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Abstract  26 

 27 

The well-developed Achilles tendon in humans is generally interpreted as an adaptation for mechanical 28 

energy storage and reuse during cyclic locomotion. All other extant great apes have a short tendon 29 

and long-fibered triceps surae, which is thought to be beneficial for locomotion in a complex arboreal 30 

habitat as this morphology enables a large range of motion. Surprisingly, highly arboreal gibbons show 31 

a more human-like triceps surae with a long Achilles tendon. Evidence for a spring-like function similar 32 

to humans is not conclusive.  33 

We revisit and integrate our anatomical and biomechanical data to calculate the energy that can be 34 

recovered from the recoiling Achilles tendon during ankle plantar flexion in bipedal gibbons. Only 7.5% 35 

of the required external positive work in a stride can come from tendon recoil, yet it is delivered at an 36 

instant when the whole body energy level drops. Consequently, an additional similar amount of 37 

mechanical energy must simultaneously dissipate elsewhere in the system.   Altogether, this challenges 38 

the concept of an energy-saving function in the gibbon’s Achilles tendon.  39 

Cercopithecids, sister group of the apes, also have a human-like triceps surae. Therefore, a well-40 

developed Achilles tendon, present in the last common ‘Cercopithecoidea-Hominoidea’ ancestor, 41 

seems plausible. If so, the gibbon’s anatomy represents an evolutionary relict (‘no harm – no benefit’), 42 

and the large Achilles tendon is not the premised key-adaptation in humans (although the spring-like 43 

function may have further improved during evolution).  Moreover, the triceps surae anatomy of extant 44 

non-human great apes must be a convergence, related to muscle control and range of motion. This 45 

perspective accords with the suggestions put forward in the literature that the last common hominoid 46 

ancestor was not necessarily great-ape-like, but might have been more similar to the small-bodied 47 

catarrhines. 48 

49 



State of the art 50 

 51 

When looking at the gross morphology of the triceps surae in the extant great apes1, the difference 52 

between humans and the other species is conspicuous (Fig1).  In humans, the bellies of the 53 

gastrocnemius muscle are short-fibered and pennate, and insert together with the soleus via a well-54 

developed Achilles tendon onto the calcaneus (e.g. Frey, 1913; Swindler and Wood, 1973; Standring, 55 

2016).  In contrast, in non-human great apes, an Achilles tendon is externally barely visible and the 56 

bellies of the gastrocnemius muscle are extended with a more parallel orientation of the long muscle 57 

fibres (e.g. Frey, 1913; Hanna and Schmitt, 2011; Swindler and Wood, 1973; Thorpe et al, 1999; 58 

Vereecke et al., 2005a; Myatt et al, 2011).  These contrasting morphologies correlate with differences 59 

in locomotor repertoire: while orangutans, gorillas, chimpanzees and bonobos share a wide range of, 60 

often arboreal, locomotor behaviours such as orthograde (i.e. upright trunk) suspension and 61 

clambering, quadrupedalism, vertical climbing  and hand-assisted bipedalism (see Thorpe and 62 

Crompton, 2006 and Hunt, 2016 for reviews), modern humans are primarily terrestrial habitual bipeds.   63 

The well-developed human’s Achilles tendon is considered to be an adaptation for energy-efficient 64 

cyclic  locomotion and is assumed to have originated at some point after 3 million years (Myr) ago in 65 

the genus Homo (Bramble and Lieberman, 2004).  The tendon is stretched and loaded with strain 66 

energy during initial dorsiflexion (decreasing ankle angle) of the stance phase and recoils during the 67 

plantar flexion (increasing ankle angle) later in stance to power the foot push-off.  As such, the Achilles 68 

tendon is a component of the spring element in the SLIP-mechanism (Spring Loaded Inverted 69 

Pendulum; Full and Koditschek, 1999; Geyer et al., 2006) that is optimally functioning during running: 70 

the kinetic and potential energy that must be extracted from the system at the whole body level early 71 

in stance (the so-called negative external work) is converted - at least partly - to strain energy in the 72 

spring element and this is recycled to power part of the subsequent push off (e.g. Alexander, 2003; 73 

