j) and the moving speed (ms) of industrial robot’s end-effector which is assumed to be constant.
Besides, safe distance between the contour of EoLP and moving path of industrial robot’s end-effector is
also considered to protect industrial robot’s end-effector from collision as shown in Figure 4. For the
disassembly sequence ‘3-4-8-2-6-7-5-1’, to calculate the moving time between different parts, the moving
distance matrix (MD) is described by Equation (10). The moving distance between part 3 and part 4 (md3,4)
and the moving distance between part 3 and part 8 (md3,8) are manually calculated by Equation (11).
Hence, the corresponding moving time (mt3,4 and mt3,8) is calculated by the moving distance (md3,4 and
md3,8) and the moving speed (ms).

Safe
distance

Part 4

Part 3
Part 8

P1
P2

P3 P4

P5 P6

P7

P8
P9

Fig. 4 The moving path between different parts

1,2 1,3 1,4 1,5 1,6 1,7 1,8

2,1 2,3 2,4 2,5 2,6 2,7 2,8

3,1 3,2 3,4 3,5 3,6 3,7 3,8

4,1 4,2 4,3 4,5 4,6 4,7 4,8

5,1 5,2 5,3 5,4 5,6 5,7 5,8

6,1 6,2 6,3

0
0

0
0

0

md md md md md md md
md md md md md md md
md md md md md md md
md md md md md md md

MD
md md md md md md md
md md md md

=

6,4 6,5 6,7 6,8

7,1 7,2 7,3 7,4 7,5 7,6 7,8

8,1 8,2 8,3 8,4 8,5 8,6 8,7

0
0

0

md md md
md md md md md md md
md md md md md md md

 
 
 
 
 
 
 
 
 
 
 
  

 (10)

 10

3,4 1 2 1 3 3 4

3,8 1 2 1 5 5 6 6 7 7 8 8 9

md PP PP P P
md PP PP P P P P P P P P

= + +

= + + + + +
 (11)

Different disassembly operations need different disassembly tools as shown in Figure 5. To finish
different disassembly operations, industrial robot needs additional disassembly time to change
disassembly tools. This additional time is described by Equation (12) (‘Sp’, ‘Sc’, ‘Gr’, ‘Pl’, ‘Ha’ and ‘EC’
respectively mean spanners, screwdrivers, grippers, pliers, hammers and electrical cutting). After the
disassembly operations have been determined, different disassembly tools should also be considered to
handle different sizes of components. For example, to disassemble different sizes of bolts (M1, M2, M3,
M4, etc.), different types of spanners should be considered. This also causes additional disassembly time
for industrial robot to change disassembly tools as shown in Equation (13).

Similarly, for each robotic workstation, the direction-change time between different parts is a part of
the total working time. It is described by Equation (14).

1 1,2 1,3 1,4 1,5 1,6

2,1 2 2,3 2,4 2,5 2,6

3,1 3,2 3 3,4 3,5 3,6

4,1 4,2 4,3 4 4,5 4,6

5,1 5,2 5,3 5,4 5 5,6

6,1 6,2

 Sp Sc Gr Pl Ha EC
TT tt tt tt tt ttSp
tt TT tt tt tt ttSc
tt tt TT tt tt ttGr

TT
tt tt tt TT tt ttPl
tt tt tt tt TT ttHa
tt ttEC

=

6,3 6,4 6,5 6tt tt tt TT

 
 
 
 
 
 
 
 
  

 (12)

1,2 1,3 1,

2,1 2,3 2,

3,1 3,2 3,1

,1 ,2 ,3

 1 2 3 ...
0 ...1

0 ...2
0 ...3

...
... 0

n

n

n

n n n

M M M Mn
tta tta ttaM

tta tta ttaM
tta tta ttaTT M

tta tta ttaMn

 
 
 
 =
 
 
  

 (13)

°
1

°

0 direction is not changed
(,) 1 direction is changed by 90

2 direction is changed by 180
i idt p p +


= 



 (14)

Unscrewing

Removing

Rotating

Cutting

Shredding

Spanners/Screwdriver/...

Pliers/Grippers/...

Spanners/pliers/...

Electric cutting/...

Hammer/Cutter/...

Size I/Size II/Size III/...

Size I/Size II/Size III/...

Cutting disc/Thickness/...

M1/M2/M3/M4/...

Slotted/Phillips/...

Size/Ball, Nail Hammer/...

Operations Tools The tool types

Fig. 5 Disassembly operations and corresponding disassembly tools

 11

R
ob

ot
ic

 w
or

ks
ta

tio
n

1
as

si
gn

m
en

t

bt3 bt4 bt8 bt2 bt6 bt7 bt5 bt1

bt3 bt4 bt8 bt2 bt6 bt7 bt5

bt3 bt4 bt8 bt2 bt6 bt7

bt3 bt4 bt8 bt2 bt6

bt3 bt4 bt8 bt2

bt3 bt4 bt8

bt3 bt4

bt3

3,4 3,4 3,4
4,3 4,3 4,3

3,4 3,4 3,4
4,8 4,8 4,8
8,3 8,3 8,3

3,4 3,4 3,4
4,8 4,8 4,8
8,2 8,2 8,2
2,3 2,3 2,3

3,4 3,4 3,4
4,8 4,8 4,8
8,2 8,2 8,2
2,6 2,6 2,6
6,3 6,3 6,3

3,4 3,4 3,4
4,8 4,8 4,8
8,2 8,2 8,2
2,6 2,6 2,6
6,7 6,7 6,7
7,3 7,3 7,3

3,4 3,4 3,4
4,8 4,8 4,8
8,2 8,2 8,2
2,6 2,6 2,6
6,7 6,7 6,7
7,5 7,5 7,5
5,3 5,3 5,3

3,4 3,4 3,4
4,8 4,8 4,8
8,2 8,2 8,2
2,6 2,6 2,6
6,7 6,7 6,7
7,5 7,5 7,5
5,1 5,1 5,1
1,3 1,3 1,3

a1 a2 a3 a4 a5 a6 a7 a8

3 4 8 2 6 7 5 1

Sum Sum

2 11.5 23.3 27.1 35.3 43 46.3 52.7

CT = 20s

• Parts 3 and 4 are assigned to
robotic workstation 1.

R
ob

ot
ic

 w
or

ks
ta

tio
n

2
as

si
gn

m
en

t bt8 bt2 bt6 bt7 bt5 bt1

bt8 bt2 bt6 bt7 bt5

bt8 bt2 bt6 bt7

bt8 bt2 bt6

bt8 bt2

bt8

8,2 8,2 8,2
2,8 2,8 2,8

8,2 8,2 8,2
2,6 2,6 2,6
6,8 6,8 6,8

8,2 8,2 8,2
2,6 2,6 2,6
6,7 6,7 6,7
7,8 7,8 7,8

8,2 8,2 8,2
2,6 2,6 2,6
6,7 6,7 6,7
7,5 7,5 7,5
5,8 5,8 5,8

8,2 8,2 8,2
2,6 2,6 2,6
6,7 6,7 6,7
7,5 7,5 7,5
5,1 5,1 5,1
1,8 1,8 1,8

a1 a2 a3 a4 a5 a6

8 2 6 7 5 1

2.5 9.1 22.6 28.8 31.6 34

CT = 20s

• Parts 8 and 2 are assigned to
robotic workstation 2.

R
ob

ot
ic

 w
or

ks
ta

tio
n

3
as

si
gn

m
en

t

bt6 bt7 bt5 bt1

bt6 bt7 bt5

bt6 bt7

bt6

6,7 6,7 6,7
7,6 7,6 7,6

6,7 6,7 6,7
7,5 7,5 7,5
5,6 5,6 5,6

6,7 6,7 6,7
7,5 7,5 7,5
5,1 5,1 5,1
1,6 1,6 1,6

a1 a2 a3 a4

6 7 5 1

7 17 20 25.2

• Parts 6, 7 and 5 are assigned to robotic workstation 3.

CT = 20s

R
ob

ot
ic

 w
or

ks
ta

tio
n

4
as

si
gn

m
en

t bt1

a1

1

2

• Part 1 is assigned to robotic workstation 4.

CT = 20s

Moving time from part i to part j

Tool change time from part i to part j

Direction change time from part i to part j

i,j

i,j

i,j

Step 1

Step 2

Step 3

Step 4

Fig. 6 The robotic workstation assignment method for RDLBP

Table 1 An example used to calculate the multi-objective values
Disassembly sequence 3 4 8 2 6 7 5 1

 12

Basic disassembly time 2 2.5 2.5 2 7 2 1.5 2
Disassembly direction x+ y+ y- y- x+ z+ x+ x+

Disassembly tool Sp1 Sp2 Gr1 Gr1 Sp1 Sp2 Sp2 Gr1
hpi 3 3 2 1 4 3 3 1

Moving speed 10 cm/s
 1 2 1 2

1 0 1 2 2
2 1 0 2 2
1 2 2 0 1
2 2 2 1 0

Sp Sp Gr Gr
Sp
Sp

TT
Gr
Gr

 
 
 =
 
 
 

 (15)

0 14 21 18 12 15 17 22
14 0 25 20 15 13 19 23
21 25 0 15 19 24 21 30
18 20 15 0 20 30 35 28
12 15 19 20 0 25 10 10
15 13 24 30 25 0 20 15
17 19 21 35 10 20 0 17
22 23 30 28 10 15 17 0

MD

 
 
 
 
 
 =
 
 
 
 
 
 

 (16)

An example is used here to calculate multi-objective values of a robotic disassembly line solution.
For the disassembly sequence ‘3-4-8-2-6-7-5-1’ as shown in table 1, the cycle time of robotic disassembly
line is 20 s, the direction-change time, tool-change time and length of moving path between different
parts are respectively defined by Equation (14), Equation (15) (Sp1, Sp2, Gr1, Gr2 respectively mean
spanner-I, spanner-II, gripper-I and gripper-II) and Equation (16). Firstly, it needs to generate robotic
disassembly line solutions based on feasible disassembly sequence. From Figure 6, disassembly tasks are
assigned to robotic workstations with the help of an allocation matrix A = [ai]. For example, as shown in
step 1 of Figure 6, a4 and a6 are respectively calculated by Equation (17) and Equation (18). After the
allocation matrix A is obtained in step 1, it is obvious that a2 is less than the cycle time (20s) and a3 is
greater than the cycle time. Because the total working time of robotic workstation must not exceed the
cycle time, only a1 and a2 should be selected. It means parts 3 and 4 should be assigned to the robotic
workstation 1. After that, parts 3 and 4 are deleted in the disassembly sequence ‘3-4-8-2-6-7-5-1’. In step
2, the allocation matrix A = [2.5, 9.1, 22.6, 28.8, 31.6, 34] is obtained in the same manner and only the
former two elements are less than the cycle time. It means parts 8 and 2 should be assigned to robotic
workstation 2. Similarly, in steps 3 and 4, parts 6, 7 and 5 are assigned to robotic workstation 3 and part 1
is assigned to robotic workstation 4. Thus, the robotic disassembly line solution is obtained as shown in
Figure 7. The multi-objective values (f1, f2 and f3) are calculated by Equations (19) ~ (21).

