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Consumer interest in environmentally friendly goods has introduced concepts and ideas about the
manufacturing/consumption of local products as an alternative to large-scale centralized manufacturing.
It has been proposed that small-scale production will reduce the CO2 emissions associated with trans-
portation and strengthen local economies at the same time. However, these small-scale local manu-
facture systems might not necessarily lead to a more sustainable production system. In this paper, “the
honeycomb model” is proposed as a computational framework for the simulation and optimization of
manufacturing and distribution of fast moving consumer goods (FMCG) from an integrated techno-
economic and environmental point of view. The manufacturing of tomato paste has been chosen as
representative case study, and a systematic evaluation of optimum manufacturing configurations under
different scenarios has been performed. The results of this analysis indicate that a shift towards a
favorable distributed manufacturing is obtained in systems with large product demand and/or located at
regions of big size, while centralization of production is favorable in systems with relatively small
product demand and/or located at regions of modest size. In addition, centralized manufacturing is
favored when there are significant differences in the carbon footprint of the raw materials depending on
their origin. Overall, the honeycomb model can be used as a method to assess financial and environ-
mental sustainability impact of alternative manufacturing scenarios for different FMCG's.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The Fast-Moving Consumer Goods (FMCG) sector, which in-
cludes household and personal care products as well as processed
foods and beverages, is one of themost important industrial sectors
worldwide. During past decades, FMCG manufacturers based their
competiveness on achieving economies of scale e i.e. expanding
their production to reducemanufacturing costs. This has resulted in
centralized production systems (Brodt et al., 2013), in which large
areas are served by a single facility and complex, expensive supply
chains. However, current environmental and climate change
chester.ac.uk (L. Angeles-
Theodoropoulos), e.lopez-
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policies (e.g. Europe, 2020 Strategy, UK Climate Change Act, COP21
Climate Agreement), together with consumers’ demand for more
eco-friendly products (Kremer et al., 2016; Edwards-Jones et al.,
2008; Weber and Matthews, 2008) have exposed the sustainabil-
ity limitations e economic, social and environmental e of such
large supply chains (Hutchins and Sutherland, 2008; Cholette and
Venkat, 2009).

In this context, distributed or local supply chains have emerged
as an alternative (Srai et al., 2016) to reduce transport costs and
GHG emissions and to satisfy consumers' eco-demands. The
increasing interest for decentralized production systems is based
on a series of factors such as flexibility in the manufacturing of
other products, adaptation to local preferences/demands (O'Hara
and Stagl, 2001; Erenguc et al., 1999), better local communication
between customer and producer and faster decision-making
(Garrehy, 2014), customer perception of freshness in the case of
food products and the reduction of the inventory of immediate
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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consumption goods (Akkerman et al., 2010; Erenguc et al., 1999).
De-centralization has been proposed as a viable solution specif-
ically for biomanufacturing. (Clomburg et al., 2017). Within the
wider context of manufacturing there has been an anticipation that
distributed systems will deliver significant environmental benefits
(Kohtala, 2015; Kohtala and Hyysalo, 2015), which are expected to
be more relevant in developing markets (Rauch et al., 2016).

The supply chain for distributed manufacturing faces, however,
several challenges to be sustainable and competitive versus a
centralized production chain. A larger capital investment is
required for multiple processing plants and energy use (Mundler
and Rumpus, 2012), inventory and production scheduling are less
efficient than for centralized production (Erenguc et al., 1999).
Strategies to improve the competitiveness of distributed
manufacturing range from reducing dependence on non-
renewable resources (Ziesemer, 2007); improvement of logistic
networks (Coley et al., 2009) and the technology used for small
production capacities (O'Hara and Stagl, 2001); reduction of (food)
product waste due to the expiration date or quality lost (Hsu et al.,
2007); reduction of the number of intermediaries in the supply
chain (O'Hara and Stagl, 2001) and transport distances. Digital
technologies, e.g. cloud manufacturing services, have been also
proposed to explore the opportunities offered from a decentralized
manufacturing system (Zhang et al., 2017).

In this context, the food chain represents a good example of this
shift in the manufacture paradigm. Questions like if the resource
efficiency can be improved by a local (and distributed)
manufacturing of the product or how to assess theways inwhich an
environmentally and socially sustainable food system is also
economically feasible have become priority for food chain actors
(Ingram et al., 2013). It should also be noted that a large value of the
“food miles” (Smith et al., 2005) has been associated with a greater
environmental impact for transporting rawmaterials/products, and
thus with a higher carbon footprint of the final product. Food
transport represents 180 ktons of CO2 emissions in UK (Smith et al.,
2005), and 89.9 million tons in USA (Weber and Matthews, 2008).
The transport of vegetable/fruit products represents 18% of the total
GHG emissions of the supply chain (DFAT). Besides, according to
Smith et al. (2005) the cost associated to social and environmental
impacts of the food transportation in UK (e.g. traffic congestion, air
pollution, accidents) is equivalent to 12.2 billion USD (9 billion GBP)
per year. On the consumers’ side, this has been reflected on the
general perception that “locally produced” foods present higher
quality, are environmentally friendly and also contribute to
strengthen the local communities (Paloviita, 2010; Edward-Jones
et al., 2008), which has led, for example, to the recent rise of craft
beers (Kleban and Nickerson, 2011).