Bertram, 2016). In humans, at a running speed of 4.5 ms-1, 35% of the required external positive work 74 

per stride can thus be recovered from the recoil of the Achilles tendon (e.g.  Alexander, 1991, 2003). 75 

The morphology of the non-human great apes, on the other hand, is generally considered to represent 76 

the ancestral state (Bramble and Lieberman, 2004), being beneficial when moving about in an arboreal 77 

environment. Movement patterns are less cyclic and less uniform and the long-fibered muscles 78 

facilitate muscular control over a large range of motion, which is essential to deal efficiently with the 79 

high 3-dimensional complexity of the habitat and to respond to the compliance of the substrate (Myatt 80 

et al., 2011; Preuschoft et al., 1992; Thorpe et al., 1999).    81 

Remarkably, given their phylogenetic position and their largely arboreal lifestyle, the gibbon’s triceps 82 

surae has a more human-like appearance (Fig1).  There is a long and well-developed Achilles tendon, 83 

firmly attaching onto the heel bone, and the muscle bellies of the gastrocnemius are short-fibered and 84 

pennate (Frey, 1913; Vereecke et al., 2005a).  Questioning the adaptive meaning of this morphology 85 

in the primarily brachiating lesser apes seems essential to understand the evolution of locomotor 86 

diversity in the apes. 87 

Because of the high resemblance between the gibbon and human Achilles tendon, it is tempting to 88 

search for an explanation for gibbons that follows a similar line of thought to that assumed for the 89 

human Achilles tendon.  When on the ground to cross gaps between trees that are too large to cross 90 

arboreally, or when moving on large tree branches, gibbons most often use a bipedal gait (Vereecke 91 

et al., 2006a; Baldwin and Teleki, 1976; Fleagle, 1976; Gittins, 1983; Sati and Alfred, 2002).  Despite 92 

                                                           
1 Here, orangutans, gorillas, chimpanzees, bonobos and humans are considered the extant great apes (i.e. 
extant Hominidae). 



the presence of a double support phase (i.e. both feet on the ground simultaneously; there is no aerial 93 

phase in the bipedal cycle), this gait must be classified as ‘grounded running’ (cf. Vereecke et al., 94 

2006b,c) as is also found for terrestrial locomotion in birds (e.g. Andrada et al., 2013, 2015): at the 95 

whole body level, kinetic and potential energy fluctuations accord to the dynamics of running (i.e. in-96 

phase decrease and subsequent increase of kinetic and potential energy in each single step; Vereecke 97 

et al., 2006b, Vereecke & Aerts, 2008).  As such, the SLIP-mechanism might be functional.  Moreover, 98 

the safety factor of the Achilles tendon (i.e. tendon strength over tendon loading) appears, together 99 

with that of the patella tendon, to be the lowest of all the hind limb muscles in the gibbon (Vereecke 100 

et al., 2005a; Channon et al., 2009; Vereecke and Channon, 2013). A low (but safe) safety factor is 101 

required for functionally significant energy storage and recoil.  Furthermore, the ratio of the tendon 102 

length over the effective muscle fascicle length (i.e. accounting for pennation angle) is rather high for 103 

the triceps surae (Vereecke et al., 2005a; Channon et al., 2009; Vereecke & Channon, 2013).  Such 104 

muscle-tendon morphology can be expected if the tendon needs to do the work.  One may also look 105 

at this from a slightly different perspective.  Channon et al. (2009) presented the relationship between 106 

the physiological cross-sectional area (PCSA; measure for potential maximal load) of the limb muscles 107 

and their fascicle length (measure for the potential shortening), thus representing a sort of concentric 108 

work space, as it expresses the potential maximal load against potential shortening.  Muscle-tendon-109 

complexes that are part of the spring-element of the SLIP-mechanism should combine a high PCSA or 110 

force output with short fibres, enabling the tendon to do most of the concentric work.  Surprisingly, all 111 

plantar flexors occupy a rather ‘unspecialized’ region in the concentric work space where small PCSA 112 

and short fibres are combined (see Channon et al., 2009). In this respect, gibbons appear to be no 113 

different from the non-human great apes.        114 

 115 

The role of the tendon revisited 116 

The evidence provided above for the gibbon’s Achilles tendon working as energy-saving device during 117 