4 3 4 8 2 3,4 3,4 3,4 4,8 4,8 4,8

8,2 8,2 8,2 2,3 2,3 2,3
 2 2.5 2.5 2 15 /10 1 1 28 /10 2 2 23 /10 0 0
 25 /10 2 1 27.1

a bt bt bt bt mt tt dt mt tt dt
mt tt dt mt tt dt

= + + + + + + + + + +

+ + + + +

= + + + + + + + + + + + + +
+ + =

 (17)

6 3 4 8 2 6 7 3,4 3,4 3,4 4,8 4,8 4,8

8,2 8,2 8,2 2,6 2,6 2,6 6,7 6,7 6,7 7,3 7,3 7,3
 2 2.5 2.5 2 7 2 15 /10 1 1 28 /10 2 2 23 /10 0 0
 13

a bt bt bt bt bt bt mt tt dt mt tt dt
mt tt dt mt tt dt mt tt dt mt tt dt

= + + + + + + + + + + + +

+ + + + + + + + + + +

= + + + + + + + + + + + + + + +
/10 2 1 20 /10 1 1 21/10 1 1 43+ + + + + + + + =

 (18)

1 4f = (19)

 13

2 2 2 2 2
2 ,

1
() (20 11.5) (20 9.1) (20 20) (20 2) 515.06

m

i total
i

f CT t
=

= − = − + − + − + − =∑ (20)

3
1

* 1 3 2 3 3 2 4 1 5 4 6 3 7 3 8 1 86
i

n

p
i

f i h
=

= = × + × + × + × + × + × + × + × =∑ (21)

3 4 8 2 6 7 5 1

1 2 3 4

Disassembly sequence

Robotic workstation
assignments

11.5 9.1 20 2Working time of robotic
workstations

hpi 3 3 2 1 4 3 3 1

Fig. 7 The robotic disassembly line solution

5. Bees algorithm

5.1 The basic BA

Initialization: number of scout bees number scoutn, number of elite sites
nes, number of selected sites ns, number of follower bees around elite sites

rnes, number of follower bees around non-elite selected sites rns

Step 1: scoutn scout bees randomly search the
solution space

Step 2: evaluate fitness of the sites visited by the
scout bees and sort the sites by fitness value

Step 3: stopping criteria: the maximum iteration
number iter is reached

Step 4(a): ith iteration: for each elite site, explore its
neighborhood by dispatching rnes follower bees

Step 4(b): ith iteration: for each non-elite selected site,
explore its neighborhood by dispatching rns follower bees

Step 5: the remaining scoutn – ns bees are dispatched to randomly
explore the solution space

i > iter ?

End

N

Step1: Scoutn scout bees randomly search the solution space by
SIMM and calculate the multi-objectives F=[f1, f2, f3] for each site

Step 2: Sort the sites by ENS

Step 4: ith iteration: for each selected site, rns follower
bees are dispatched to search its neighborhood

Step 5: ith iteration: the remaining scoutn-ns scout bees are
dispatched to randomly explore the solution space by SIMM

Step 6: Sort the scoutn+ns*rns sites (sites visited by scoutn scout
bees and ns*rns follower bees) by ENS and select the best scoutn

bees as the scout bees

N

Y

Step 7: Save the Pareto optimal solutions

Step 3: stopping criteria: the maximum
iteration number iter is reached

Initialization: number of scout bees scoutn, number of selected sites ns,
number of follower bees around selected sites rns

i > iter ?

End

Step 6: Sort these scoutn sites by
fitness value

Step 7: Save the best solution

Y

(a) Flowchart of basic BA (b) Flowchart of IMODBA

Fig. 8 Flowchart of basic BA and IMODBA
BA is inspired by the foraging behavior of honey bees [52]. For the basic BA, several parameters should
be initialized, namely: number of scout bees (scoutn), number of elite sites (nes), number of selected
sites(ns), number of follower bees around elite sites (rnes), number of follower bees (rns) around
non-elite selected sites (ns - nes) and the stopping criteria. As shown in Figure 8(a), scoutn scout bees
randomly search the solution space (step 1), fitness of the sites visited by scout bees is evaluated and
these sites are sorted by fitness value in step 2. After that, the stopping criteria (whether the maximum
iteration is reached) is determined in step 3. The best nes sites and ns sites visited by scout bees are

 14

respectively selected as ‘elite sites’ and ‘selected sites’. For each elite site (nes), rnes follower bees are
dispatched to search its neighborhood. The scout bee will be replaced by the follower bee only if the
quality of the site visited by this follower bee is better than the scout bee (step 4(a)). For each non-elite
selected site (ns - nes), rns follower bees are dispatched to search its neighborhood. The scout bee will
also be replaced by the follower bee only if the quality of the site visited by this follower bee is better
than the scout bee (step 4(b)). The remaining scoutn – ns bees are dispatched to randomly explore the
solution space (step 5). Then, scoutn scout bees are sorted by fitness value of the sites and the next
iteration starts (step 6). The iteration process continues until the maximum iteration is reached. Finally,
the best solution is saved in step 7.

5.2 IMODBA

The flowchart of IMODBA is described in Figure 8(b). The number of scout bees scoutn, number of
selected sites ns and number of follower bees around selected sites rns are initialized. The disassembly
sequence and disassembly direction of scout bees are generated by SIMM and the multi-objective values
of the sites visited by scout bees are calculated by the method mentioned in Section 4 (step 1). Then, in
step 2, these sites are sorted by efficient non-dominated Pareto sorting method (ENS) [53]. The sites
which have the same front rankings are sorted by crowding-distance. When the maximum iteration iter is
reached, this procedure stops (step 3). After that, each site visited by scout bee is assigned front number
Fr = [Fr1, Fr2, Fr3, … , Frn] and crowding distance. The best ns sites are selected as the selected sites. For
each selected site, rns follower bees are dispatched to search the neighborhood (step 4). The remaining
scout-ns scout bees randomly search the solution space by SIMM (step 5). After that, scoutn+ns*rns sites
visited by scout bees and follower bees are sorted and the best scoutn bees are selected as the scout bees
for the next iteration (step 6). The iteration process continues until the maximum iteration is reached.
Finally, the Pareto optimal solutions of RDLBP are obtained (step 7).

5.2.1 Representation of Bees

 A bee is represented in Figure 9. The feasible disassembly sequence and disassembly direction of
bees are generated by SIMM used in Section 3. The robotic workstation array is obtained by the robotic
workstation assignment method. After that, multi-objective values of the sites visited by scout bees are
calculated by the method mentioned in Section 4.

3 4 8 2 6 7 5 1Disassembly sequence

x+ y+ y- y- x+ z+ x+ x+Disassembly direction

Sp1 Sp2 Gr1 Gr1 Sp1 Sp2 Sp2 Gr1Disassembly tool

1 1 2 2 3 3 3 4Robotic workstations

4Multi-objective values 515.06 86

3 3 2 1 4 3 3 1hpi

 15

Fig. 9 The representation of bees

5.2.2 Initialization of IMODBA

 In the initialization step of IMODBA, number of scout bees scoutn, number of selected sites ns
and number of follower bees around selected sites rns are initialized and scoutn scout bees are
dispatched to randomly search the solution space.

5.2.3 Pareto optimal solution
In this paper, the goal of IMODBA is to minimize three objectives mentioned in Section 4 as shown

by Equation (22).

1 2 3 () [(), (), ()] min F Seq f Seq f Seq f Seq Seq FSeq= ∈ (22)

 Suppose both Seq1 and Seq2 are feasible disassembly sequences, Seq2 is dominated by Seq1 if and
only if

 1 2 1 2(() ()) && (() ()) 1, 2, 3 1, 2, 3i i j jf Seq f Seq f Seq f Seq i j≤ < ∀ = ∃ = (23)

 If a solution is not dominated by any other solutions, it is Pareto optimal solution. The Pareto
optimal set is a solution set which consists of all the Pareto optimal solutions, corresponding function
value is the Pareto optimal front.

5.2.4 Pareto sorting

f1 f2 f3

5 6 5
3 4 2
2 1 3
4 7 6
1 3 3
4 2 6
2 2 4
3 4 1

1
2
3
4
5
6
7
8

No.
Step 1

bdn Dset

5
1
0
6
0
2
1
0

∅
[1,4]

[1,4,6,7]
∅

[1,4]
[4]

[1,4,6]
[1,2,4]

f1 f2 f3

5 6 5
3 4 2
2 1 3
4 7 6
1 3 3
4 2 6
2 2 4
3 4 1

1
2
3
4
5
6
7
8

No. bdn Dset

5-3
1
0
6
0
2
1
0

Step 2

Populations 3, 5 and 8 are assigned with Fr1

Step 3

bdn is updated.

f1 f2 f3

5 6 5

4 7 6
4 2 6
2 2 4

1

4
6
7

No. bdn Dset

∅

∅
[4]

[1,4,6]

2-2

3-2
1-1
0

Step 4

bdn and Dset are obtained.

f1 f2 f3

5 6 5
4 7 6
4 2 6

1
4
6

No. bdn Dset

∅
∅
[4]

0
1-1
0

Population 2 and 7 are assigned with Fr2 and bdn
is updated.

Step 5

Population 1 and 6 are assigned with Fr3 and bdn
is updated.

f1 f2 f3

4 7 64
No. bdn Dset

∅0

Step 6

Population 4 is assigned with Fr4 and bdn is
updated.

f1 f2 f3

5 6 5
3 4 2
2 1 3
4 7 6
1 3 3
4 2 6
2 2 4
3 4 1

Population P

1
2
3
4
5
6
7
8

No.

