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Abstract

Aims: Glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP4) inhibitors improve glucose
tolerance by still incompletely understood mechanisms. Each class of antihyperglycemic drugs has also been proposed to
increase pancreatitis risk. Here, we compare systematically the effects of two widely-used GLP-1 analogues, liraglutide and
exendin-4, and the DPP4 inhibitor, sitagliptin, in the mouse.

Methods: C57BL6 mice were maintained for 131 days on a normal diet (ND) or a diet comprising 60% fat (HFD) before
measurements of fasting blood glucose and insulin, and intraperitoneal glucose tolerance. Beta- and alpha- cell volume, and
Reg3b immunoreactivity, were measured by immunohistochemical analysis of pancreatic slices.

Results: Whereas liraglutide (200 mg/kg) and exendin-4 (10 mg/kg) treatment reduced body weight and/or improved
glucose tolerance, sitagliptin (10 mg/kg) was without effect on either parameter. Liraglutide caused a sharp reduction in
beta-cell mass in both ND and HFD mice, whereas exendin-4 exerted no effect. By contrast, sitagliptin unmasked an action
of high fat diet to increase beta-cell mass. Reg3B positive area was augmented by all three agents in normal chow-fed mice,
whilst sitagliptin and exendin-4, but not liraglutide, affected this parameter in HFD animals. Correspondingly sitagliptin, but
not the GLP-1 analogues, increased circulating amylase levels in ND and HFD mice.

Conclusions: Liraglutide improves glucose tolerance in the mouse whilst exerting relatively modest effects on pancreatitis
risk. Conversely, exendin-4 and sitagliptin, at doses which exert, respectively, minor or no effects on metabolic parameters,
lead to signs of pancreatitis.
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Introduction

The incretin, glucagon-like peptide 1 (GLP-1), secreted after

meal ingestion from L-cells found primarily in the distal intestine

[1], promotes the secretion of insulin and somatostatin by

pancreatic beta- and delta- cells, respectively, and decreases

glucagon production from alpha-cells, as well as appetite and

gastric emptying Together with a suggested action on beta-cell

proliferation [2], and an absence of adverse effects such as weight

gain and hypoglycaemic episodes [3], GLP-1 is an ideal candidate

as a drug to treat type 2 diabetes (T2D)[4]. However, GLP-1 has a

short circulating half-life (,2 min) due to its rapid degradation by

dipeptidyl peptidase 4 (DPP-4), such that its therapeutic use

requires continuous administration or the engineering of GLP-1

mimetics with longer circulating life-times [5]. Consequently the

last decade has seen the development of two classes of GLP-1-

based drugs for T2D: GLP-1 receptor (GLP-1R) agonists that

mimic GLP-1 but are resistant to degradation by DPP-4, and

DPP-4 inhibitors.

Although an efficient drug class for the treatment of T2D [6],

recent data indicate that long-term administration of the GLP-1R

agonists and DPP4 inhibitors may be linked to an increased risk of

pancreatitis and pancreatic cancer [7–11]. The risk of pancreatic

cancer conferred by the usage of these anti-diabetic drugs is

difficult to assess as patients with a history of pancreatitis and

diabetes are in any case at increased risk of developing pancreatic

cancer [12,13]. Three commonly used agents are exenatide/
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exendin-4 and liraglutide, which are GLP-1 mimetics, and

sitagliptin, a DPP4 inhibitor.

The U.S. FDA issued a warning to healthcare professionals

about the possible increased risk of pancreatitis in T2D patients

taking sitagliptin following 88 cases of acute pancreatitis related

with sitagliptin use in 2009; pancreatitis was also associated with

exenatide use [14,15]. Subsequently, liraglutide, exendin-4 and

sitagliptin have all been variously associated with pancreatitis risk

in patients and rodent models [10,16–28] [29]. These results

raised concerns as chronic pancreatitis has been shown to increase

the risk of pancreatic cancer [26]. There is, nonetheless, a lack of

information from human pancreata; data from patients on long-

term treatment are not currently available, and the use of the

AERS to assess drug safety is arguably imperfect [9]. The evidence

for an association between GLP-1-based therapy and the

development of pancreatitis is intensified by the fact that all of

the developed agents which have been on the market long enough

have now been linked to cases of pancreatitis [17].