The environmental impact of a food (FMCG) supply chain de-
pends on several factors and minimizing food miles e i.e. shorten
the supply chain - might not always go hand in hand with the
minimization of the chain's total CO2 emissions (Smith et al., 2005;
Jones, 2002). The economic and environmental assessment of the
food chains is a multi-factor problem that includes the local supply
capacity of raw material(s), local energy and water resources, fuel
efficiency of the transportation means, the size of the
manufacturing plant(s), labor costs and the taxation regime of the
region (Cottee et al., 2016; Brodt et al., 2013; Cachon, 2011). For food
supply chains in particular, the environmental analysis of Weber
and Matthews (2008) suggests increasing the vegetables and fruit
proportion in the consumer diet to reduce the amount of food
groups that have greater GHG, e.g. red meat and dairy. Further
optimization of a (food) supply chain can consider aspects such as
price uncertainty (Hodder and Dincer, 1986), operational cost
(Haug, 1992), social indicators (Mota et al., 2015; Veldhuizen et al.,
2015) efficiency in scheduling process and the environmental
impact (Guillen-Gosalbez and Grossmann, 2009). See Aslam et al.
(2011) and Meixell and Gargeya (2005) for a relevant review.

The decision to move from centralized to distributed/local
manufacture is thus complex, and requires a systematic scenario
evaluation. This paper suggests one possible approach, by con-
structing a mathematical framework through which different
supply chain scenarios can be assessed hence offering a two-fold
contribution:

(i) an economic and environmental assessment of the impact of
a local/distributed production vs. a centralized production on
the design of a food supply chain (as example of FMCG
chain),

(ii) an analysis of the main factors (e.g. size of the geographical
region, product demand, or supply capacity) that can shift an
optimum configuration from a centralized production to a
more distributed one.

To that purpose, a platform e called the Honeycomb model-has
been developed to evaluate different chain scenarios in FMCG
systems with specified product demand and raw material capacity.
The Honeycomb model has been constructed to incorporate a mixed
integer non-linear optimization problem (MINLP), where the
objective is tominimize processing and transportation costs as well
as CO2 emissions from the farm gate to the distribution center.

In this work, a vegetable-based product, i.e. tomato paste, has
been chosen as a case study, as it constitutes the most commonly
used FMCG food product (Soufiyan et al., 2016) - only in the USA,
one of the biggest tomato producers (FAOSTATS), the tomato paste
consumption is 1.07 million tons per year (Morning Star, 2016),
while the world production and consumption of tomato products is
about 41 million tons per year (Agrotypos, 2016). The evaluation of
different chain scenarios presented here will define those cases in
which a decentralized tomato paste production becomes a favor-
able manufacturing system. This approach becomes particularly
relevant in the context of EU initiatives promoting the development
of short supply chains and of local food systems (Aug�ere-Granier,
2016). In addition, this case study gives an illustrative example on
how evaluating the carbon footprint of the raw material locally - or
non-locally - sourced can affect supply chain design.

The paper is organized as follows. The formulation of the Hon-
eycomb model is presented in Section 2, where the tomato paste
process and the basis for the economic and environmental analysis
are also defined. Section 3 presents the optimum chain configura-
tions for the different scenarios evaluated and discusses the effect
of the main factors affecting the supply chain. Finally, conclusions
are presented in Section 4. In the Supplementary Material all the
model assumptions as well as complete details on the calculations
of the process costs and CO2 emissions are collected.

2. Methods

Food supply chains consist of several stages of production, dis-
tribution and storage from the raw material producers to the final
consumer. Three actors can be involved in the distribution (and
storage) of food products to the consumer: wholesaler, retailer, and
foodservice, or the products can be directly sold to the consumer
(Akkerman et al., 2010).

Here, a farm gate to distribution center approach has been
adopted for the economic and environmental analysis of the to-
mato paste supply chain. It has been assumed that the rawmaterial
e i.e. tomatoes - is grown in farms from where it is transported to
the processing plants. In these plants, the tomato paste (TP) is
processed and canned, then is subsequently transported to the
wholesaler using a single distribution step, i.e. the product is
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delivered either to the logistic center or (as assumed in this paper)
directly to regional Distribution Centers (DC). The optimum
manufacturing configuration that minimizes the cost and envi-
ronmental impact of the product includes the number, location and
capacity of the factories, and is computed using the honeycomb
model for each scenario analyzed. A description of the tomato paste
process and the honeycomb model are given in the following
sections.
2.1. Tomato paste process

The steps involved in the manufacture of tomato paste
(Karakaya and Ozilgen, 2011; Saravacos and Kostaropoulos, 2002)
are illustrated in Fig. 1. The process starts with the reception of the
tomatoes from the farms. The tomatoes are washed by a water
spray system while transported on rollers to the sorting table,
where the unripe or spoiled tomatoes are discarded. After this, the
ripe and clean tomatoes are crushed, and the pulp is heated up to
93 �C in a process called hot break. The hot pulp is then passed to a
pulper or refiner, where the seeds and skin are separated from the
juice. The tomato juicee initially with a concentration of 6 %w/w of
total solid (equivalent to 6 �Brix) - is concentrated in a three-effect
evaporator up to a concentration of 32%w/w (32 �Brix). The tomato
paste obtained from the evaporator is sterilized (105e106 �C for
90s, and then the paste is cooled down to 35e38 �C) prior to being
canned in pre-sterilized steel cans (Maroulis and Saravacos, 2008).
TP cans of 0.41 kg are packaged in cardboard boxes with capacity
for 24 TP cans. All other process assumptions are summarized in
Appendix A of the Supplementary material.