Pareto sorting results

Fr1: 3, 5, 8
Fr2: 2, 7
Fr3: 1, 6
Fr4: 4

3 4 22 [1,4]0

∅
[1,4]

[1,4,6,7]
∅

[1,4]
[4]

[1,4,6]
[1,2,4]

f1 f2 f3

5 6 5
3 4 2
2 1 3
4 7 6
1 3 3
4 2 6
2 2 4
3 4 1

1
2
3
4
5
6
7
8

No. bdn Dset

5-3
1-1
0

6-3
0

2-1
1-1
0

∅
[1,4]

[1,4,6,7]
∅

[1,4]
[4]

[1,4,6]
[1,2,4]

Fig. 10 An example of traditional Pareto sorting method

The goal of Pareto sorting is to assign front rankings to all the solutions based on their dominance

 16

relationships. Most of the Pareto-based multi-objective optimization methods use the fast non-dominated
sorting method [54]. An example is used to describe the process of this method in Figure 10. For any
solution in the population P, bdn represents the number of solutions that dominate this solution while Dset
is a set of solutions which is dominated by this solution. For example, in step 1 (Figure 10), solution 2 is
only dominated by solution 8, thus, bdn of solution 2 is 1. Solutions 1 and 4 are dominated by solution 2,
thus, Dset of solution 2 is [1, 4]. From step 2, it is obvious that solutions 3, 5 and 8 are the non-dominated
solutions (bdn is 0) and they are assigned front ranking Fr1. After that, solution 3, 5 and 8 are deleted. In
step 2, Dset of solutions 3, 5 and 8 are respectively [1, 4, 6, 7], [1 4] and [1, 2, 4]. It means solution 1 is
dominated by solutions 3, 5 and 8 (3 solutions). Thus, in step 3, after solutions 3, 5 and 8 are deleted, bdn
of solution 1 should minus 3. It is the same with solutions 2, 4, 6 and 7 in step 3. It is obvious the
solutions 2 and 7 are the non-dominated solutions in step 4 and they are assigned front ranking Fr2. After
that, solutions 2 and 7 are deleted and bdn of the other solutions are updated (the blue font in step 4). This
procedure continues in the same manner as shown in steps 5 and 6. Finally, all the solutions are assigned
front rankings as shown in Figure 10.

Initialization: Fr = empty; sort P in ascending order according to the 1st objective
value, if the first objective values of two solutions are the same, then sort them

based on the 2nd objective value, ...etc. The sorted population is P*

Input: population P;
l =length(P); k = 1;

Compare P*(i) with solutions which are
assigned with Frk from the last one to the

first one; lf = length(Fr); k =1;

Any solution with Frk
dominate P*(i)?

i > l ?

N

k = k + 1;

Y

Y

N
k > lf ?

N

Output: the Pareto sorted
population PFr;

Assign Frk to P*(i);

Assign Frk to P*(i);

i = i + 1;

Fig. 11 The workflow of ENS

 However, the traditional Pareto sorting method is poor efficiency [55]. ENS is proposed to improve
the efficiency of Pareto sorting method without changing the sorting results [53]. As shown in Figure 11,
population P is sorted in ascending order according to the first objective value. If the first objective values
of two solutions are the same, then the solutions are sorted in ascending order according to the second
objective value. If the first and second objective values are still the same, these solutions are sorted in
ascending order according to the third objective value. After that, the sorted population P* is obtained. It
is obvious that solution P*(1) (solution 5) should be assigned front ranking Fr1, because no solution in

 17

population P* dominates it. For solution P*(i) (i = 2, 3…), it should be compared with the solutions which
have been assigned Frk (k = 1) from the last solution to the first solution. If no solution which has been

f1 f2 f3

1 3 3
2 1 3
2 2 4
3 4 1
3 4 2
4 2 6
4 7 6
5 6 5

The sorted population P*

No.

Step 1

Frf1 f2 f3No.
1 3 35 Fr1

Pareto sorting

Population 5 is assigned with Fr1

f1 f2 f3

1 3 3
2 1 3
2 2 4
3 4 1
3 4 2
4 2 6
4 7 6
5 6 5

The sorted population P*

No.

Step 2

Frf1 f2 f3No.
1 3 35 Fr1

Pareto sorting

Population 3 is assigned with Fr1

5
3
7
8
2
6
4
1

5
3
7
8
2
6
4
1

2 13 3 Fr1

f1 f2 f3

1 3 3
2 1 3
2 2 4
3 4 1
3 4 2
4 2 6
4 7 6
5 6 5

The sorted population P*

No.

Step 3

Frf1 f2 f3No.
1 3 35 Fr1

Pareto sorting

Population 7 is compared with the solutions of Fr1 from the
last one to the first and it is assigned with Fr2

5
3
7
8
2
6
4
1

2 13 3 Fr1

2 2 47 Fr2

f1 f2 f3

1 3 3
2 1 3
2 2 4
3 4 1
3 4 2
4 2 6
4 7 6
5 6 5

The sorted population P*

No.

Step 4

Frf1 f2 f3No.
1 3 35 Fr1

Pareto sorting

Population 8 is compared with the solutions of Fr1 from the
last one to the first and it is assigned with Fr2

5
3
7
8
2
6
4
1

2 13 3 Fr1

2 2 47 Fr2

3 4 18 Fr1

f1 f2 f3

1 3 3
2 1 3
2 2 4
3 4 1
3 4 2
4 2 6
4 7 6
5 6 5

The sorted population P*

No.

Step 5

Frf1 f2 f3No.
1 3 35 Fr1

Pareto sorting

Population 2 is is assigned with Fr2

5
3
7
8
2
6
4
1

2 13 3 Fr1

2 2 47 Fr2

3 4 18 Fr1

3 42 2 Fr2

f1 f2 f3

1 3 3
2 1 3
2 2 4
3 4 1
3 4 2
4 2 6
4 7 6
5 6 5

The sorted population P*

No.

Step 6

Frf1 f2 f3No.
1 3 35 Fr1

Pareto sorting

Population 6 is is assigned with Fr3

5
3
7
8
2
6
4
1

2 13 3 Fr1

2 2 47 Fr2

3 4 18 Fr1

3 42 2 Fr2

f1 f2 f3

1 3 3
2 1 3
2 2 4
3 4 1
3 4 2
4 2 6
4 7 6
5 6 5

The sorted population P*

No.

Step 7

Frf1 f2 f3No.
1 3 35 Fr1

Pareto sorting

Population 4 is is assigned with Fr4

5
3
7
8
2
6
4
1

2 13 3 Fr1

2 2 47 Fr2

3 4 18 Fr1

3 42 2 Fr2

4 2 66

f1 f2 f3

1 3 3
2 1 3
2 2 4
3 4 1
3 4 2
4 2 6
4 7 6
5 6 5

The sorted population P*

No.

Step 8

Frf1 f2 f3No.
1 3 35 Fr1

Pareto sorting

Population 1 is is assigned with Fr3

5
3
7
8
2
6
4
1

2 13 3 Fr1

2 2 47
Fr2

3 4 18 Fr1

3 42 2
Fr3

Fr2

4 2 66Fr3

4 7 64 Fr4

4 2 66 Fr3

4 7 64 Fr4

5 61 5 Fr3

f1 f2 f3

5 6 5
3 4 2
2 1 3
4 7 6
1 3 3
4 2 6
2 2 4
3 4 1

Population P

1
2
3
4
5
6
7
8

No. f1 f2 f3

1 3 3
2 1 3
2 2 4
3 4 1
3 4 2
4 2 6
4 7 6
5 6 5

The sorted population P*

No.
5
3
7
8
2
6
4
1

Frf1 f2 f3No.
1 3 35 Fr1

The Pareto sorted population PFr

2 13 3 Fr1

2 2 47
Fr2

3 4 18 Fr1

3 42 2
Fr3

Fr2

4 2 66

4 7 64 Fr4

5 61 5 Fr3

Fig. 12 An example of ENS method

 18

assigned Frk dominates P*(i), then P*(i) is assigned Frk. If any solution which has been assigned Frk

dominates P*(i), k increases by 1. If k is not greater than the length of set Fr, solution P*(i) should be
compared with the solutions which have been assigned Frk from the last solution to the first solution. If k
is greater than the length of set Fr, it means there is no front ranking Frk in set Fr. Hence, front ranking
Frk is added in set Fr and P*(i) is assigned Frk. This procedure continues until all the solutions are
assigned front rankings. Finally, Pareto sorted population PFr is obtained.

An example is used here to show the workflow of ENS. As shown in step 1 (Figure 12), based on the
same population used in Figure 10, the sorted population P*

 is firstly obtained. Obviously, the first
solution (solution 5) in the sorted population P* is assigned Fr1. In step 2, the second solution (solution 3)
is compared with solutions which have been assigned Fr1 from the last one to the first one (only solution
5 is assigned Fr1). However, solution 3 is not dominated by solution 5. Thus, solution 3 is assigned Fr1. In
step 3, solution 7 is compared with solutions which have been assigned Fr1 from the last one to the first
one (in order of solutions 3 and 5). Because solution 3 dominates solution 7 and there is no front ranking
Fr2 in set Fr. Fr2 is added to set Fr and solution 7 is assigned Fr2. In step 4, solution 8 is compared with
solutions which have been assigned Fr1 from the last one to the first one (in order of solutions 3 and 5).
There is no solution which has been assigned Fr1 dominates solution 8. Thus, solution 8 is assigned Fr1.
In step 5, solution 2 is compared with solutions which have been assigned Fr1 from the last one to the first
one (in order of solutions 8, 3 and 5). Because solution 2 is dominated by solution 8, it should be
compared with solutions which have been assigned Fr2 from the last one to the first one (only solution 7
is assigned Fr2). It is obvious that solution 2 is not dominated by solution 7. Thus, solution 2 is assigned
Fr2. In step 6, solution 6 is compared with solutions which have been assigned Fr1 from the last one to the
first one (in order of solutions 8, 3 and 5). It is dominated by solution 3 and then it should be compared
with solutions which have been assigned Fr2 from the last one to the first one (in order of solutions 2 and
7). However, solution 6 is dominated by solution 7 and there is no front ranking Fr3 in set Fr. Thus, Fr3 is
added to set Fr and solution 6 is assigned Fr3. This procedure continues until all the solutions are
assigned front rankings as shown in Figure 12.

The differences between the traditional Pareto sorting and ENS are described in Figure 13. It is
obvious that the traditional Pareto sorting method assigns the front rankings to several solutions at a time
and ENS assigns front rankings to the solutions individually.