Although much has been published on the potential risk of

pancreatitis and pancreatic cancer from administration of GLP-1

mimetics, there have equally been studies which demonstrate no

effects on this parameter [30–38]. A recent study by Ellenbroek

and colleagues [39] demonstrated that mice administered liraglu-

tide prior to the start of a six-week long high fat diet regimen

remained normoglycaemic and exhibited decreased beta cell mass,

possibly due to improved insulin sensitivity. In total liraglutide’s

efficacy and safety have been investigated in more than 5000

patients through 20 clinical trials; in a number of these studies

markers of beta-cell function were also analysed leading to the

indication of improved beta-cell function [40,41], amongst other

potential beneficial effects [41–43]. The FDA and EMA exert

panels have also recently ruled that available data do not confirm

recent concerns over an increased risk for pancreatic side effects

with GLP-1-based diabetes therapies.

The aims of the present study were, therefore, to probe in a

mouse model of diet-induced glucose intolerance [44–46] the

propensity of the GLP-1 receptor agonists- liraglutide and

exendin-4- and the DPP4 inhibitor-sitagliptin- to cause signs of

pancreatitis, whilst comparing the action of each on weight gain,

glucose homeostasis and beta-cell mass.

Methods

Materials
All general chemicals and tissue culture reagents were

purchased from Sigma (Dorset, U.K.) or Invitrogen (Paisley,

U.K.), unless otherwise stated.

Animals
All in vivo procedures were approved by the U.K. Home Office

according to the Animals (Scientific Procedures) Act 1986 and

were performed at the Central Biomedical Service, Imperial

College, London, U.K. C57BL/6 male mice were purchased from

Charles River (U.K.). For high fat diet treatment, mice were

placed on a high fat diet at eight weeks of age for eight weeks (60%

[wt/wt] fat content; Research Diet, New Brunswick, NJ, USA).

Mice were housed at two to five animals per cage in a pathogen-

free facility with a 12-hour light-dark cycle. Animals were fed ad
libitum with a standard mouse chow diet (Research Diet, New

Brunswick, NJ) unless otherwise stated. Mice were culled by

cervical dislocation.

Intraperitoneal glucose tolerance test
Mice were fasted for 16 h, with water available ad libitum prior

to the test. Glucose tolerance tests were conducted at 09:00 on

each experimental day. Glucose tolerance was assessed by

intraperitoneal administration of glucose (1 g/kg).

Administration of GLP-1 mimetics
C57BL/6 mice (eight weeks old) were maintained on a normal

chow or high fat (60%; Lillico) diet for eight weeks prior to the

start of the injection regime. At 16 weeks of age, mice were

injected daily with saline, liraglutide (200 mg/kg [47]; Bachem,

Bubendorf, Switzerland), exendin-4 (10 mg/kg [27]; Polypeptide

Group SCI537 Strasbourg, France), or sitagliptin (10 mg/kg [48];

Sigma) at the start of the dark cycle.

Immunohistochemistry and widefield microscopy
Isolated pancreases were fixed in 10% buffered formalin and

embedded in paraffin wax within 24 h of removal. Head-to-tail

sections (5 mm lengthwise) were cut and incubated overnight at

37uC on superfrost slides. Slides were submerged sequentially in

Histoclear (Sigma) followed by decreasing concentrations of

industrial methylated spirits for removal of paraffin wax.

Permeabilised slices were blotted with primary antibodies against

insulin (DAKO, Cambridgeshire, U.K.), glucagon (Sigma) and

Reg3B (R&D Systems, Abingdon, U.K.) with antigen unmasking

using vector antigen unmasking solution (Vector Laboratories,

Peterborough, U.K.), and visualised with Alexa Fluor 488 or 568

secondary antibodies (Invitrogen). Specimens were mounted on

glass slides using Vectashield hard set with DAPI (Vector

Laboratories).