The tomato paste process described above was simulated using
SuperPro Designer (see process flow diagram in Fig. 1). The mass
and energy balances as well as the equipment sizing obtained from
the simulation were used for the economic and environmental
analysis of the supply chain and its further optimization. Product
losses were neglected, while a cost for the treatment of process
water was included in the economic analysis, which is presented in
Appendix B of the Supplementary material.
Fig. 1. Tomato paste production flowsheet developed in SuperPro Designer. The hot water s
(not showed in the diagram), and then re-used for washing step.
2.2. Economic analysis

The operational cost per kg of TP (Cop) is estimated using process
simulation (implemented in the platform SuperPro) as a function of
the raw material required, energy consumption, equipment as well
as capital and transport costs. Since the TP production can be car-
ried out in one or several manufacturing plants, Cop can be
expressed as:

Cop ¼

P
i
Cac;iP
i
Pi

(1)

where Cac;i is the total annualized cost (in USD yr�1), and Pi is the
annual tomato paste production (in kgTP yr�1) of plant i. Cac;i is
given by the sum of the manufacturing cost (CM), the transport cost
(CT ), and the annualized capital cost (CC), whose values are
computed following the methodology described in (Maroulis and
Saravacos, 2008) and summarized in Appendix B, as well as the
parameters and assumptions used.

The plant investment was computed using the Lang method
(Peters et al., 2004), while the equipment cost was estimated as a
function of its size/capacity using the Guthrie equation (Maroulis
and Saravacos, 2008) (see Appendix B).

2.3. Quantification of CO2 emissions

The total CO2 emissions per kg of TP produced (CO2T ) can be
decomposed into three main components: agriculture, process and
transportation:

CO2T ¼ CO2agriculture þ CO2process þ CO2transport (2)

As in the cost estimation, the quantification of the CO2 emissions
is based on the materials/energy required for the tomato paste
production, and the CO2 emissions factors related to each activity
and/or the production of the raw materials/utilities. The equations
and parameters used for the estimation of each CO2 component can
be found in Appendix C.
treams leaving the evaporator and the pasteurizer are cooled down in a cooling tower
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2.4. Honeycomb model

The design of a manufacturing supply chain is a multi-factor
problem. In this section, a computational framework - the Honey-
comb model - is presented as a tool to assess those relevant sce-
narios that can influence the sustainability and profitability of the
supply chain.

In the Honeycomb model the geographic region to analyze - of
area AT - is divided into a number of hexagonal cells, Ncell (Fig. 2A),
of size Acell, whose ons acellbcell, and ccell (Fig. 2B) can be estimated
as:

acell ¼ ccell ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2Acell

3
ffiffiffi
3

p
s

(3)

bcell ¼
ffiffiffi
3

p
acell
2

(4)

To show the potential of the honeycombmodel, but maintaining
simplicity, in the case presented in this work, we have considered
Ncell¼ 10. This number of cells is big enough to study and compare a
centralized production vs. a distributed one.

The processing plants i, farms j and distribution centers k can be
located in any of the sides and/or center of the hexagons, i.e. po-
sitions pa, pb, …, pm in Fig. 2A. The distance between two facilities
(i.e.Dj;i orDi;k) is given by the length of the connecting straight-line.
Here, we assume that the transporting truck from point 1 to point 2
makes the round trip, e.g. a truck that transports tomatoes from j to
i will travel 2Dj;i. However, the food miles are estimated as the
average distance (in a single trip) travelled by the rawmaterial plus
the final product, this is:

FoodMiles ¼

P
j

P
i
Dj;inj;i þ

P
k

P
i
Di;kni;kP

i
Pi

(5)

where nj;i and ni;k are the number trucks required to transport to-
matoes and TP cans, respectively, between two facilities.

Once the location of the facilities is defined, then the optimum
supply chain configuration can be computed by solving an opti-
mization problem aiming to minimize the cost and the CO2 emis-
sions of the whole process. For that, the Honeycomb model is
employed to formulate a single-objective MINLP optimization
problem of the form:
Fig. 2. Honeycomb model. (A) The system is divided in 10 hexagonal regions. (B) Di-
mensions of the each hexagonal region (acellbcell , and ccell) and the possible position
(pa, pb, …, pm) of the farm, processing plant, and distribution center facilities.
minimize Capparent ¼ Cop þ PriceCO2
CO2T

s:t
(6)

Zi$Pi ¼
X
k

Xi;k (7)

Zi$Pi ¼
X
j

Yi;j

,
YieldT=TP;j (8)

dDCk ¼
X
i

Xi;k (9)

Fj �
X
i

Yi;j (10)

X
i

Zi � NoP (11)

0 � Pi �
X
k

dDCk (12)

0 � Xi;k �
X
k

dDCk (13)

0 � Yi;j � Fj (14)

Zi ¼ 0 when Pi ¼ 0
Zi ¼ 1 otherwise

(15)

where the objective function Capparent (Eq. (6)) is the apparent
product cost, and is given by the sum of the operational cost per kg
of product and a penalty price (PriceCO2

) per kg of CO2 produced
during the manufacturing and distribution of 1 kg of product. The
variables Cop and CO2T in Eq. (6) are computed using the equations
given in Section 2.2 and Section 2.3, respectively.