Front 1

Front 2

Front N

DominatedNon-
dominated

DominatedNon-
dominated

Non-
dominated

Front 1

Front 2

P*(1) P*(2) P*(3) P*(4) …… P*(N)

P*(2) P*(3) P*(4) …… P*(N)

P*(N)

PopulationsFronts Fronts Sorted populations

Front N

 (a) The traditional Pareto sorting method (b) The efficient non-dominated sorting method

Fig. 13 The differences between traditional Pareto sorting and ENS

 19

5.2.5 Crowding-distance computation

 After all the solutions are assigned front rankings, the solutions which have the same front rankings
are sorted by crowding-distance [54]. Firstly, it sorts the solutions according to each objective function
value in ascending order. For each objective value, the solutions which have the smallest and largest
objective values are assigned infinite distance value. For the other intermediate solutions, distance value
(the absolute normalized difference of two adjacent solutions’ objective value) is assigned. The
crowding-distance of all the solutions is calculated by the sum of distance values of each objective. The
procedure of crowding-distance computation is described in Figure 14.

Input: the m-objective optimization
problem, the population I; l =length(I)

I(i)distance = 0

j = j + 1

i = i + 1

I = sort(I, m);
If k = 1 or l, I(k)distance = ∞

If k = 2 to l-1, I(k)distance = I(k)distance + (I(k+1).m-I(k-1).m)/()max min
m mf f-

j <= m ?

i <= l ?

Y

N

Y

N

End

Fig. 14 The procedure of crowd-distance computation
Based on Pareto sorting and crowding-distance computation, if two solutions have different front

rankings, the solution with better front ranking is preferred (such as Fr1 is better than Fr2). If two
solutions have the same front rankings, the solution with greater crowding distance is preferred.

 20

3 4 8 2 6 7 5 1

x+ y+ y- y- x+ z+ x+ x+

Before
inserting

After
inserting

3 4 8 2 6 5 1

x+ y+ y- y- x+ x+ x+

7

z+

3 4 8 2 6 7 5 1

x+ y+ y- y- x+ z+ x+ x+

3 4 7 2 6 8 5 1

x+ y+ z+ y- x- y- x+ x+

Before
swapping

After
swapping

Two-bit swapping

One-bit inserting

3 4 8 2 6 7 5 1

x+ y+ y- y- x+ z+ x+ x+

Before
inversing

After
inversing

3 7 2 8 4 5 1

x+ z+ y- y- y+ x+ x+

6

x+

Inversing

3 4 8 2 6 7 5 1

x+ y+ y- y- x+ z+ x+ x+

Before
mutating

After
mutating

One-bit mutating

3 4 8 2 6 7 5 1

x+ y+ y- y+ x+ z+ x+ x+

Fig. 15 The neighborhood search strategy

5.2.6 Neighborhood search strategy

Each follower bee randomly searches the neighborhood of the sites visited by scout bees. The
neighborhood search strategy which includes one-bit mutating operator, one-bit inserting operator, two-bit
swapping operator and inversing operator is used in this paper as shown in Figure 15.
 One-bit mutating operator acts on random bit of disassembly direction array and the corresponding
direction changes 180 degrees (such as from x+ direction to x- direction). One-bit inserting operator
randomly selects one bit of disassembly sequence and disassembly direction arrays and this bit inserts to
random position of disassembly sequence and disassembly direction arrays. Two-bit swapping operator is
used to exchange random two bits of disassembly sequence and disassembly direction arrays. Inversing
operator is used to invert random part of disassembly sequence and disassembly direction arrays. The
feasibility of follower bee needs to be checked by SIMM. If the follower bee is unfeasible disassembly
sequence, this follower bee continues to search the neighborhood until it is feasible disassembly
sequence.

 21

6. Experiments and Results

6.1 Case studies

1. Bolt A 2. Bolt B 3. Bolt C

4. Bolt D 5. Bolt E 6. Bolt F 7. Cover 8. Grasket

9. Gear A

10. Gear B

11. Shaft A 12. Base 13. Shaft B

14. Packing Gland

15. Gland Nut

x

z

y

(a) A gear pump (b) The explosive view of gear pump

x

y

z

1. Bolt A

2. Bolt B

3. Bolt C

4. Cover A

5. Part A

6. Part B

7. Part C

8. Part D

9. Part E

10. Camera

11. Part F

12. Part G

13. Part H 14. Bolt D

15. Bolt E

16. Bolt F 17. Bolt G

(c) A camera (d) The explosive view of camera

Fig. 16 Case studies based on a gear pump and a camera

As shown in Figure 16, cases studies based on a gear pump and a camera [56] are used to verify the
effectiveness of proposed method. The workflow of proposed method is described in Figure 17. The
properties of all the parts of the gear pump and the camera are listed in Table 2.

EoLPs are disassembled by robotic disassembly line as shown in Figure 18. CT of this robotic
disassembly line is 30 s. The direction-change and tool-change time are respectively described by
Equations (14) and (15).

Table 2 The properties of all the parts of the gear pump and the camera
EoLP Parts Task name bt/s Disassembly point (mm) Tools hpi

 1 Unscrew the Bolt A 3 [49.4, -12.6, 105.5] Spanner-I 1
 2 Unscrew the Bolt B 3 [74.4, -12.6, 81] Spanner-I 1
 3 Unscrew the Bolt C 3 [74.4, -12.6, 45] Spanner-I 1
 4 Unscrew the Bolt D 3 [49.4, -12.6, 20.5] Spanner-I 1
 5 Unscrew the Bolt E 3 [24.4, -12.6, 45] Spanner-I 1
 6 Unscrew the Bolt F 3 [24.4, -12.6, 81] Spanner-I 1

Gear 7 Remove the Cover 4 [49.4, -20.6, 63] Gripper-II 2
pump 8 Remove the Gasket 3 [49.4, 1.4, 105.5] Gripper-I 2

 9 Remove the Gear A 6 [49.4, 3.4, 81] Gripper-I 3
 10 Remove the Gear B 6 [49.4, 3.4, 45] Gripper-I 3
 11 Remove the Shaft A 4 [49.4, -7.6, 81] Gripper-I 1
 12 Remove the Base 8 [49.4, 49.4, 81] Gripper-II 4

 22

 13 Remove the Shaft B 4 [49.4, 152.4, 45] Gripper-I 2
 14 Remove the Packing Gland 2 [49.4, 91.4, 45] Gripper-I 2
 15 Unscrew the Gland Nut 3 [49.4, 96.4, 45] Spanner-II 1
 1 Unscrew the Bolt A 3 [37.4, -28, 39.9] Spanner-I 1
 2 Unscrew the Bolt B 3 [12.7, -18.5, 39.9] Spanner-I 1
 3 Unscrew the Bolt C 3 [12.7, -18.5, 16] Spanner-I 1
 4 Remove the Cover A 2 [28.1, -26, 29.8] Gripper-I 2
 5 Remove the Part A 5 [30.3, -24.5, 32.4] Gripper-I 3
 6 Remove the Part B 4 [23.1, -25.5, 26.6] Gripper-II 3
 7 Remove the Part C 3 [24.4, -13.5, 28.8] Gripper-I 2
 8 Remove the Part D 4 [25.1, -12.5, 43.4] Gripper-II 2

Camera 9 Remove the Part E 3 [24.5, -0.5, 43.4] Gripper-I 2
 10 Remove the Camera 8 [24.5, -20.1, 27.8] Gripper-II 5
 11 Remove the Part F 4 [23, 0, 56.4] Gripper-II 2
 12 Remove the Part G 2 [10.7, 13.5, 28.1] Gripper-I 1
 13 Remove the Part H 3 [30, 24, 56.4] Gripper-II 2
 14 Unscrew the Bolt D 3 [22.5, 26.5, 45.9] Spanner-II 1
 15 Unscrew the Bolt E 3 [42.6, 26.5, 45.9] Spanner-II 1
 16 Unscrew the Bolt F 3 [21, 26.5, 10] Spanner-II 1
 17 Unscrew the Bolt G 3 [36.3, 26.5, 10] Spanner-II 1

SIMM

Multi-objectives of RDLBP

Product model

Bee(1)

Bee(2)

Bee(n)

Bee(scoutn)

Bee(n+1)

Selected
Sites

N
on-Select

Sites

Bee(2,1) Bee(2,2) Bee(2,nb)

Bee(1,1) Bee(1,2) Bee(1,nb)

Replaced by scoutn-n bees obtained by SIMM

1 2 3 [, ,]min F f f f=

1f m=
2

2 ,
1

()
m

i total
i

f CT t
=

= -∑
3

1
*

i

n

p
i

f i h
=

= ∑

Disassembly model for EoLP

Bee(n,1) Bee(n,2) Bee(n,nb)

Bee(n+2)

Pareto sorting by
EN

S

RDLBP using IMODBA

Fig. 17 The workflow of proposed method

The safe distance between the contour of EoLP and the moving path of industrial robot’s
end-effector is 10 mm. The moving time matrix (MT = [mtij]; i, j = 1, 2… 15) between different parts is
calculated by moving distance matrix (MD = [mdij]; i, j = 1, 2… 15) which is manually calculated and
moving speed (ms) which is assumed to be 12 cm/s® [57]. For example, as shown in Figure 19, the
moving time mt1,13 is calculated by Equation (24).

1,13 1,13

1 2 2 3 3 4 4 5 5 6 6 7

/
 () /
 (10 18.92 72.01 127.67 20 10) /12 21.55

mt md ms
PP P P P P P P P P P P ms

s

=

= + + + + +
= + + + + + =

 (24)

 23

Robotic
workstation 2

Robotic
workstation n

Robotic
workstation 3

Robotic
workstation 1

Fig. 18 The robotic disassembly line

10 mm

P1
P2

P3 P4

P5

P6P7

Contour of safe distance
Bolt A

Shaft B

Fig. 19 The moving path from Bolt A to Shaft B

6.2 Performance analysis
In this section, simulations are taken on personal computer with 2.3GHz Intel core i5-6200U CPU, 4

GB memory using Matlab 2014b® [58]. This section consists of three parts: 1. performance analysis of
IMODBA under different iterations and populations; 2. performance comparisons between IMODBA and
the other multi-objective optimization algorithms; 3. comparisons of Pareto optimal fronts of three cases.