‘grounded’ running is indirect.  Moreover, its identification as ‘unspecialized’ in the muscle-tendon 118 

workspace could be interpreted as a counter-indication for this role and former analyses (Vereecke et 119 

al., 2006b; Vereecke and Aerts, 2008) were also unable to categorically demonstrate an energy-saving 120 

role during grounded running. Here we take a novel approach to resolve this debate. The amount of 121 

strain energy that is stored in vivo in the tendon of the white-handed gibbon (Hylobates lar) during 122 

walking steps at the onset of plantar flexion, and that can thus potentially be recovered via recoil, is 123 

calculated and compared with the mechanical work input needed at the whole body level (the so-124 

called positive external work) to complete a walking cycle (i.e. stride = left + right step).  In order to do 125 

so, the kinematic, dynamic, material property and anatomical data collected by Vereecke et al. 126 

(2005a,b, 2006a,b,c), Vereecke and Aerts (2008), Channon et al. (2009, 2010b) and Vereecke and 127 

Channon (2013)  will be combined in a new synthesis. (A short synopsis of the Materials and Methods 128 

of these papers is included as supplementary material). 129 

When the Centre Of Pressure [COP; instantaneous position of the point of application of the resultant 130 

Ground Reaction Force (GRF) at the plantar surface of the foot] is known throughout the ground 131 

contact phase, the moment of the GRF with respect to the ankle joint can be determined quite 132 

accurately as a function of stance time by multiplying at any instant the GRF with the perpendicular 133 

distance from the joint centre to the GRF (Fig2A) 2.  This moment (dashed curve) is presented together 134 

with the ankle joint kinematics (thin curve) as a function of normalized stance time in Fig2B.  For the 135 

                                                           
2 Inertial effects can safely be neglected in this account, given the small mass (1.2% of total body mass) and the 
low accelerations of the slender foot segments (cf. Vereecke et al., 2006b; Vereecke and Aerts, 2008). 



larger part of stance (about 79%), the ankle joint dorsiflexes and only during the last 21% of stance, 136 

does it plantar flex again, to power the foot push-off.  At the onset of plantar flexion, the (minimal) 137 

ankle joint angle reaches 103° and the in vivo moment of the GRF that tends to dorsiflex the joint 138 

equals 2.60 Nm (see Fig2B).   139 

At any instant in the stride, the moment of the GRF with respect to the ankle must be balanced by the 140 

muscle-tendon-systems that cross the joint. It is therefore possible to estimate the in vivo tensile force 141 

acting along the Achilles tendon at the onset of ankle plantar flexion, provided that the moment arm 142 

of the Achilles tendon (i.e. perpendicular distance from the joint centre to the tendon; Fig2A) at the 143 

coinciding joint angle (103°) is known 3,4.  Muscle moment arms were accurately determined by 144 

Channon et al. (2010b).  For an ankle joint of 103°, the moment arm of the Achilles tendon in Hylobates 145 

lar recalculates to 1.48 cm. Consequently, the in vivo tensile force along the tendon at the onset of 146 

ankle plantar flexion equals 175.67 N [i.e. 2.60 Nm/(1.48 cm 10-2)].   147 

Cyclic tensile load-deformation tests on the Achilles tendon were carried out by Vereecke and Channon 148 