The inputs of the model are: the price of the raw materials and
utilities, the transport cost, the CO2 emissions factors, the rate of
material and utilities required in the process, as well as some re-
strictions of the system, such as the distance between the facilities
(which are proportional to the size of the system AT ), the demand of
product by each DC, and the availability of the raw material.

The capacity of each plant (Pi, in Pi kgTP yr�1) must satisfy totally
or partially the demand of product of all/some distribution centers
which is represented by Eq. (7), where the amount of TP produced
in plant i must equate the TP sent to every DC k, i.e.Xi;k (in kgTP
yr�1). Similarly, Eq. (8) indicates that the fresh tomatoes required
by plant i can by supplied for one or more farms j, where Yi;j (in
kgTomato yr�1) is the amount of tomatoes sent to plant i from farm j.
The ratio between the kg of tomatoes required to produce 1 kg of TP
(Eq. (8)) is represented by the yield YieldT=Tp;j (in kgTomato kgTP�1), this
parameter is related to the quality of the raw material, in this case
the �Brix of the tomatoes from farm j (this value varies between 4
and 6 �Brix). The higher the tomato's �Brix, the fewer tomatoes will
be required to produce TP with 32 �Brix. In this work, we assume
that all farms produce tomatoes of 6 �Brix, and the YieldT=Tp;j value
is computed from the process simulation results.

Eq. (9) indicates that the amount of product from all plants i
(Xi;k) must satisfy the demand of DC k (dDCk, in kgTP yr�1), in this
case we assume the total product demand is satisfied, but there is
not an over production of TP, thus Eq. (9) is an equality constraint.
On the other hand, the inequality constraint of Eq. (10) restricts the



Fig. 3. Apparent cost as a function of the number of plants in the honeycomb system.
The optimum manufacturing configurations that minimize the apparent cost capparent
are computed for two different cases PriceCO2

¼ 0, where Capparent ¼ Cop (diamond
line), and PriceCO2

/∞, where Capparent ¼ CO2T (square line).
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availability of rawmaterials, i.e. the amount Yi;j supplied to all plant
i from farm j should not exceed themaximum capacity of each farm
j (Fj, in kgTomato yr�1).

The integer variable Zi in Eqs. (7), (8) and (11) indicates the
presence of plant i (Zi ¼ 1), i.e. when Pi >0, or its absence (Zi ¼ 0)
when Pi ¼ 0. Eq. (11) restricts the total number of plants in the
system to a maximum value Nop given by the user as a parameter.
The maximum number of plants Nop allows investigating different
scenarios in a centralized or distributed production.

In this formulation, Pi, Xi;k, Yi;j are continuous variables that can
take any value within the limits given by the user. In this example,
we set the lower limit of these three variables to zero, while for the
variables Pi and Xi;k the upper limit (Eqs. (12) and (13), respec-
tively), was set equal to the total product demand of the whole
system (i.e.

P
k
dDCk, herewe assume that dDCk is the same for all DC

k), while the upper limit for variable Yi;j is equal to the maximum
farm capacity Fj (Eq. (14)). Finally, the integer variable Zi can take a
value zero or one (Eq. (15)).

The optimization problem given by Eq. (6)e(15) was imple-
mented and solved in Matlab using the MINLPsolver BNB20
(Kuipers, 1998; available in www.mathworks.com/matlabcentral).
The Matlab program was linked with the process simulation in
SuperPro to facilitate the multiple function evaluations required
during the optimization.

Due to the nonlinear nature of the problem posed by the hon-
eycomb model, the search of the global minimum is a computa-
tionally expensive task. As with other nonlinear solvers, the
efficiency of BNB20 depends on the initial guess chosen.

Thus, in order to reduce the computational time required to
solve the optimization problem and increase the probability to find
the global optimum, we propose a linearized optimization problem
(LP) whose solution will be used as initial guess for the honeycomb
model. See Appendix D for the LP problem used in the estimation of
the initial guess.

3. Results and discussion

In this section, the Honeycomb model is used to analyze
different scenarios and their impact on the optimum design of the
manufacturing supply chain. As base case, we assume a geographic
region of similar size to the USA, i.e. 10 hexagonal cells (Fig. 2A) of
size Acell ¼ 914759 km2, where the sources of raw material (i.e. the
farms) are located at positions pa, pc, pe, pg, pi, and pk of each
hexagon (Fig. 2B). Here we assume a uniform farm production in
order to analyze the potential of a distributed tomato paste
manufacturing, despite the fact that the production capacity of
tomato depends on the geographic region, so for example California
produces 95% of the processed tomatoes in USA (Morning Star,
2016). The maximum production capacity of each farm is set to
28 619 tonTomato yr�1. A total of 10 DCs are considered and located at
position pm, each one with a demand of 10 754 tonTP yr�1, which
corresponds to 10% of the USA tomato paste production in 2015
(Morning Star, 2016). Processing plants can be built at every side of
the hexagon, i.e. positions pb, pd, pf, ph, pj, and pl (Fig. 2A), whose
capacities and final position will be computed by solving Eq. 6‒15.
These assumptions hold for all simulations unless otherwise stated.