For single-objective optimization problem, it is easy to evaluate the quality of solutions through
fitness value. For multi-objectives optimization algorithm, auxiliary methods need to be used to evaluate
the quality of non-dominated solutions [59]. Existing performance indexes (PI) used for evaluating the
quality of non-dominated solutions contain distance-based accuracy PI, volume-based accuracy PI, etc
[60]. In this paper, hypervolume indicator (HI) and generational distance (GD) are used. HI [61] is a
widely used volume-based accuracy PI. It can evaluate the convergence and distribution of
non-dominated solutions by quantitative comparisons without knowing the real Pareto optimal fronts [62].
As shown in Figure 20(a), HI of non-dominated solutions (P1, P2 and P3 are the obtained non-dominated
solutions) is the volume of the areas surrounded by cuboids P1R, P2R and P3R (R is the reference point) as

 24

shown in Equation (25). For minimum optimization problem, the non-dominated solutions with greater
HI value are preferred. GD [60] is used to represent the distance between the obtained non-dominated
solutions (P1, P2 and P3 in Figure 20(b)) and the Pareto optimal solutions (Popt,1, Popt,2 and Popt,3 in Figure
20(b)). It is calculated by Equation (26), where nd is the number of obtained non-dominated solutions, di
(the red dotted line in Figure 20(b)) is the Euclidean distance between ith member of obtained
non-dominated solutions and its nearest member of Pareto optimal solutions. The non-dominated
solutions with lower GD value are preferred.

1 2 3
()P R P R P RHI Volume cuboid cuboid cuboid= U U (25)

2 1/2

1
() /

nd

i
i

GD d nd
=

= ∑ (26)

P1

P2

P3

f1

f2

O

R

f3

P1

P2

P3

f1

f2

O

f3

Popt,1

Popt,2

Popt,3

d1

d2

d3

(a) HI of non-dominated solutions (b) GD of non-dominated solutions

Fig. 20 performance indicators of non-dominated solutions
Before calculating HI and GD values of non-dominated solutions, it is important to normalize

multi-objective values by Equation (27). For the gear pump, f1,min, f1,max, f2,min, f2,max, f3,min and f3,max are
respectively 3, 5, 0.0548, 765.6372, 228 and 259. For the camera, f1,min, f1,max, f2,min, f2,max, f3,min and f3,max
are respectively 3, 4, 1.0411, 858.3914, 268 and 338. For both the gear pump and the camera, the
reference point for calculating HI value is [1.2, 1.2, 1.2] and the optimal Pareto solutions for calculating
GD value are listed in Tables 7 and 8.

, ,min ,max ,min() / () 1,2,3i norm i i i if f f f f i= − − = (27)

For both the gear pump and the camera, the selected sites number ns, follower bees number rns of
IMODBA are respectively 15 and 1. The average running time, average HI and average GD are compared
under different iterations (from 100 to 800) and populations (from 30 to 80). Each simulation is repeated
50 times. As shown in Figure 21, when the iteration number and the population number are respectively
80 and 800, it has the best quality of solutions (for the gear pump, average HI and average GD are
respectively 1.5450 and 0.00; for the camera, average HI and average GD are respectively 0.8612 and
0.0025). But it takes the longest running time (for the gear pump, it is 67.55s and for the camera, it is
76.55s). When iteration number and population number are respectively 30 and 100, it takes the shortest
running time (for the gear pump, it is 3.26s and for the camera, it is 3.89s) but it has the worst quality of
solutions (for the gear pump, average HI and average GD are respectively 1.4825 and 0.0149; for the
camera, average HI and average GD are respectively 0.5529 and 0.016).

 25

(a) Average running time of IMODBA under different
iterations and populations based on the gear pump

(c) Average HI of IMODBA under different iterations and
populations based on the gear pump

(e) Average GD of IMODBA under different iterations and
populations based on the gear pump

(b) Average running time of IMODBA under different
iterations and populations based on the camera

(d) Average HI of IMODBA under different iterations and
populations based on the camera

(f) Average GD of IMODBA under different iterations and
populations based on the camera

Fig. 21 Performance analysis of IMODBA under different iterations and populations

For the performance comparisons between IMODBA and the other multi-objective optimization
algorithms, the average running time, average HI and average GD under different iterations and
populations are analyzed.
♦ IMODBA: the proposed method in this paper is used. The selected sites number ns, follower bees

number rns are 15 and 1 respectively.
♦ MODBA: multi-objective discrete Bees Algorithm (MODBA) uses the traditional Pareto sorting

method [54] and the input parameters are the same with IMODBA.

 26

♦ Multi-objective artificial Bees colony (MOABC): it consists of employed bees, onlooker bees and
scout bees. The neighborhood search strategies of MOABC are the same with IMODBA. For
onlooker bees, the probability value is calculated by the method used in [63]. When a food source
has not been updated over thred iterations (thred is 10 here), employed bee becomes scout bee to
randomly explore new food source.

♦ Multi-objective genetic algorithm (MOGA): it uses selection procedure (roulette wheel method), the
Pareto sorting methods [64], two point crossover procedure [65] and mutation procedure (the same
with neighborhood search strategies of IMODBA). The parameter of chromosome selection is 0.1
[64]. The crossover rate and mutation rate are 0.8 and 0.2 respectively.

Table 3 Improvement of running time of IMODBA under different iterations
EoLP Iterations 100 200 300 400 500 600 700 800

 IMODBA 5.31s 10.77s 15.71s 20.98s 26.18s 31.16s 36.55s 41.86s
Gear MODBA 5.63s 11.57s 17.29s 22.93s 28.19s 33.54s 39.50s 45.42s
pump Improvement 0.32s 0.80s 1.58s 1.95s 2.01s 2.38s 2.95s 3.56s

 Percentage 5.68% 6.91% 9.14% 8.50% 7.13% 7.10% 7.47% 7.84%
 IMODBA 6.04s 11.98s 18.12s 24.17s 30.15s 36.23s 42.21s 48.76s

Camera MODBA 6.68s 12.94 19.22s 25.67s 31.99s 38.36s 44.86s 51.28s
 Improvement 0.64s 0.96s 1.10s 1.50s 1.84s 2.13s 2.65s 2.52s
 Percentage 9.58% 7.42% 5.72% 5.84% 5.75% 5.55% 5.91% 4.91%

Table 4 Improvement of running time of IMODBA under different populations
EoLP Populations 30 40 50 60 70 80

 IMODBA 16.19s 21.41s 26.18s 31.38s 36.27s 40.92s
Gear MODBA 17.83s 22.85s 28.19s 33.02s 38.14s 43.03s
Pump Improvement 1.64s 1.44s 2.01s 1.64s 1.87s 2.11s

 Percentage 9.20% 6.30% 7.13% 4.97% 4.90% 4.90%
 IMODBA 18.20s 24.72s 30.15s 35.98s 41.82s 47.83s

Camera MODBA 20.08s 26.01s 31.99s 37.55s 43.28s 49.12s
 Improvement 1.88s 1.29s 1.84s 1.57s 1.46s 1.29s
 Percentage 9.36% 4.96% 5.75% 4.18% 3.37% 2.63%

When the population number is 50, the average running time, average HI and average GD are
compared under different iterations (from 100 to 800) as shown in Figures 22(a) ~ 22(f). Each simulation
is repeated 50 times. From Figures 22(a) and 22(b), for both the gear pump and the camera, MODBA
needs the longest running time than the others. With the help of ENS, IMODBA needs less running time
than MODBA. The improvement of running time of IMODBA under different iterations is listed in Table
3. From Figures 22(c) ~ 22(f), for both the gear pump and the camera, it is obvious that IMODBA and
MODBA can find better quality of non-dominated solutions than MOABC and MOGA. The quality of

 27

(a) Average running time of four optimization under
different iterations based on the gear pump

(b) Average running time of four optimization under
different iterations based on the camera

(c) Average HI of four optimization under different
iterations based on the gear pump

(d) Average HI of four optimization under different
iterations based on the camera

(e) Average DI of four optimization under different
iterations based on the gear pump

(f) Average DI of four optimization under different
iterations based on the camera

Fig. 22 Comparisons of the four optimization algorithms under different iterations based on the gear
pump and the camera

solutions obtained by IMODBA is nearly the same with MODBA, because ENS sorts the solutions using
less running time without changing the Pareto sorting results. From Figures 22(c) and 22(d), MOABC
performs better than MOGA in terms of HI value while MOGA performs better than MOABC in terms of
GD value from Figures 22(e) and 22(f). It is because MOABC performs better than MOGA in the
diversity of solutions while MOGA performs better than MOABC in the convergence of solutions. When
the iteration number is 500, simulations are made under different populations (from 30 to 80). Each
simulation is repeated 50 times. From Figures 23(a) and 23(b), for both the gear pump and the camera, the

 28

average running time of IMODBA is less than MODBA and it is comparable with MOABC and MOGA.
The improvement of running time of IMODBA under different populations is listed in Table 4. From
Figures 23(c) ~ 23(f), for both the gear pump and the camera, it is obvious that IMODBA and MODBA
can also find better quality of solutions than MOABC and MOGA. MOGA performs worse than MOABC
in terms of HI value from Figures 23(c) and 23(d), but it performs better than MOABC in terms of GD
value from Figures 23(e) and 23(f). It is because MOGA performs better than MOABC in the
convergence of solutions and it performs worse than MOABC in the diversity of solutions.

(e) Average DI of four optimization under different
populations based on the gear pump

(f) Average DI of four optimization under different
populations based on the camera

(a) Average running time of four optimization under
different populations based on the gear pump

(c) Average HI of four optimization under different
populations based on the gear pump

(b) Average running time of four optimization under
different populations based on the camera

(d) Average HI of four optimization under different
populations based on the camera

Fig. 23 Comparisons of the four optimization algorithms under different populations based on the gear
pump and the camera

 29

The Pareto fronts obtained by the following three cases are also compared to verify the effectiveness
of proposed method.
♦ Case 1: it considers the basic disassembly time of each part, the tool-change time and the

direction-change time between different parts, but the moving time between different parts is
ignored.

♦ Case 2: it considers the basic disassembly time of each part, the tool-change time, the
direction-change time and the moving time between different parts. The moving time is calculated
by Euclidean distance between different parts and moving speed of industrial robot’s end-effector
(ElSayed et al. 2012).