(2013).  The tendon’s behaviour conforms to that of the text book examples (e.g. Alexander, 2003): 149 

apart from a toe-region at low loads, the load-deformation relationship is rather linear at higher 150 

loading; at recoil, a hysteresis of on average 13.5% (mean + SD = 3.4%; n=14) is observed (i.e. difference 151 

between loading and unloading energy). The slope of the linear loading part gives the stiffness, which 152 

is on average 99.6 Nmm-1 (mean + SD = 42.7 Nmm-1; n=14). Since the tensile force divided by the 153 

stiffness equals the extension of the tendon, the in vivo stretch of the Achilles tendon at the onset of 154 

the ankle plantar flexion amounts to 1.76 mm (i.e. 175.67 N/99.6 Nmm-1).  155 

Finally, the amount of strain energy that is stored in the Achilles tendon at the onset of ankle plantar 156 

flexion (and which is available to power the plantar flexion) is represented by the area under the load-157 

deformation curve.  Because of the largely linear behaviour when loaded, this area is given by (175.67 158 

N x 1.76 mm 10-3)/2 which equals 0.15 J.  159 

At the whole-body level, the positive work needed to complete a stride amounts on average to 3.56 J 160 

(Vereecke et al., 2006b)5. Taking the 13.5% hysteresis into account, 0.26 J [i.e. (0.15 J left + 0.15 J right) 161 

x (1-0.135)] of this can theoretically be recovered from the recoiling left and right Achilles tendons 162 

during the push-off of the feet.  This amounts to merely 7.5% of the required external positive work 163 

per stride. This amount can directly be compared with the 35% mentioned above for humans (but see 164 

also 6 ).  More importantly, however, plantar flexion seems to come at the wrong instant.  To be 165 

                                                           
3 In this approach is assumed that the balancing activity is taken entirely by the triceps surae, hence solely 
acting along the Achilles tendon.  As such, the estimate for the tensile force along the tendon at the onset of 
ankle plantar flexion represents a maximal estimate, as co-contraction of the digital flexors would result in a 
reduction of the Achilles tendon stress.    
4 It should be noted that co-contraction of the dorsiflexors (which could lead to higher tensile stress in the 
Achilles tendon) at that instant in stance is highly unlikely.    
5 This must be considered as a minimuml estimated for the required positive work input, as this concerns the 
external work only (i.e. whole body level; movements of the Body Centre Of Mass or BCOM).  Swinging the 
limbs with respect to the BCOM can represent a considerable extra cost (see for instance Marsh et al., 2004). 
6 Similar approaches on human running (4.5 ms-1) show 35% of the external positive work (mechanical energy) 
comes from elastic recoil of the Achilles tendon during the second half of the ground contact phase in each 
cycle; i.e. energy stored during the first half of stance (Ker et al., 1987, Alexander, 1991, 2003). This is probably 
even a conservative estimate.  Lai et al. (2014) show that at comparable running speeds, energy recovery from 
the triceps surae tendon can amount to more than 50J per step (which is about 140% of what was determined 
from the former ex-vivo experiments; see Lai et al., 2014 and references therein). Clearly, the eccentric-
concentric work of the triceps surae during running steps will still require metabolic energy, even when the 
entire strain cycle of the muscle tendon unit (MTU) is taken by the tendon.  Cross-bridge cycling is needed to 
prevent extension of the muscle belly and enable loading of the tendon (e.g.  Fletcher and MacIntosh, 2015).  



effective, tendon recoil should happen when the mechanical whole body energy level increases (i.e. 166 

mechanical energy is added to the system).  However, most often (step-to-step variability is observed) 167 

plantar flexion just occurs when, at the whole body level, mechanical energy must be extracted from 168 

the system (i.e. negative work must be performed; Fig2B).  Consequently, Achilles tendon recoil in 169 

plantar flexion during ground contact (which means that mechanical energy is added to the system) 170 

could eventually come at the extra cost for energy dissipation by eccentric muscle contraction. 171 