Images were captured on a Zeiss Axio Observer.Z1 Motorised

Inverted Widefield Microscope fitted with a Hamamatsu Flash 4.0

Camera using Plan-Apochromat 206/0.8 M27 air objective with

Colibri.2 LED illumination. Data acquisition was controlled by

Zeiss Zen Blue 2012 software configured at a bit depth of 16-bit

and binning mode 262.

Whole tissue tiled preview scans were obtained using an EC

Plan-Neofluar 106/0.3 Ph1 air objective with phase contrast. For

Reg3B analysis, a 20 point array was chosen at random with point

focusing achieved with the Plan-Apochromat 206/0.8 M27 air

objective using EGFP 488 filter as the reference channel for local

surface focusing.

Fluorescence quantification was achieved using Fiji [49].

Threshold measurements were taken for total tissue area using

particle size 200-infinity and fluorescence area using particle size

20-infinity for each of the 20 point arrays. Ratios were

subsequently calculated with an in-house macro for comparative

analyses between sample groups. We verified that our macro was

providing a measure of change in fluorescence through compar-

ison with manual scoring of the slides using an Nikon TS100-F

microscope fitted with a LED light source and appropriate filters

(Fig. S1; Nikon, London, U.K.). All image capture and analysis

were performed with the operator blinded to the identity of the

slides.

Measurement of plasma amylase, lipase and GLP-1
Blood (200 ml) was removed by cardiac puncture from mice

killed by cervical dislocation. Plasma was collected using high

speed (2000 g, 5 min at 4uC) centrifugation in heparin-coated

Microvette tubes containing EDTA (Sarstedt, Leicester, U.K.).

Plasma amylase and lipase levels were assessed using the lipase and

amylase assay kits from Abcam (Cambridge, U.K.). Plasma GLP-1

levels were assessed as previously described [45].

Effect of GLP-1 Mimetics & DPP4 Inhibitors in Hyperglycaemic Mouse

PLOS ONE | www.plosone.org 2 August 2014 | Volume 9 | Issue 8 | e104873



Figure 1. Liraglutide and exendin-4 are effective weight management drugs in high fat-fed C57BL/6 mice, but liraglutide is more
effective at improving glucose tolerance. The weight of male C57BL/6 mice was monitored on a weekly basis over a period of eight weeks
(white area) on high fat (HFD) or normal chow diet (ND), followed by 75 days (grey area) of daily intraperitoneal injections of saline, or a GLP-1
mimetic- liraglutide (panels A–C), exendin-4 (panels D–F), or sitagliptin (panels G–I). Intra-peritoneal glucose tolerance tests were performed after 75
days of treatment (B–C, E–F, H–I). Time courses (B, E, H) and the corresponding areas under the curve (C, F, I) are shown. p#0.001, ***; p#0.01, **,
n = 3–7 mice.
doi:10.1371/journal.pone.0104873.g001
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Histopathology
Slices from pancreases prepared as detailed under ‘Immunohis-

tochemistry and widefield microscopy’ were stained with eosin and

haemotoxylin and subjected to histopathological analysis. Quali-

tative analysis of the following parameters were performed-

endocrine islet size variation and inflammation; cytoplasmic

vacuole, nucleus size variation, necrolysis/autolysis, autolysis/

fibrosis, lobular inflammation, septal inflammation in exocrine

pancreas; peripancreatic fat inflammation.

Statistical analysis
Data are the means 6 S.E. for the number of observations

indicated. Statistical significance and differences between means

were assessed by Student’s t-test with Bonferroni correction for

multiple analyses as appropriate in Excel (Microsoft).

Results

Liraglutide and exendin-4 restrict weight gain, but
liraglutide is more effective at maintaining glucose
tolerance in high fat diet-fed mice

Administration of a high fat (60% fat) diet (HFD) led to marked

weight gain in mice as expected (Fig. 1A, B, C;). Correspondingly,

glucose tolerance was impaired, with an increase in the area under

the curve (AUC) of 56.864.9% (p#0.001, n = 16 per group) vs
mice maintained on a normal chow diet (Fig. S2). We chose doses

and administration routes of liraglutide, exendin-4 and sitagliptin

that were previously shown to be effective in mice [27,47,48].