3.1. Effect of the penalty price for CO2 emissions

The price per kg of CO2 produced, PriceCO2
, has been defined as a

penalty function that determines the importance given to the
reduction of CO2 emissions over the cost reduction. Therefore,
when PriceCO2

/0 the second term of Eq. (6) disappears and the
honeycomb model will predict the supply chain configuration with
the lowest operational cost, while for PriceCO2

/∞ the first term of
Eq. (6) is negligible compared to the second term, and then the
configuration computed will be the one with the lowest CO2
emissions.

Fig. 3 shows the operational cost (diamond line, computed using
PriceCO2

¼ 0) and the CO2 emissions (square line, computed using
PriceCO2

/∞) obtained for different numbers of processing plants in
the system. The minimum operational cost is found when the
number of plants is 6, while the minimum CO2 emissions corre-
sponds to 16 plants (see Fig. 3). As results indicate, centralization
results in lower costs, while a more distributed production favors a
reduction of the CO2 emissions since the transportation distances
are shorter.

When no transportation is considered - i.e. when only the
agriculture and process components of the CO2 emissions are taken
into account - manufacturing in a plant with a capacity of 1000
tonTomato h�1 results in CO2 savings of only 0.052 kgCO2 kgTP�1

compared to the emissions of a 1.1 tonTomato h�1 plant. These sav-
ings are related mainly to the process component, and show that
the reduction of the CO2 emissions per kg of product does not
benefit particularly from the economies of scale in this particular
case. However, higher CO2 savings can be obtained in food pro-
cesses where the energy efficiency of the equipment (per kg of
product) is significantly improved at higher capacities.

According to the European Energy Exchange, the cost per kg of
CO2 produced is 0.0056 USD. However, the use of PriceCO2

¼ 0.0056
USD kgCO2�1 results in the prediction of an optimumnumber of plants
equal to 6, with no reduction of the CO2 emissions compared to the
case PriceCO2

¼ 0. The use of an appropriate PriceCO2
value would

allow finding the optimum configuration (with a number of plants
between 6 and 16) that effectively reduces CO2 emissions compared
to those produced in a system with 6 plants (i.e. 138174.4 ton
year�1, see Fig. 3), but without a significant increase in the opera-
tional cost (estimated as 1.87 USD kgTP�1 for 6 plants). To find such
value of PriceCO2

, a sensitivity analysis was performed, showing that
the optimum number of plants approaches to 16 when the penalty
cost PriceCO2

increases (see Fig. 4). In particular, a PriceCO2
value of

1.008 USD kg�1 shifts the optimum number of plants to 9, where
the CO2 emissions are reduced by 10% compared to those estimated
for the case PriceCO2

¼ 0 (for 6 plants) of Fig. 4 (it should also be
noted that the supply chain configurationwith 16 plants represents
a CO2 reduction of 15%), while the product cost increases 0.085 USD
kgTP�1. In order to effectively reduce the carbon footprint of the
product, we use PriceCO2

¼ 1.008 USD kg�1 for the subsequent
simulations. This PriceCO2

value agrees with the results found by
Cachon (2012), which indicate that the minimization of cost and

http://www.mathworks.com/matlabcentral


Fig. 4. Optimum number of plants in the honeycomb system computed for different
PriceCO2

values.

Fig. 5. Sub-division of a hexagonal cell of the scheme S1 (in blue) in 4 hexagons (in
black) for the scenario S2 (A), and in 9 hexagons (in black) for S3 (C). The triangles
represent the alternative positions where the processing plants can be located. (B) The
honeycomb system for S2, the cells are in black color; the base case scenario S1 is
indicated in blue color as a reference. The processing plants can be only allocated in
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CO2 emissions in a supply system of retail stores and the consumer
homes can be achieved only with penalty cost PriceCO2

values above
1 USD kg�1.
shaded black cells. The circles and squares indicate the locations of the farms and DC,
respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
3.2. Effect of the number of alternative plant locations in the

honeycomb system

One of the factors that can affect the optimum design of a food
chain is the number of alternative locations for the processing
plants, these possible locations are given by the user to the hon-
eycomb model. In our base case study, a maximum of 41 plants can
be located in the honeycomb system (specifically at positions pb, pd,
pf, ph, pj, and pl of each hexagonal cell, see Fig. 2A). The number of
alternative plants can be easily increased by increasing the number
of hexagonal cells (Ncell) in which the system is divided. In this
section, we analyze the influence of Ncell on the optimum
manufacturing configuration. For this, we assume that each hex-
agonal cell of our base case denoted as S1, with Ncell ¼ 10 (blue
hexagon in Fig. 5A), is subdivided in 4 regular hexagons (black
hexagons in Fig. 5A), thus the original system is now divided in
Ncell ¼ 46, called scenario S2 (Fig. 5B). In order to make fair com-
parisons among differentNcell, the farms and distribution centers
are located in the same positions as in scenario S1 (indicated by
blue hexagons in Fig. 5B), while the plants can be located on the
sides of each black cell (see triangles in Fig. 5A) in the dashed region
indicated in Fig. 5B. Therefore, the number of farms and DCs is the
same for both S1 and S2 scenarios, but the maximum number of
plants for S1 is 41 plants, while for S2 is 131 plants. Similarly, a third
scenario S3withNcell ¼ 123, is defined by subdividing each hexagon
of our base case S1 in 9 hexagonal cells (black hexagons in Fig. 5C),
thus the maximum number of plants in S3 is equal to 281.