Moreover, the foot is only partially plantar flexed at the end of stance when the joint torque is zero 172 

again (Fig2B). This means that either the recoil energy is dissipated by extending the triceps surae 173 

muscle belly during that final stance phase or, because of the biarticular arrangement of the 174 

gastrocnemius, that energy is transferred to the knee to assist further active knee flexion observed 175 

final in stance (see Vereecke et al., 2006b)7.            176 

If not for energy storage and recoil during grounded running locomotion, what could the explanation 177 

of the well-developed Achilles tendon in gibbons be? Clearly, other, even rare behaviours may entail 178 

selective pressure and morphological adaptation.  Gibbons also engage, for instance, in bipedal and 179 

tripedal gallops and a sort of half bound (crutching gallop) (cf. Vereecke et al., 2006a), and show 180 

excellent leaping performance.  The potential use of tendon recoil for energy recovery (while galloping) 181 

or power amplification (for leaping) cannot be excluded, but biomechanical results presented by 182 

Channon et al. (2010a, 2011a,b) do not support this for leaping.  183 

Here, we propose an alternative perspective. Available information from the literature and our own 184 
observations suggest that the Achilles tendon is also well-developed and firmly attaching to the heel 185 
bone in extant Cercopithecoidea (e.g. Frey, 1913; Swindler and Wood, 1973; own dissections on 186 
Theropithecus gelada (gelada baboon), Papio anubis (olive baboon), Macaca maura (Moor 187 
macaque), Macaca mulatta (rhesus monkey), Semnopithecus entellus (Hanuman langur), Colobus 188 
guereza kikuyensis (mantled guerza), Colobus spec., Trachypithecus francoisi (François’ leaf monkey); 189 
see supplementary material and Fig1).  It seems therefore conceivable that this morphological 190 
character was also present in the basal ancestor of this superfamily, hence also in the basal 191 
representative of the sister taxon, the Hominoidea (Fig1). Is it plausible that the Achilles tendon is 192 
retained as a relict in the branch leading to the Hylobatidae (Fig1)? 193 
 194 
If selection acted predominantly on the principal locomotor mode in gibbons, i.e. on brachiation (e.g. 195 

Bertram 2004; Bertram & Chang, 2001; Bertram et al., 1999; Chang et al., 1997, 2000; Fleagle, 1976; 196 

Michilsens et al., 2011, 2012; Preuschoft & Demes, 1984; Usherwood & Bertram, 2003; Usherwood et 197 

al., 2003), adaptations can be expected primarily at the level of the forelimbs. During brachiation, 198 

hindlimb movements are potentially useful to modulate whole body rotational inertia and to avoid 199 

hitting lower lying branches, a role which, most likely, did not imply important adaptive modifications 200 

of the lower hind limb muscles. As such, it can be hypothesized that the triceps surae, with its long 201 

tendon, was not under selective pressure (no harm, no benefit) and could keep its ancestral 202 

appearance during hylobatid evolution.  203 

 204 

                                                           
For this purpose, short-fibred (pennate) bellies are the best option: these can deliver the required force at a 
minimal metabolic cost.  At the MTU-level, in humans, up to 75% of the positive work output comes from the 
tendon (e.g. Hof et al., 2002; Lai et al., 2014).  Given an efficiency of 0.2 – 0.25 for concentric work in muscle 
(Woledge et al., 1985), similar MTU stress-strain cycles for ‘long-fibred – short tendon’ triceps surae muscle 
would become very expensive. 
7 It should be noted that this conclusion refers to the role of the Achilles tendon during plantar flexion of the 
foot only.  It may well be that other muscle-tendon systems (for instance the digital flexors or the knee 
extensors) do act as functional energy-saving mechanisms. 