♦ Case 3: RDLBP is solved by the proposed method in this paper.
The iteration number, scout bees number, the selected sites number and follower bees number of

IMODBA are 800, 80, 15 and 1 respectively. Simulations are repeated 100 times. 100 groups of
non-dominated solutions are sorted to get the Pareto optimal solutions. Because ENS sorts the solutions
without changing the Pareto sorting results, Pareto fronts obtained by MODBA are not listed in Tables 5
and 6. In Tables 5 and 6, for both the gear pump and the camera, it is obvious that Pareto fronts obtained
by case 3 are different from the other cases. Case 1 ignores the moving time between different parts. Case
2 uses the Euclidean distance to calculate the moving time. It ignores the obstacle caused by the contour
of EoLP. Thus, compared with cases 1 and 2, Pareto fronts obtained by case 3 are more applicable for
robotic disassembly line. Besides, in Table 5, in terms of case 3, the 4th

 solution of MOABC is dominated
by the 4th solution of IMODBA, the 5th and 6th solutions of MOABC are dominated by the 5th solution of
IMODBA and the 8th solution of MOABC is dominated by the 7th solution of IMODBA. The number of
Pareto fronts obtained by IMODBA is greater than MOGA. In Table 6, in terms of case 3, the 1st and 2nd
solutions of MOABC is dominated by the 2nd solution of IMODBA and the 9th solution of MOABC is
dominated by the 8th solution of IMODBA. The number of Pareto fronts obtained by IMODBA is also
greater than MOGA. Thus, IMODBA performs better than MOABC and MOGA in terms of Pareto fronts.
Finally, the Pareto optimal solutions of RDLBP based on the gear pump and the camera are listed in
Tables 7 and 8 (for the disassembly direction, ‘1’ and ‘2’ mean ‘Y+’ and ‘Y-’ respectively).

7. Conclusion

In this paper, RDLBP is solved by IMODBA. Firstly, SIMM is used to generate feasible disassembly
sequence and disassembly direction. After that, the feasible disassembly sequence and disassembly
direction are used to obtain robotic disassembly line solution by robotic workstation assignment method.
The multi-objectives used in this paper are to minimize the number of robotic workstations, balance the
workload of robotic workstations and disassemble high demand parts as early as possible. With the help
of ENS, IMODBA is proposed to solve RDLBP using less running time. Based on a gear pump and a
camera, simulations are carried out to show the performance of IMODBA under different iterations and
populations. The performance of IMODBA is also compared with MODBA, MOABC and MOGA under
different iterations and populations. After that, Pareto fronts obtained by these optimization algorithms
under different cases are also compared. It shows that IMODBA generates better quality of solutions than
MOABC and MOGA. However, in this paper, SIMM is used to build disassembly model of EoLP which
can be disassembled along orthogonal axes. In the future, more works should be finished to build
disassembly model of EoLP with complex structure. In addition, the obstacle avoiding trajectory planning
of industrial robot and the uncertainties in disassembly process will also be studied in the future.

 30

Table 5 Pareto fronts of three cases based on the gear pump

 Case 2

 MOGA IMODBA MOABC MOGA IMODBA

 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2

 1 234 3 0.5262 238 3 0.5262 238 3 0.5262 238 3 0.0548

 5 232 3 2.9193 235 3 2.9193 235 3 2.9193 235 3 0.0860

 6 230 3 3.2023 234 3 3.2023 234 3 3.2023 234 3 0.1899

 10 228 3 7.5069 233 3 7.5069 233 3 14.3724 232 3 1.0637

 4 14.3724 232 3 14.3724 232 4 198.9339 231 3 2.0211

 4 198.9339 231 4 198.9339 231 4 251.9134 230 3 3.8500

 4 251.9134 230 4 251.9134 230 4 355.8085 229 3 6.3106

 4 355.8085 229 4 355.8085 229 4 448.1330 228 4 27.0273

 4 448.1330 228 4 448.1330 228 4 27.2973

 4 27.4623

 4 263.5929

 4 284.1421

 31

Table 6 Pareto fronts of three cases based on the camera

 Case 2

 MOGA IMODBA MOABC MOGA IMODBA

 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3

 10 3 0 310 3 0.2506 321 3 0.4466 294 3 0.4466 294 3 1.0411 331

 92 3 1 292 3 0.4466 294 3 0.4501 293 3 0.4501 293 3 1.3141 319

 84 3 2 284 3 0.4501 293 3 0.7571 275 3 0.7571 275 4 2.3049 318

 80 3 5 280 3 0.7571 275 3 2.1059 274 3 2.1059 274 4 2.8017 312

 75 3 9 275 3 2.1059 274 3 37.7046 271 3 37.7046 271 4 2.8432 309

 74 3 14 274 3 37.7046 271 3 58.2641 269 3 58.2641 269 4 6.5750 307

 70 3 52 270 3 58.2641 269 4 842.9434 268 4 842.9434 268 4 6.7485 306

 68 3 68 268 4 842.9434 268 4 7.2913 303

 4 7.7011 288

 4 17.3577 287

 4 29.1523 275

 4 81.4263 273

 4 188.9248 272

 4 336.9715 270

 4 360.4361 268

 32

Table 7 Pareto optimal solutions of RDLBP obtained by different optimization
algorithms based on the gear pump

 Disassembly sequence Disassembly direction

Robotic worksta
assignments

 5-6-2-3-1-7-15-8-14-12-9-13-11-10 2-2-2-2-2-2-2-1-2-1-1-2-2-1-1 1-1-1-1-1-1-1-2-2-2-2
 2-3-5-6-1-7-15-8-14-12-10-9-13-11 2-2-2-2-2-2-2-1-2-1-1-2-1-2-2 1-1-1-1-1-1-1-2-2-2-2
 2-3-5-6-1-7-15-14-12-8-10-9-13-11 2-2-2-2-2-2-2-1-1-1-2-2-1-2-2 1-1-1-1-1-1-1-2-2-2-2
 5-14-3-5-4-6-1-2-7-9-8-12-13-10-11 1-1-2-2-2-2-2-2-2-2-2-1-1-1-1 1-1-1-1-1-2-2-2-2-2-2
 5-14-13-2-6-3-5-1-4-7-8-12-10-9-11 1-1-1-2-2-2-2-2-2-2-2-1-1-1-1 1-1-1-1-1-2-2-2-2-2-2
 6-5-3-2-4-7-10-9-15-14-12-8-13-11 2-2-2-2-2-2-2-2-2-1-1-1-1-1-1 1-1-1-1-1-1-1-2-2-2-2
 5-14-13-5-6-1-2-3-4-7-9-12-10-8-11 1-1-1-2-2-2-2-2-2-2-2-1-1-1-1 1-1-1-1-1-2-2-2-2-2-2
 5-14-3-6-13-5-1-4-2-12-9-7-8-10-11 1-1-2-2-1-2-2-2-2-1-1-2-1-2-1 1-1-1-1-2-2-2-2-3-3-3

 5-14-3-6-13-4-1-5-2-12-9-7-10-8-11 1-1-2-2-1-2-2-2-2-1-1-2-1-2-1 1-1-1-1-2-2-2-2-3-3-3

 5-14-5-2-13-3-1-4-6-12-9-7-8-11-10 1-1-2-2-1-2-2-2-2-1-1-2-1-2-1 1-1-1-1-2-2-2-2-3-3-3
 5-14-13-3-4-1-5-2-6-12-9-7-10-8-11 1-1-1-2-2-2-2-2-2-1-1-2-1-2-1 1-1-1-1-2-2-2-2-2-3-3
 5-14-13-3-4-1-5-2-6-12-9-10-7-8-11 1-1-1-2-2-2-2-2-2-1-1-1-2-2-1 1-1-1-1-2-2-2-2-2-3-3
 5-14-13-6-2-3-5-1-4-7-11-12-9-10-8 1-1-1-2-2-2-2-2-2-2-2-1-1-1-1 1-1-1-1-1-2-2-2-2-2-2
 5-14-13-2-3-5-1-4-6-7-8-12-10-11-9 1-1-1-2-2-2-2-2-2-2-2-1-1-1-1 1-1-1-1-1-2-2-2-2-2-2
 5-14-13-2-3-5-6-1-4-7-8-12-10-9-11 1-1-1-2-2-2-2-2-2-2-2-1-1-1-1 1-1-1-1-1-2-2-2-2-2-2
 5-14-3-6-13-4-1-5-2-12-9-8-7-11-10 1-1-2-2-1-2-2-2-2-1-1-1-2-1-2 1-1-1-1-2-2-2-2-3-3-3
 The remaining solutions are the same with the 1st ~ 3rd and 7th ~ 12th solutions
 The Pareto optimal solutions are the same with the 1st ~ 3rd and 5th ~ 12th solutio

 33

Table 8 Pareto optimal solutions of RDLBP obtained by different
EoLP Algorithms No. Disassembly sequence Disassembly

 1 1-3-17-14-15-16-4-5-2-6-7-8-13-12-9-11-10 2-2-1-1-1-1-2-2-2-
 2 15-16-1-3-17-14-4-5-2-6-7-8-9-10-13-11-12 1-1-2-2-1-1-2-2-2-
 3 15-3-17-1-4-2-5-16-6-14-13-12-11-10-7-9-8 1-2-1-2-2-2-2-1-2-
 4 1-4-16-5-17-3-15-2-14-13-6-12-11-10-7-9-8 2-2-1-2-1-2-1-2-1-
 5 1-4-16-5-17-2-15-3-6-14-13-12-11-10-7-9-8 2-2-1-2-1-2-1-2-2-
 6 1-4-16-5-2-17-14-3-6-7-15-8-13-9-10-12-11 2-2-1-2-2-1-1-2-2-
 7 1-4-16-5-15-3-17-2-6-7-8-14-13-9-10-12-11 2-2-1-2-1-2-1-2-2-
 IMODBA 8 1-4-17-5-3-2-6-16-15-7-14-8-13-9-10-12-11 2-2-1-2-2-2-2-1-1-
 9 1-4-5-3-15-2-6-16-7-8-9-14-10-17-11-13-12 2-2-2-2-1-2-2-1-2-

Camera 10 1-4-5-2-15-3-6-7-16-8-9-14-10-17-11-13-12 2-2-2-2-1-2-2-2-1-
 11 1-4-2-5-3-6-7-8-16-9-10-14-15-17-11-13-12 2-2-2-2-1-2-2-2-1-
 12 1-4-5-3-2-6-7-8-16-9-10-14-15-17-11-13-12 2-2-2-2-2-2-2-2-1-
 13 1-4-5-3-2-6-7-8-9-16-10-14-15-17-11-13-12 2-2-2-2-2-2-2-2-2-
 14 1-4-2-5-3-6-7-8-9-10-16-15-14-17-11-13-12 2-2-2-2-2-2-2-2-2-
 15 1-4-5-2-3-6-7-8-9-10-16-15-14-17-11-13-12 2-2-2-2-2-2-2-2-2-
 1 15-16-14-1-3-17-4-5-2-6-7-8-13-12-9-11-10 1-1-1-2-2-1-2-2-2-
 MOABC 2 3-17-14-15-16-1-4-5-2-6-7-8-9-10-11-13-12 2-1-1-1-1-2-2-2-2-
 3 1-4-16-5-3-2-6-17-15-7-14-8-13-9-10-12-11 2-2-1-2-2-2-2-1-1-
 4-16 The remaining solutions are the sam
 MOGA 1-14 The Pareto optimal solutions are the

 34

Acknowledgements This work is supported by the National Natural Science Foundation of China (Grant
Nos. 5177539951675389 and 51475343), the Keygrant Project of Hubei Technological Innovation
Special Fund (Grant No. 2016AAA016), Engineering and Physical Sciences Research Council (EPSRC),
UK (Grant No. EP/N018524/1) and the China Scholarship Council (201606950054).