Neither liraglutide, exendin-4, nor sitagliptin exerted any effect on

weight gain or glucose tolerance in mice maintained on a normal

chow diet (Fig. 1). Administration of liraglutide and exendin-4 led

to a 23.963.0% (p#0.01, n = 4 per group) and a 37.465.0% (p#

0.01, n = 3 per group), decrease in weight gain in mice on a high

fat diet over the course of the drug regimen, respectively (Fig. 1A,

B). Administration of liraglutide led to an improvement in glucose

tolerance in HFD mice at the end of the 75 days’ treatment period

(26.362.1% decrease in AUC vs mice high fat diet that had been

administered saline, p#0.01), such that glucose tolerance was

indistinguishable from that observed in mice maintained on a

normal diet (Fig. 1D, G). In our hands, neither exendin-4 nor

sitagliptin improved glucose tolerance in mice maintained on HFD

by the end of the treatment period (Fig. 1E–F, H–I).

Long term adminstration of liraglutide, exendin-4 and
sitagliptin exert differing effects on beta-cell mass but no
effect on alpha-cell mass

Pancreatic beta- and alpha-cell mass (Fig. 2A) were quantified

in pancreatic slices as described under Materials and Methods.

Administration of liraglutide markedly lowered beta-cell mass in

mice maintained on a normal chow diet (3969.8%, p#0.01, n = 3

per group) or high fat diet (62.264.5%, p#0.001, n = 4 per group)

vs control mice (Fig. 2B).Administration of exendin 4 had effect on

beta cell mass (Fig. 2C). Interestingly, whilst a HFD alone exerted

no effects on beta-cell mass in the absence of drug treatment,

administration of sitagliptin led to the unmasking of an action of

HFD to increase beta cell mass (40.6%, p#0.01, n = 4 per group),

when compared with mice treated with the drug on a normal

chow diet (Fig. 2D). No observable differences in alpha-cell mass

were found between any of the cohorts (Fig. 2E–G).

Long term administration of liraglutide, exendin-4 and
sitagliptin lead to increased Reg3b immunoreactivity

Administration of liraglutide, exendin-4 and sitagliptin led to

increased Reg3b immunoreactivity to differing extents in mouse

pancreata, and depending on diet (Fig. 3A–D). Thus, the increase

in Reg3b signal area associated with administration of liraglutide

to mice on a normal diet was 3.360.6- fold (p#0.001, n = 3 per

group) (Fig. 3B). Interestingly, administration of liraglutide did not

exacerbate the effects of high fat diet alone (Fig. 3B). Administra-

tion of exendin-4, on the other hand, led to a signal increase of

5.860.8-fold (p#0.001, n = 4 per group) in the Reg3b signal in

mice on high fat diet (Fig. 3C), as well as in ND animals.

Administration of sitagliptin to mice on normal diet resulted in a

3.960.9-fold increase in Reg3b signal (p#0.05, n = 3 per group),

and this increase was of 18.666.6-fold (p#0.01, n = 4 per group)

in mice on high fat diet (Fig. 3D).

Clinical measures of pancreatitis
There were no statistically significant changes in plasma

amylase activity in mice that were administered liraglutide or

exendin-4 vs mice administered saline (Fig. 3E). However,

administration of sitagliptin to animals on normal diet led to a

1.4-fold increase in amylase activity (p#0.01, n = 3 per group) and

a 1.3- fold increase in mice on a high fat diet (p#0.01, n = 4 per

group) (Fig. 3E).

There were no detectable differences in plasma lipase activity in

mice on a normal chow diet administered any of the three drugs

when compared to animals administered saline (Fig. 3F). Likewise,

there was no significant change in plasma lipase activity in mice

that were administered saline on a high fat diet vs normal diet

(Fig. 3F). Furthermore, administration of liraglutide and exendin-4

in combination with a high fat diet also failed to affect plasma

lipase activity. We observed no detectable changes in plasma lipase

activity in animals maintained on a normal chow diet and

administered any of the three drugs when compared to animals

administered saline (Fig. 3F).