Consequence for the evolution of the great apes 205 

If the above hypothesis is supported, then the short-fibred gastrocnemius muscle with a long Achilles 206 
tendon should also be ancestral for the Hominidae.  Given that this represents also the extant human 207 
morphology, it seems most parsimonious that this ancestral morphology was retained rather than re-208 
acquired in the evolutionary lineage leading to the habitually bipedal, terrestrial modern humans. This 209 
lends weight to Thorpe et al.’s (2007) conclusion that human bipedalism is less an innovation than an 210 
exploitation of a locomotor behaviour retained from the common great ape ancestor.  To be effective, 211 
the recoiling Achilles tendon should work against a stiff lever as it is functionally present during the 212 
push-off phase in the modern human foot. Considerable evidence exists that early hominins had more 213 
mobile feet and, therefore, probably a less complete toe-off function compared to modern humans 214 
(e.g. Lieberman, 2012). Thus, although the performance of the Achilles tendon as energy-saving device 215 
might well have been further improved during human evolution8, considering the emergence of the 216 
human Achilles tendon as a key adaptation for economical cyclic bipedal locomotion is probably no 217 
longer appropriate. 218 
This also implies that the ‘long-fibered – short tendon’ appearance of the triceps surae in the 219 
orangutan, the gorilla, the chimpanzee and the bonobo does not represent the retained ancestral state 220 
as it is generally considered (cf. above). Rather, it might represent further convergent evolution from 221 
an above-branch quadrupedal ancestor (cf. Almécija et al, 2009; Alba et al., 2015) with short-fibred 222 
gastrocnemius muscles and a long Achilles tendon, towards the long-fibered muscles facilitating the 223 
muscular control and large range of motion that is beneficial for the arboreal lifestyles  of each of the 224 
large-bodied extant non-human Hominidae (see for instance Myatt et al., 2011; Preuschoft et al., 1992; 225 
Thorpe et al., 1999)9. In this context, it is remarkable that lorisines also have a short Achilles tendon 226 

                                                           
8 Given that modern humans gain up to 35% of the positive BCOM work required for running from tendon 

recoil (e.g. Alexander, 2003; about 5x more than what can potentially be recovered in gibbons), it is tempting 

to speculate on what has changed during human evolution to improve the percentage contribution of elastic 

recoil.  This percentage increase may be due to (relatively) lower positive BCOM work requirements, (relatively) 

higher energy storage in the tendon, or both.  The positive work requirements over a complete cycle (L+R) for 

human running at preferred speed are 3.4 J/kg (body mass; Fiers et al., 2013; Willems et al., 1995), much 

higher than the 0.6 J/kg here calculated for the gibbon (3.6 J/cycle for 6.3 kg animal; cf. Supplementary 

Material).  Consequently, elevated energy storage must be in play.  Human Achilles tendon stiffness is rather 

variable (for instance depending age or training level), but an average and physiologically relevant value of 180 

Nmm-1 is reported in literature (e.g. Lichtwark & Wilson, 2005, 2006; Uchida et al., 2016), nearly doubling the 

stiffness of the gibbon’s tendon.  Stiffer tendons imply less elastic energy storage for a given tendon loading. 

Thus, tendon force at the onset of plantar flexion (enabling recoil) has to be considerably higher in humans.  

The ankle extension torque is maximal and equals 2.5 Nm/kg (Fiers et al., 2013; preferred running speed) when 

plantar flexion starts (about at midstance; notice that this value increases further with running speeds).  Taking 

account for the according Achilles tendon moment arm of about 5 cm (e.g. Leardini & O’Connors, 2012; 

Maganaris et al., 2000; relative to the lower leg length about twice that of the gibbon), maximal tendon loading 

equals 50 N/kg , actually not that much higher than what can be calculated for the gibbon (29 N/kg = 2.6 

Nm/6.3kg/0.0148m). In other words, size (body mass) as such (obviously coupled to the specific locomotor 

dynamics) seems to be an important determinant for the higher elastic energy storage. Using the above 

mentioned data for human preferred running (and accounting for an hysteresis of 10%; e.g. Fletcher & 

MacIntosh, 2015; Uchida et al., 2016) the relative energy storage over a cycle recalculates to 0.7J/kg which is 

about 17x more than in the gibbon (0.041J/kg = 0.26J/6.3kg) and accounts (at this relatively slow running 

speed) for 21% of the positive BCOM work.      