References

1. Tao F, Cheng Y, Zhang L, Nee AYC (2017) Advanced manufacturing systems: socialization
characteristics and trends. J Intell Manuf 28(5):1079-1094. https://doi.org/10.1007/
s10845-015-1042-8

2. Wang LH, Wang XV, Gao L, Váncza J (2014) A cloud-based approach for WEEE remanufacturing.
CIRP Ann-Manuf Techn 63(1):409-412. https://doi.org/10.1016/j.cirp.2014.03.114

3. D’Adamo I, Rosa P (2016) Remanufacturing in industry: advices from the field. Int J Adv Manuf
Tech 86(9-12): 2575-2584. http://doi.org/10.1007/s00170-016-8346-5

4. Xu BS (2010) State of the art and future development in remanufacturing engineering. Trans Mat
Heat T 31(1):10-14

5. Guide VDR (2000) Production planning and control for remanufacturing: industry practice and
research needs. J Oper Manag 18(4):467-483. https://doi.org/10.1016/S0272-6963(00)00034-6

6. Xu BS (2010) Recent progress of remanufacturing industry and technology in China. Therm Spray
Technol 2(3):1-6

7. Savaskan RC, Bhattacharya S, Van WLN (2004) Closed-loop supply chain models with product
remanufacturing. Manage Sci 50(2):239-252. https://doi.org/10.1287/mnsc.1030.0186

8. Shakourloo A (2017) A multi-objective stochastic goal programming model for more efficient
remanufacturing process. Int J Adv Manuf Tech 91(1-4): 1007-1021. https://doi.org/
10.1007/s00170-016-9779-6

9. Priyono A, Ijomah W, Bititci U (2016) Disassembly for remanufacturing: A systematic literature
review, new model development and future research needs. J Ind Engineering Manage 9(4):899-932.
https://doi.org/10.3926/jiem.2053

10. Alavidoost MH, Zarandi MF, Tarimoradi M, Nemati Y (2017) Modified genetic algorithm for simple
straight and U-shaped assembly line balancing with fuzzy processing times. J Intell
Manuf 28(2):313-336. https://doi.org/10.1007/s10845-014-0978-4

11. Kim HW, Lee DH (2018) A sample average approximation algorithm for selective disassembly
sequencing with abnormal disassembly operations and random operation times. Int J Adv Manuf
Tech 1-14. https://doi.org/10.1007/s00170-018-1667-9

12. Vongbunyong S, Kara S, Pagnucco M (2012) A framework for using cognitive robotics in
disassembly automation. In: David AD (ed) Leveraging Technology for a Sustainable World. Spring,
Berkeley, pp 173-178. https://doi.org/10.1007/978-3-642-29069-5_30

13. Vongbunyong S, Kara S, Pagnucco M (2013) Basic behaviour control of the vision-based cognitive
robotic disassembly automation. Assembly Autom 33(1):38-56. https://doi.org/10.1108/
01445151311294694

14. Vongbunyong S, Kara S, Pagnucco M (2013) Application of cognitive robotics in disassembly of
products. CIRP Ann-Manuf Techn 62(1):31-34. https://doi.org/10.1016/j.cirp.2013.03.037

15. Vongbunyong S, Kara S, Pagnucco M (2015) Learning and revision in cognitive robotics
disassembly automation. Robot Cim-Int Manuf 34:79-94. https://doi.org/10.1016/j.rcim.2014.11.003

16. Wang BX, Guan ZL, Ullah S, Xu XH, He ZD (2017) Simultaneous order scheduling and

 35

https://doi.org/10.1007/%20s
https://doi.org/10.1007/%20s
https://doi.org/10.1016/j.cirp.2014.03.114
http://doi.org/10.1007/s00170-016-8346-5
https://doi.org/10.1287/mnsc.1030.0186
https://doi.org/%2010.1007/s00170-016-9779-6
https://doi.org/%2010.1007/s00170-016-9779-6
https://doi.org/10.3926/jiem.2053
https://doi.org/10.1007/s10845-014-0978-4
https://doi.org/10.1007/s00170-018-1667-9
https://doi.org/10.1108/%2001445151311294694
https://doi.org/10.1108/%2001445151311294694
https://doi.org/10.1016/j.cirp.2013.03.037
https://doi.org/10.1016/j.rcim.2014.11.003

mixed-model sequencing in assemble-to-order production environment: a multi-objective hybrid
artificial bee colony algorithm. J Intell Manuf 28(2):419-436. https://doi.org/10.1007/
s10845-014-0988-2

17. Wang LH, Schmidt B, Givehchi M, Adamson G (2015) Robotic assembly planning and control with
enhanced adaptability through function blocks. Int J Adv Manuf Tech 77(1-4):705-715.
https://doi.org/10.1007/s00170-014-6468-1

18. Ullah S, Guan ZL, Zhang L, Zhang F, Wang BX, Mirza J (2017) Multi-objective artificial bee
colony algorithm for order oriented simultaneous sequencing and balancing of multi-mixed model
assembly line. J Intell Manuf 1-26. https://doi.org/10.1007/s10845-017-1316-4

19. Gungor A, Gupta SM (1999) Disassembly line balancing. In Proceedings of 1999 Annual Meeting of
the Northeast Decision Sciences Institute, Newport, USA, 24-26 March 1999, pp 24-26.

20. Mcgovern SM, Gupta SM (2007) A balancing method and genetic algorithm for disassembly line
balancing. Eur J Oper Res 179(3):692-708. https://doi.org/10.1016/j.ejor.2005.03.055

21. Ilgin MA, Akçay H, Araz C (2017) Disassembly line balancing using linear physical programming.
Int J Prod Res 55(20):1-12. https://doi.org/10.1080/00207543.2017.1324225

22. Ding LP, Feng YX, Tan JR, Gao YC (2010) A new multi-objective ant colony algorithm for solving
the disassembly line balancing problem. Int J Adv Manuf Tech 48(5-8):761-771. https:/doi.org/
10.1007/s00170-009-2303-5

23. Ayyuce AK, Turkbey O (2013) Multi-objective optimization of stochastic disassembly line
balancing with station paralleling. Comput Ind Eng 65(3):413-425. https://doi.org/10.1016/
j.cie.2013.03.014

24. Tuncel E, Zeid A, Kamarthi S (2014) Solving large scale disassembly line balancing problem with
uncertainty using reinforcement learning. J Intell Manuf 25(4):647-659. https://doi.org/
10.1007/s10845-012-0711-0

25. Bentaha ML, Battaïa O, Dolgui A (2014) A sample average approximation method for disassembly
line balancing problem under uncertainty. Comput Oper Res 51:111-122. https://doi.org/
10.1016/j.cor.2014.05.006

26. Hezer S, Kara Y (2015) A network-based shortest route model for parallel disassembly line
balancing problem. Int J Prod Res 53(6):1849-1865. https://doi.org/10.1080/00207543.2014.965348

27. Kalayci CB, Hancilar A, Gungor A, Gupta SM (2015) Multi-objective fuzzy disassembly line
balancing using a hybrid discrete artificial bee colony algorithm. J Manuf Syst 37:672-682.
https://doi.org/10.1016/j.jmsy.2014.11.015

28. Mete S, Çil ZA, Ağpak K, Özceylan E, Dolgui A (2016) A solution approach based on beam search
algorithm for disassembly line balancing problem. J Manuf Syst 41:188-200. https://doi.org/
10.1016/j.jmsy.2016.09.002

29. Kalayci CB, Gupta SM (2013) Ant colony optimization for sequence-dependent disassembly line
balancing problem. J Manuf Technol Manage 24(3):413-427. https://doi.org/10.1108/
17410381311318909

30. Kalayci CB, Gupta SM (2013) A particle swarm optimization algorithm with neighborhood-based
mutation for sequence-dependent disassembly line balancing problem. Int J Adv Manuf Tech
69(1-4):197-209. https://doi.org/10.1007/s00170-013-4990-1

31. Liu J, Wang S (2017) Balancing Disassembly Line in Product Recovery to Promote the Coordinated
Development of Economy and Environment. Sustainability 9(2):309-323.
https://doi.org/10.3390/su9020309

32. Kalayci CB, Gupta SM (2014) A tabu search algorithm for balancing a sequence-dependent

 36

https://doi.org/10.1007/
https://doi.org/10.1016/
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/10.1108/
https://doi.org/10.1007/s00170-013-4990-1
http://dx.doi.org/10.3390/su9020309

disassembly line. Prod Plan Control 25(2):149-160. https://doi.org/10.1080/09537287.2013.782949
33. Kalayci CB, Polat O, Gupta SM (2016) A hybrid genetic algorithm for sequence-dependent

disassembly line balancing problem. Ann Oper Res 242(2):321-354. https://doi.org/10.1007/s
10479-014-1641-3

34. Kalayci CB, Gupta SM (2013) Artificial bee colony algorithm for solving sequence-dependent
disassembly line balancing problem. Expert Syst Appl 40(18):7231-7241. https://doi.org/
10.1016/j.eswa.2013.06.067

35. Alshibli M, ElSayed A, Kongar E, Sobh TM, Gupta SM (2016) Disassembly sequencing using tabu
search. J Intell Robot Syst 82(1):69-79. https://doi.org/10.1007/s10846-015-0289-9

36. ElSayed A, Kongar E, Gupta SM (2010) A genetic algorithm approach to end-of-life disassembly
sequencing for robotic disassembly. In Proceedings of the 2010 Northeast Decision Sciences
Institute Conference, Alexandria, USA, 26-28 March 2010, pp 402-408