Histopathological analysis revealed no significant differences in

pathological status of pancreatic slices from the different treatment

groups, with a potential indication of an increase in inflammatory

response in mice subjected to a high fat diet vs mice that have been

maintained on a normal chow diet (Fig. S3).

Discussion

Animal studies do not necessarily predict with certainty what

will happen in humans during similar treatment protocols [50].

Nonetheless, given the poor prognosis for patients diagnosed with

pancreatic cancer, and the lack of risk data from long term studies

of patients on these treatments, there is a need to examine the risk

of pancreatitis following long-term treatment with GLP-1 receptor

agonists in model systems. To circumvent some of the potential

problems involved with studying human disease risk in mouse

models, we have selected a model which reflects at least several key

Figure 2. Long term adminstration of exendin-4, liraglutide and sitagliptin exerts different effects on beta-cell mass but no effect
on alpha-cell mass. Representative images of pancreatic sections stained for insulin (green), glucagon (red) and nuclei (DAPI, blue) (A). Pancreatic
sections from mice treated with liraglutide (B, E), exendin-4 (C, F) and sitagliptin (D, G) were examined. Beta-cell mass (B, C, D), and alpha-cell mass (E,
F, G) were measured from whole section scans as described in ‘Materials and Methods’. p#0.001, ***; p#0.01, n = 3–7 mice.
doi:10.1371/journal.pone.0104873.g002
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elements of T2D in humans [44]. Importantly, we have

administered drugs to mice that already exhibit glucose dysho-

meostasis, in contrast to a recent study [39] whereby liraglutide

was administered prior to the start of the high fat diet regimen.

Of the three agents tested, liraglutide, at the dose tested here,

was overall the most effective at decreasing weight gain and

improving glucose tolerance by the end of the 75 days’ treatment

(Fig. 1). Interestingly, this change was accompanied by a decrease
in beta-cell mass in mice on both normal chow diet and high fat

diet (Fig. 2B). These data are consistent with a recent report

showing that mice administered liraglutide and maintained on a

high fat diet for six weeks, exhibited decreased beta-cell mass

possibly due to improved insulin sensitivity [39]. Interestingly,

mice on a high fat diet in the earlier study by Ellenbroek and

colleagues [39] remained normoglycaemic throughout the study,

since they were given liraglutide prior to starting the high fat diet

regime. More closely mimicking the use of the drug in man, our

mice were rendered hyperglycaemic prior to drug administration

and the drug regimen was longer than that reported in [39].

Suggesting these differences in protocol may be important [39], we

saw no changes in alpha-cell mass during liraglutide treatment in

the present studies. By contrast, neither exendin-4 nor sitagliptin

exerted any effect on beta-cell mass in the present study, albeit

under conditions here where neither drug exerted significant

effects on glucose homeostasis.

In this study we administered sitagliptin by intraperitoneal

injection as daily oral gavages were impractical and would mean

increasing the number of mice we needed to use per cohort, with

the associated ethical issues. Administration by admixture was

prohibitively costly. To assess the efficacy of adminstration of

sitagliptin by intraperitoneal injection, we measured plasma GLP-

1 levels one hour after co-injection of glucose (1 g/kg) and

sitagliptin (10 mg/kg), and demonstrated that this was effective at

raising plasma GLP-1 content, vs saline control (Fig. S1C).

An important prompt for the present investigation was the

controversy that exists over whether long term administration of

GLP-1 mimetics may lead to pancreatitis and pancreatic cancer.