The comparison of the optimum number of plants computed for
three scenarios (9 plants for S1, 9 plants for S2, and 10 plants for S3)
indicates that for this case study the optimum configuration is
bounded and is not dependent on Ncell. Hence, there is no tendency
towards fully distributed manufacturing, for higher values of Ncell.
However, since the system is divided inmore sub-regions, there are
more alternative positions where the processing plants can be
located, and these alternatives might be closer to the farms/DC,
which would reduce the transportation distances. The results show
that the food miles estimated decrease as Ncell increase (Fig. 6C),
thus the transport cost and CO2 emissions decrease too (Fig. 6A and
B, respectively). Nevertheless, the solution of the optimization
problem (Eq. 6‒15) for S2 (computational time: 2.29 h) and S3
(4.01 h) become computationally more expensive than for S1
(1.06 h), since the number of variables (Pi, Yi;j, Xi;k, and Zi) increases
with the number of cells.

The purpose of this work is to identify the factors that can shift a
centralized manufacturing to a more distributed one. Therefore,
since Ncell has a negligible effect on the optimum number of pro-
cessing plants, and looking to economize computing resources, the
scenario S1 will remain the base case in the following sections.

3.3. Effect of total area AT

Another parameter that could affect the design of the supply
chain is the total area or size of the region analyzed (AT ). The results
indicate that the apparent cost Capparent , given by Eq. (6), increases
with AT (see square line in Fig. 7C), although there is not a linear
relation between the optimum number of plants predicted and this
area (Fig. 7A). For regions with AT � 4.5� 106 km2 (e.g. half of the
size of USA) a centralized production (or a less distributed pro-
duction) is more favorable despite the fact that the food miles
(Fig. 7B) as well as the cost and CO2 emissions related to the
transport (cross line Fig. 7C and square line Fig. 7D, respectively)
increase in a non-linear way. The shift to more distributed
manufacturing is more favorable for larger countries or regions.

The impact of the travelled distances on the cost and on the CO2
emissions, which are proportional to the size of the system, be-
comes more pronounced when other transportation means have to
be used, e.g. airplanes are used for short life products (Edwards-
Jones et al., 2008), or refrigerated transport for the case of ice
cream. In these cases, high transportation cost and its corre-
sponding CO2 emissions could be key factors in the design of the
supply chain.

3.4. Effect of raw material availability

The availability of raw material is a critical factor for the design
and optimization of any process. In this case study we have
assumed that all the farms have the same capacity and, although
this is not necessarily true for large geographic regions where the
climate conditions are not uniform, like USA (e.g. the weather in



Fig. 6. Comparison of the CO2 emissions (A), cost (B) and food miles (C) predicted for S1, S2, and S3.

Fig. 7. Sensitivity analysis of the optimummanufacturing configuration of the honeycomb system to the total area of region analyzed. (A) Optimum number of plants. The names of
some countries are added as size references of the region analyzed. (B) Food miles (C) Cost breakdown. (D) CO2 emissions breakdown.
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California would favor the cultivation of tomato more than in other
colder regions), the results suggest that the local availability of raw
material and its further local consumption/processing is not
necessarily the most economical and environmentally friendly
alternative as one would expect of a fully distributed manufacture
system.

Fig. 8A and C shows the optimum number of plants and the
apparent cost estimated for different farm capacities. The results
reveal a trend towards centralized production for high farm
capacities, i.e. when the raw material demand of a processing plant
can be satisfied by nearby farms. However, this centralization of the
production converges to the same optimum number of plants equal
to 6 computed when only the operational cost was minimized, i.e.
the PriceCO2

¼ 0 case. It is interesting that in the transition zone
from a more distributed production to a more centralized one (i.e.
for farm capacities between 19 080 and 57 816 ton yr�1), the
transportation component of both cost (cross line Fig. 8C) and CO2
(square line Fig. 8D) increases up to a maximum and then



Fig. 8. Sensitivity analysis of the optimum manufacturing configuration of the honeycomb system to the tomato production capacity of each farm. (A) Optimum number of plants.
(B) Food miles. (C) Cost breakdown. (D) CO2 emissions breakdown.
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decreases. This behavior is a consequence of reducing the number
of plants, which increases the distances travelled from the plant to
DC as reflected in the increments of the corresponding food miles
(Fig. 8B). Nevertheless, these increments in transportation are
balanced by the cost and CO2 savings obtained by processing the
tomato paste in plants with higher capacities, i.e. savings due to
economies of scale.