37. ElSayed A, Kongar E, Gupta SM, Sobh T (2011) An online genetic algorithm for automated
disassembly sequence generation. In Proceedings of the ASME 2011 International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference,
Washington DC, USA, 28-31 August 2011, pp 657-664. https://doi.org/10.1115/DETC2011-48635

38. ElSayed A, Kongar E, Gupta SM, Sobh T (2012) A robotic-driven disassembly sequence generator
for end-of-life electronic products. J Intell Robot Syst 68(1):43-52. https://doi.org/10.1007/
s10846-012-9667-8

39. Agrawal S, Tiwari MK (2008) A collaborative ant colony algorithm to stochastic mixed-model
u-shaped disassembly line balancing and sequencing problem. Int J Prod Res 46(6):1405-1429.
https://doi.org/10.1080/00207540600943985

40. Pham DT, Ghanbarzadeh A (2007) Multi-objective optimisation using the bees algorithm. In
Proceedings of the 3rd International Virtual Conference on Intelligent Production Machines and
Systems, Cardiff, UK, 3-14 July 2007, pp 529-533

41. Tapkan P, Özbakır L, Baykasoğlu A (2012) Bees algorithm for constrained fuzzy multi-objective
two-sided assembly line balancing problem. Optim Lett 6(6):1-11. https://doi.org/10.1007/
s11590-011-0344-9

42. Ercin O, Coban R (2011) Comparison of the artificial bee colony and the bees algorithm for PID
controller tuning. In Proceedings of 2011 International Symposium on Innovations in Intelligent
Systems and Applications, Istanbul, Turkey, 15-18 June 2011, pp 595-598.
https://doi.org/10.1109/INISTA.2011.5946157

43. Mastrocinque E, Yuce B, Lambiase A, Packianather MS (2013) A multi-objective optimization for
supply chain network using the bees algorithm. Int J Eng Bus Manage 5(38):1-11. https://doi.org/
10.5772/56754

44. Lu W, Quan Z, Liu Q, Zhang D, Xu W (2015) QoE based spectrum allocation optimization using
bees algorithm in cognitive radio networks. In Proceedings of 2015 International Conference on
Algorithms and Architectures for Parallel Processing, Zhang Jiajie, China, 18-20 November 2015,
pp 327-338. https://doi.org/10.1007/978-3-319-27119-4_23

45. Xu WJ, Tian SS, Liu Q, Xie YQ, Zhou ZD, Pham DT (2016) An improved discrete bees algorithm
for correlation-aware service aggregation optimization in cloud manufacturing. Int J Adv Manuf
Tech 84(1-4):17-28. https://doi.org/10.1007/s00170-015-7738-2

46. Minella G, Ruiz R, Ciavotta M (2008) A review and evaluation of multiobjective algorithms for the
flowshop scheduling problem. Informs J Comput 20(3):451-471. https://doi.org/10.1287/
ijoc.1070.0258

 37

https://doi.org/10.1007/s
https://doi.org/
https://doi.org/10.1007/s10846-015-0289-9
https://doi.org/10.1007/%20s10846-012-9667-8
https://doi.org/10.1007/%20s10846-012-9667-8
https://doi.org/10.1080/00207540600943985
https://doi.org/10.1007/%20s11590-011-0344-9
https://doi.org/10.1007/%20s11590-011-0344-9
https://doi.org/10.1109/INISTA.2011.5946157
https://doi.org/%2010.5772/56754
https://doi.org/%2010.5772/56754
https://doi.org/10.1007/978-3-319-27119-4_23
https://doi.org/10.1007/s00170-015-7738-2
https://doi.org/10.1287/%20ijoc.1070.0258
https://doi.org/10.1287/%20ijoc.1070.0258

47. Tian GD, Zhou MC, Chu JW, Liu YM (2012) Probability evaluation models of product disassembly
cost subject to random removal time and different removal labor cost. IEEE T Autom Sci Eng
9(2):288-295. https://doi.org/10.1109/TASE.2011.2176489

48. Laili YJ, Tao F, Zhang L, Sarker BR (2012) A study of optimal allocation of computing resources in
cloud manufacturing systems. Int J Adv Manuf Tech 63(5-8): 671-690. https://doi.org/
10.1007/s00170-012-3939-0

49. Guo XW, Liu SX, Zhou MC, Tian GD (2016) Disassembly sequence optimization for large-scale
products with multiresource constraints using scatter search and petri nets. IEEE T Cybernetics
46(11):2435-2446. https://doi.org/10.1109/TCYB.2015.2478486

50. Jin, GQ, Li WD, Xia K (2013) Disassembly matrix for liquid crystal displays televisions. Proc CIRP
11:357-362. https://doi.org/10.1016/j.procir.2013.07.015

51. Jin GQ, Li WD, Wang S, Gao SM (2015) A systematic selective disassembly approach for Waste
Electrical and Electronic Equipment with case study on liquid crystal display televisions. P I Mech
Eng B-J Eng special issue:1-18. https://doi.org/10.1177/0954405415575476

52. Pham QT, Pham DT, Castellani M (2012) A modified bees algorithm and a statistics-based method
for tuning its parameters. P I Mech Eng I-J Sys 226(3):287-301. https://doi.org/10.1177/
0959651811422759

53. Zhang XY, Tian Y, Cheng R, Jin YC (2015) An efficient approach to nondominated sorting for
evolutionary multiobjective optimization. IEEE T Evolut Comput 19(2):201-213. https://doi.org/
10.1109/TEVC.2014.2308305

54. Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE T Evolut Comput 6(2):182-197. http://doi.org/10.1109/4235.996017

55. Roy PC, Islam MM, Deb K (2016) Best Order Sort: A new algorithm to non-dominated sorting for
evolutionary multi-objective optimization. In Proceedings of 2016 on Genetic and Evolutionary
Computation Conference Companion, Colorado, USA, 20-24 July 2016, pp 1113-1120.
http://doi.org/10.1145/2908961.2931684

56. Igor S (2017) CNC Camera box #ARIADNE. https://grabcad.com/library/cnc-camera-box-ariadne-1.
Accessed 14 September 2017

57. KUKA (2017) KUKA LBR linear axis. https://www.kuka.com/en-de/products/robot-systems/
robot-periphery/linear-units/lbr-linear-axis. Accessed 01 January 2017

58. Mathworks (2014) R2014b release highlights. https://www.mathworks.com/products/new_products/
release2014b.html. Accessed 01 January 2014

59. Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da FVG (2003) Performance assessment of
multiobjective optimizers: An analysis and review. IEEE T Evolut Comput 7(2):117-132. https://
doi.org/10.1109/TEVC.2003.810758

60. Okabe T, Jin Y, Sendhoff B (2003) A critical survey of performance indices for multi-objective
optimisation. In Proceedings of 2003 Congress on IEEE on Evolutionary Computation, Canberra,
Australia, 8-12 December 2003, pp 878-885. https://doi.org/10.1109/CEC.2003.1299759

61. Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—a
comparative case study. In Proceedings of 1998 International Conference on Parallel Problem
Solving from Nature, Amsterdam, Netherlands, 27-30 September 1998, pp 292-301.
https://doi.org/10.1007/BFb0056872

62. Beume N, Fonseca CM, López-Ibáñez M, Paquete L, Vahrenhold J (2009) On the complexity of
computing the hypervolume indicator. IEEE T Evolut Comput 13(5):1075-1082. https://doi.org/
10.1109/TEVC.2009.2015575

 38

https://doi.org/10.1109/TASE.2011.2176489
https://doi.org/10.1109/TCYB.2015.2478486
https://doi.org/10.1016/j.procir.2013.07.015
https://doi.org/10.1177/0954405415575476
https://doi.org/10.1177/%200959651811422759
https://doi.org/10.1177/%200959651811422759
https://doi.org/%2010.1109/TEVC.2014.2308305
https://doi.org/%2010.1109/TEVC.2014.2308305
http://doi.org/10.1109/4235.996017
http://doi.org/10.1145/2908961.2931684
https://grabcad.com/library/cnc-camera-box-ariadne-1.%20Accessed%2014%20September%202017
https://grabcad.com/library/cnc-camera-box-ariadne-1.%20Accessed%2014%20September%202017
https://www.kuka.com/en-de/products/robot-systems/
https://www.mathworks.com/products/new_products/%20release2014b.html
https://www.mathworks.com/products/new_products/%20release2014b.html
https://doi.org/10.1109/CEC.2003.1299759
https://doi.org/10.1007/BFb0056872
https://doi.org/%2010.1109/TEVC.2009.2015575
https://doi.org/%2010.1109/TEVC.2009.2015575

63. Akbari R, Hedayatzadeh R, Ziarati K, Hassanizadeh, B (2012). A multi-objective artificial bee
colony algorithm. Swarm Evol Comput 2: 39-52. https://doi.org/10.1016/j.swevo.2011.08.001

64. Yang CL, Kuo RJ, Chien CH, Quyen NTP (2015) Non-dominated sorting genetic algorithm using
fuzzy membership chromosome for categorical data clustering. Appl Soft Comput 30:113-122.
https://doi.org/10.1016/j.asoc.2015.01.031

65. Akpınar S, Bayhan GM (2011) A hybrid genetic algorithm for mixed model assembly line balancing
problem with parallel workstations and zoning constraints. Eng Appl Artif Intel 24(3):449-457.
https://doi.org/10.1016/j.engappai.2010.08.006

 39

https://doi.org/10.1016/j.swevo.2011.08.001
https://doi.org/10.1016/j.asoc.2015.01.031
https://doi.org/10.1016/j.engappai.2010.08.006

	Email: jyliu@whut.edu.cn; zudezhou@whut.edu.cn; d.t.pham@bham.ac.uk; xuwenjun@whut.edu.cn; junweiyan@whut.edu.cn; liuaiming@cbmi.com.cn; c.ji@bham.ac.uk; quanliu@whut.edu.cn
	1. Introduction
	2. Notation
	3. Disassembly model for EoLP
	3.1 Space interference matrix
	3.2 Interference matrix analysis

	4. Multi-objective robotic disassembly line balancing problem
	4.1 Assumptions
	4.2 Multi-objective formulation

	5. Bees algorithm
	5.1 The basic BA
	5.2 IMODBA
	5.2.1 Representation of Bees
	5.2.2 Initialization of IMODBA
	5.2.3 Pareto optimal solution
	5.2.4 Pareto sorting
	5.2.5 Crowding-distance computation
	5.2.6 Neighborhood search strategy

	6. Experiments and Results
	6.1 Case studies
	6.2 Performance analysis

	7. Conclusion
	References