One confounding factor may be the propensity for rodent models

to develop spontaneous pancreatic lesions [51]. Our observations

indicate that rodents may indeed manifest signs of spontaneous

pancreatic lesions but that some of the signals for pancreatic

disease are exaggerated by exposure to the GLP-1 mimetics and

DDP 4 inhibitor drug class (Fig. 3, Fig. S1). We have also observed

that prolonged exposure to high fat diet has a tendency to lead to

increased Reg3B immunoreactivity (Fig. 3B–D) even though there

were no signs of overt clinical pancreatitis. Clinical pancreatitis is

indicated by increases in the activity of both plasma amylase and

lipase. Although we saw increased pancreatic content of Reg3B, a

marker of pancreatitis, by immunohistochemical analysis, with all

three GLP-1 mimetics used in this study (Fig.3A–D), we did not

observe increases in plasma amylase or lipase with administration

of liraglutide and exendin-4 in conjunction with the high fat diet

(Fig. 3E-F). Administration of sitagliptin led to an increase in

amylase activity when administered to mice on both normal chow

diet and high fat diet (Fig. 3E). Histopathological analysis did not

indicate an increased signal for pancreatitis from drug treatment

(Fig. S3). The apparent discrepancy from the four methods of

assessing pancreatitis may be explained by the relative sensitivities

of the methods. Histopathology is a subjective method of analysis

of the pancreas and, whilst we think it is a valuable assessment

tool, we wanted 1) a more quantitative way for assessing

pancreatitis, and 2) more than one method to assess pancreatitis.

We therefore chose to also assess pancreatitis by measuring

pancreatic Reg3b content, and plasma amylase and lipase content.

Reg3b is an indicator of tissue regeneration and is upregulated

when pancreata are damaged e.g. by pancreatitis. Thus, a change

in the content of this protein in the pancreas can be a measure for

mild pancreatitis, where pancreatic tissue is available for analysis.

Assessment of changes in plasma amylase and lipase in mild

pancreatitis is difficult as these can be cleared by the renal system;

this is problematic for early diagnosis of pancreatitis, but is the

only measure available in the clinic where pancreatic material is

not available for analysis.

Thus, our current data do not suggest a clinical lesion, as

defined in the human setting. However, as we observed an effect of

sitagliptin to increase two out of our three measures for

pancreatitis, longer term studies which follow larger cohorts of

mice until the end of their natural life may shed more light on the

risk for pancreatitis and pancreatic cancer in this model.

Supporting Information

Figure S1 Mice were rendered glucose intolerant fol-
lowing 8 weeks on a high fat diet. Time course (A) and area

under the curve (B) of 16 week old male C57BL/6 mice on high

fat diet (HFD) and normal diet (ND) after 8 weeks on differential

diet. (C) Plasma was extracted from mice 1 h following

intraperitoneal injection of glucose (1 g/kg) and saline or

sitagliptin (10 mg/kg), and plasma GLP-1 was measured as

described in [45].

(TIF)

Figure S2 Manual verification of macro calculations.
The percentage of Reg3b positive areas out of 10 (manual; A) and

20 (macro; B) randomly chosen fields from pancreatic sections

from mice treated with saline or exendin-4 were scored by visual

examination. In the manual verification, a field was considered

positive when there was at least one positive signal within the

optical field regardless of area of signal. ND, normal chow diet;

HFD, high fat diet.

(TIF)

Figure S3 Histopathology report. Analyses were carried out

as described in ‘Materials and Methods’. Numbers in brackets

indicate number of positive observations by the total number of

observations made.

(TIF)
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Figure 3. C57BL/6 mice do not display clinical signs of pancreatitis following 75 days’ treatment with liraglutide, exendin-4, or
sitagliptin. Reg3b immunoreactivity was assessed in pancreatic sections from mice treated with saline (Ai), liraglutide (B), exendin-4 (Aii, C) and
sitagliptin (D), and normalised to Reg3b area observed in pancreata from saline treated mice, as described in ‘Materials and Methods’. Plasma amylase
(E) and lipase (F) levels were measured after 75 days treatment with saline, liraglutide, exendin-4 or sitagliptin. ND, normal chow diet; HFD, high fat
diet. p#0.05, *; p#0.01, **, n = 3–7 mice.
doi:10.1371/journal.pone.0104873.g003
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