3.5. Effect of product demand

Regarding the influence of the demand of the final product on
the design of the supply chain, Fig. 9C shows that the apparent cost
(square line) decreases when the demand grows, revealing the ef-
fect of the economies of scale on the system: the plant capacities
must increase to satisfy the consumers’ demand. On the other hand,
the cost and CO2 emissions associated to the transport (cross line
Fig. 9C, and square line in Fig. 9D, respectively) increase since a
greater number of trucks will be necessary to both supply the raw
material required to satisfy the increasing demand and deliver the
finished product.

In addition, by increasing the demand of the tomato paste the
number of processing plants is also increased (Fig. 9A), favoring a
more distributed manufacturing. For limited product demand
levels, i.e. 1439.8 tonTP yr�1 per DC - approx. 10% of the total UK
demand of tomato paste according to Local Nexus Network; -, the
centralization of the production is the most feasible option, with a
predicted optimum number of plants of 2 (see Fig. 9A). Thus, the co-
operativization of the producers could be more advantageous for
systems with similar characteristics.

3.6. Effect of the carbon footprint of the raw materials

Another important parameter in agro-based products is the CO2
emitted during the production of the raw materials. Since the
cultivation of tomato can be carried out in open fields or in
greenhouses, the CO2 associated to the agriculture (eTomato;j) can
vary by several orders of magnitude. As example, the tomato
cultivation in the open fields in California releases 0.0743 kg of CO2
per kg of tomato (Herold, 2003; Albright and de Villiers, 2008),
while the greenhouse cultivation in UK causes 3.1155 kg of CO2
(Herold, 2003; Albright and de Villiers, 2008). In order to simulate a
systemwhere the farms have different sowing practices, in the next
example we assume that tomatoes from the farms located in the
corners of the hexagons of the dashed region indicated in Fig. 10,
have CO2 parameters eTomato;j ¼ 0:0743kgCO2 kgTomato

�1 , while the
tomatoes from the other farms in the system have
eTomato;j ¼ 0:0734Fagr (in kgCO2 kgTomato

�1 ). Here Fagr is a dimension-
less multiplying factor that determines the agriculture CO2
emissions.

As shown in Fig. 11C, the apparent cost (square line) increases
almost linearly with the Fagrvalue. This is because the tomatoes
from the upper region farms have a higher carbon footprint pro-
portional to Fagr , which is reflected in the agriculture component of
the CO2 (dotted line Fig. 11C). However, for Fagr>1 the optimum



Fig. 9. Sensitivity analysis of the optimum manufacturing configuration of the honeycomb system to the TP demand of each distribution center. (A) Optimum number of plants. (B)
Food miles (C) Cost breakdown. (D) CO2 emissions breakdown.

Fig. 10. Comparison of the optimum manufacturing designs for a honeycomb system
where the farms have different eTomato;j . The Agriculture CO2 emissions factor for farms
located in the dashed region is equal to 0.0743 kgCO2 kgTomato

�1 , while farms in the upper
regions (not dashed) have eTomato;j ¼ 0:0743Fagr . Circles indicate the predicted location
of the processing plants for Fagr >1, while crosses indicated the position of the plants
for our base case, i.e. Fagr ¼ 1.
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configuration design shifted from9 processing plants to 7 (Fig.11A).
A comparison of the location of these plants computed for the
Fagr ¼ 1 design (9 plants, crosses in Fig. 10) and the Fagr >1 design
(7 plants, circles in Fig.10) shows a higher concentration of plants in
the bottom regionwhere they can be supplied by farms with lower
eTomato;j (dashed region in Fig. 10). The capacity of the farms located
in the dashed zone is not enough to meet the whole system de-
mand of raw material, and thus the total production is not
centralized in this zone.

As shown in Fig. 11B, when the carbon footprint of the raw
material is not uniform, i.e. the Fagr;1 >1 case, the food miles
computed for the optimum manufacturing configuration increase
compared to the case Fagr ¼ 1. This indicates that the optimum
supply chain design is not always the one that minimizes the dis-
tance travelled by the product/raw materials, but it is the one that
minimizes the total CO2 emissions (including the CO2 agriculture
component). Therefore, the food miles concept is not necessarily a
univocal parameter to assess the sustainability of the supply chain.

On the other hand, due to the symmetric nature of the honey-
comb system, two optimummanufacturing configurations could be
equivalent. For example, the cost and CO2 emissions estimated for a
centralized production where the processing plant is in position pa
of region R1, i.e. R1pa (see Fig. 2), would be the same that a
centralized production in R10pd. However, this possible symmetry
in the results is broken when more features of the system are
considered, e.g. different carbon footprint of the raw materials
depending of the region of origin, as seen in the cases where
Fagr >1, where the optimum configuration comprises more pro-
cessing plants in regions with lower eTomato;j (shaded region in
Fig. 10).



Fig. 11. Sensitivity analysis of the optimum manufacturing configuration of the honeycomb system to the agriculture CO2 emissions factor. The multiplying factor Fagr determines
the agriculture CO2 emissions factor, i.e. eTomato;j ¼ 0:0743Fagr . (A) Optimum number of plants. (B) Food miles (C) Cost breakdown. (D) CO2 emissions breakdown.
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3.7. Alternative distribution scenarios

Previous examples considered the distribution of the tomato
paste from the processing plant to regional distribution centers,
which is the most realistic scenario since this allows large super-
markets chains to have more control on their products and the way
these will be distributed to local DC and stores (Hallsworth and
Wong, 2012). Nevertheless, this common practice may cause an
increase of the CO2 emissions and transportation costs as the dis-
tance travelled from plant/DCregional/DClocal might be
significantly higher than the direct distribution from the plant to
the closest local distribution centers.