9 It should be noted that this alternative scenario does not necessarily imply a larger number of character-state 
changes (i.e. being less parsimonious) than the classical scenario in which the ‘short-fibered - long tendon’ 
triceps surae evolved independently from a ‘long-fibred – short tendon’ ancestral state in both the gibbons and 
humans. If it is agreed that the common ancestor of the cercopithecoids and hominoids shared the ‘long-
tendon’ character state (cf. main text and see supplementary material), this feature must first have been lost, 



comparable to great apes (Hanna & Schmitt, 2011) which is interpreted as a convergent feature (next 227 
to others) related to selection for slow, cautious arboreal clambering (see for instance Cartmill and 228 
Milton, 1977). This view conforms to the suggestion by Alba et al. (2015) that the last common 229 
hominoid ancestor was not necessarily great-ape-like and that small-bodied catarrhines could have 230 
played a remarkable role in ape evolution. It also accords with the suggestions by Almécija et al.(2009) 231 
(based on their analysis of hominoid forelimbs) that above-branch quadrupedalism inherited from 232 
stem hominoids constituted a significant component of the locomotor repertories of different 233 
hominoid lineages at least until the late Miocene. And finally, it also supports the suggestion by Lovejoy 234 
et al.(2009a,b) that the last common ancestor of the African apes likely had feet that functioned like 235 
those of living monkeys rather than like those of apes. Based on the present revision, it seems plausible 236 
to include the evolution of the Achilles tendon in their functional perspective, and to extend this to all 237 
extant great apes.   238 
 239 
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in order to re-appear then in the stem hylobatids (as all seem to have a well-developed tendon) and in humans 
independently.  This implies an identical number of character-state changes as for the premised convergent 
appearance of the ‘long-fibred – short tendon’ state of the triceps surae in the non-human great apes. 
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 419 

 420 

Figure 1 : Phylogenetic tree of the Catarrhini, with dorsal views of  the baboon, gibbon, chimpanzee 421 

and human lower leg showing the Achilles tendon and the gastrocnemius muscle (anatomical 422 

drawings: courtesy of Timo Van Leeuwen).  423 
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 425 

 426 

Figure 2 A: Schematic representation of the lower leg and foot of the white-handed gibbon (dark grey 427 

sticks) at the instant of initial foot contact during bipedal ‘grounded’ running (background: still frame 428 

of a video sequence).  The ankle (talocrural) (TC), tarsometatarsal (TM) and metatarsophalangeal (MP) 429 

joints are shown.  The moment arm (fMA) of the ground reaction force (GRF, green arrow) and the 430 

moment arm (mMA) of the balancing force acting along the Achilles tendon, both with respect to the 431 

ankle joint, are indicated.  The triceps surae and its Achilles tendon are schematically represented in 432 

red.  The fMA is the perpendicular distance from the TC to the GRF; the mMA from the TC to the line 433 

of action of the Achilles Tendon (laAT).  B: Upper panel; instantaneous mechanical power of the BCOM 434 

during stance. When positive, energy is being added to the BCOM. When negative, BCOM energy 435 

dissipates. The vertical blue line indicates the instant of transition from ankle dorsi-flexion to ankle 436 

plantar-flexion (= extension of the ankle joint).  For the largest part, plantar flexion (recoil eventually 437 

adding energy) occurs when, overall, whole-body energy decreases (see text). Lower panel;  average 438 

ankle joint angle (solid curve; left vertical axis) and average joint moment of the GRF at TC (dashed 439 

curve; right vertical axis) are given as a function of normalized stance time (0% = initial foot contact; 440 

100% = toe off) in the white-handed gibbon.    This plantar flexion represents the foot push-off which 441 

can partially be powered by the release of strain energy stored in the Achilles tendon. At this transition, 442 

the ankle joint angle equals 103°, while the according joint moment is 2.60 Nm (for more explanation: 443 

see text).  (Based on Vereecke and Aerts, 2008; see also Supplementary Material for more details in 444 

methods).   445 