In this section, we analyze two scenarios (i) the tomato paste
(TP) is sent directly from the plant to the local DCs, and (ii) the TP is
sent first from the plant to regional DCs, and from there to the local
DCs. In addition to the assumptions made in the previous sections,
we include here 51 local DCs to the system. The local DCs are
located at every side and center of each hexagonal cell, i.e. positions
pb, pd, pf, ph, pj, pl, and pm in Fig. 2B. The tomato paste demand of
each DClocal is equal to 2109 tonTP yr�1.

A comparison of the optimum number of plants predicted for
both scenarios indicates that the DClocal case (i.e. the direct de-
livery to local DCs) favors a more distributed manufacturing (11
plants), while the DCregional case (i.e. the collection of the product
in regional DCs and its further re-distribution to local DCs) tends
more towards the centralization of the production. This centrali-
zation of the production is reflected in a reduction of the
manufacturing cost for the DCregional case compared to the
DClocal case (Fig. 12B), but it is also associated to an increment in
the transportation cost for the DCregional case, so that the total
operational costs for both scenarios are similar (Fig. 12B).

Nevertheless, the DClocal scenario represents savings in the CO2
emissions for 16 883 tonCO2 yr�1 (Fig. 12A), which are mainly due to
the decrease of the food miles of the product (i.e. the distances
travelled by the product up to the final destination, Fig. 12C) and to
the corresponding reduction of the transportation component of
the total CO2 (Fig. 12A).

These results suggest that when the aim is to boost the local
economies, the combination of strategies such as the direct delivery
to local shops/DCs along with the co-operativization of local pro-
ducers could increase the economic and environmental feasibility
of a highly distributed manufacturing. In these cases, the systems
can take advantages of the economy of scale not only during the
processing but also in the distribution bymaking a better use of the
capacity and efficiency of the trucks. In addition, in this case a single
product was tested. When multiple products are examined a
distributed manufacturing system would allow for flexible pro-
duction of a larger number of variants.



Fig. 12. Comparison of the CO2 emissions (A), cost (B) and food miles (C) predicted for DClocal and DCregional cases.
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4. Conclusions

The decision to move from centralized to distributed manufac-
ture is a complex one. In this work, a modelling and optimization
platform e the Honeycomb model e has been presented to (i)
assess the economic and environmental impact of a local and
distributed production vs. a centralized production on the design of
a food supply chain and (ii) to analyze the role of the scale economy
in the estimation of an optimum configuration design.

A series of processing and distribution scenarios for the
manufacturing of tomato paste have been assessed as a function of
both economic and environmental factors using the proposed
Honeycomb model, which was established to be a flexible and
robust tool to predict optimum supply chain configurations, and to
determine the number, capacity and location of the processing
plants, the selection of the farm(s) supplier for each plant, as well as
the amount of product that has to be sent to the different DCs by
each plant in the system.

The optimum configuration predicted by the honeycomb model
depends on environmental factors. The results indicate that an
effective reduction of CO2 emissions associated to the process can
be only achieved using high values of PriceCO2

. For the tomato paste
case study a PriceCO2

value of 1.008 USD kgCO2�1 allows the reduction
10% of CO2. Results also suggest a trend towards a more distributed
manufacturing for geographical regions larger than 450000 km2 as
well as for systems with a limited local availability of the raw
material and/or with a high demand of the product. In the specific
case of agro-based products, as is the case presented here for the
manufacturing of tomato paste, the cultivation in greenhouses al-
lows extending the availability of seasonal products; nevertheless,
the carbon footprint of the raw material can increase significantly.
The differences in the CO2 emissions factors associated to raw
materials shift the optimum configuration to a more centralized
production.

Finally, two possible product distribution scenarios were
analyzed using the honeycomb model. The results indicate the
tendency to a more distributed manufacturing when the product is
directly distributed to local distribution centers compared to the
case where the product is sent to an intermediate and regional DC
before being delivered to local shops/DC.

Although the consumption of local products is not always the
cheapest or environmental friendly option, strategies such as the
union of several local producers in cooperatives where processing
and distribution facilities are shared can help to reduce the oper-
ational cost and the carbon footprint of local-produced goods,
making them more attractive for consumers and thus favoring the
local economies.
When the competitiveness of a product is based on price, as is
the case for tomato paste, manufacturing tends towards a central-
ized system to exploit economies of scale. However, the identifi-
cation of the possible scenarios that can shift the production to a
more distributed one can give valuable information in light of fair-
trade initiatives to favor local producers, increase the local
employment rate, and reduce waste.

In other cases, for example products that require refrigeration
(e.g. ice cream), perishable foods that are susceptible to damage
during transportation (e.g. fresh vegetables/fruit), or where local
demand requires highly customized products, the economic and
environmental profitability of a distributed manufacturing is more
evident. Further studies are required to analyze the factors and
scenarios with greater impact on the supply chain design of these
type products, for example transport temperature, different means
of transportation, multi-product processes, etc.
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