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Predicting bee community 
responses to land-use changes: 
Effects of geographic and 
taxonomic biases
Adriana De Palma1,2, Stefan Abrahamczyk3, Marcelo A. Aizen4, Matthias Albrecht5, 
Yves Basset6, Adam Bates7, Robin J. Blake8, Céline Boutin9, Rob Bugter10, Stuart Connop11, 
Leopoldo Cruz-López12, Saul A. Cunningham13, Ben Darvill14, Tim Diekötter15,16,17, 
Silvia Dorn18, Nicola Downing19, Martin H. Entling20, Nina Farwig21, Antonio Felicioli22, 
Steven J. Fonte23, Robert Fowler24, Markus Franzén25, Dave Goulson24, Ingo Grass26, 
Mick E. Hanley27, Stephen D. Hendrix28, Farina Herrmann26, Felix Herzog29, 
Andrea Holzschuh30, Birgit Jauker31, Michael Kessler32, M. E. Knight27, Andreas Kruess33, 
Patrick Lavelle34,35, Violette Le Féon36, Pia Lentini37, Louise A. Malone38, Jon Marshall39, 
Eliana Martínez Pachón40, Quinn S. McFrederick41, Carolina L. Morales4, Sonja Mudri-Stojnic42,  
Guiomar Nates-Parra40, Sven G. Nilsson43, Erik Öckinger44, Lynne Osgathorpe45, 
Alejandro Parra-H46,47, Carlos A. Peres48, Anna S. Persson43, Theodora Petanidou49, Katja Poveda50, 
Eileen F. Power51, Marino Quaranta52, Carolina Quintero4, Romina Rader53, Miriam H. Richards54, 
T’ai Roulston55,56, Laurent Rousseau57, Jonathan P. Sadler58, Ulrika Samnegård59, 
Nancy A. Schellhorn60, Christof Schüepp61, Oliver Schweiger25, Allan H. Smith-Pardo62,63, 
Ingolf Steffan-Dewenter30, Jane C. Stout51, Rebecca K. Tonietto64,65,66, Teja Tscharntke26, 
Jason M. Tylianakis1,67, Hans A. F. Verboven68, Carlos H. Vergara69, Jort Verhulst70, Catrin Westphal26, 
Hyung Joo Yoon71 & Andy Purvis1,2

Land-use change and intensification threaten bee populations worldwide, imperilling pollination 
services. Global models are needed to better characterise, project, and mitigate bees' responses 
to these human impacts. The available data are, however, geographically and taxonomically 
unrepresentative; most data are from North America and Western Europe, overrepresenting 
bumblebees and raising concerns that model results may not be generalizable to other regions and 
taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of 
models for conservation policy, we have collated from the published literature a global dataset of bee 
diversity at sites facing land-use change and intensification, and assess whether bee responses to these 
pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central 
and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and 
between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total 
abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity 
of species and potentially in the nature of threats. These results suggest that global extrapolation 
of models based on geographically and taxonomically restricted data may underestimate the true 
uncertainty, increasing the risk of ecological surprises.
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Bees are one of the most important groups of pollinators of economic crops1–3, with both larvae and adults rely-
ing on floral products such as pollen and nectar3. Human impacts can reduce the diversity of pollinator assem-
blages4,5 and therefore can impact pollination efficiency and provision. This is a particular concern in agricultural 
settings, as over 35% of the volume of human food crops produced globally depend upon animal pollination to 
some extent6. Pollinator shortages can lead to reduced crop quality and yield7,8, with potentially large economic 
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impacts9. There has therefore been much research into responses of bee communities to human impacts such as 
land-use change and intensification.

A number of syntheses have attempted to identify general trends in the response of bees to human impacts5,10. 
However, their datasets have often been geographically limited, with the majority of data arising from North 
America and Western Europe11. The geographic patterns of bee decline and diversity are not understood suf-
ficiently well to ensure that such generalisations are valid11,12. If species’ responses to disturbance vary among 
regions, geographically-restricted models will be inadequate to support broad conclusions. The consequences 
of basing management strategies on extrapolations from such models could be severe, as many under-studied 
regions have a high economic dependency upon animal-pollinated crops11,13 and may generally have limited 
governmental capacity to adapt to environmental changes14.

Geographic variation in bee community responses could arise because differences in land-use history and 
practices mean that the threats facing assemblages differ across regions. Species subject to very recent disturbance 
may be more vulnerable, whereas extinction filters15–17 may have already removed many susceptible species from 
landscapes where the intensification of farming started already decades ago, such as in temperate European agri-
cultural landscapes. Extinction debt may make matters worse still, if the full impact of land-use changes is not 
yet evident18,19. In addition, differences in landscape context across regions can influence species’ responses. For 
instance, Winfree et al.5 found that habitat loss and fragmentation significantly affected bee communities, but 
only in areas where little natural habitat still remained.

Bee community responses may also vary regionally because community composition varies geographically. 
Taxa can differ in their intrinsic susceptibility to land-use change and intensification, through having different 
functional response traits20–22, the distribution of which within a community can affect resilience to pressures23. A 
geographic bias towards North America and Western Europe has also resulted in a taxonomic bias; for instance, 
bumblebees (Apidae: Bombus) are particularly diverse in these areas, whereas large areas of the world have no 
native bumblebee species (e.g., most of Africa and Australasia). In addition, bumblebees are large, often abundant 
species with long flight seasons and relatively slow flight, making them fairly easy to sample and, in many cases, 
to identify. Bumblebees may be more or less sensitive than other bees due to their ecological traits and habitat 
requirements24, which have been shown to influence responses to human impacts and vulnerability to decline25,26. 
In addition, bumblebees have shown clearer declines than other bees in North America25 and some European 
countries27, so they may be atypical of broader bee diversity.

We compiled a global dataset of bee diversity from published sources of bee assemblages in sites differing in 
pressures such as land use, and used this to explore whether models of responses to human impacts are robust 
against geographic and taxonomic biases. Specifically, we hypothesized that bee responses to land-use pressures 
should vary significantly with region and with taxonomic group (i.e., bumblebees or other bees) and so models 
and projections will not be transferable across regions and taxa. Improved understanding in this area will help 
to clarify whether knowledge based on a few regions and taxa is sufficient to underpin policy decisions as well as 
highlight systems for future study.

Methods
Data Collation. Data were sought from the literature where bee species abundance and/or occurrence were 
reported for multiple sites. Suitable papers were identified by searching Web of Science at various times from 
2011 to 2015, as well as searching journal alerts and assessing references cited in reviews. Papers were further 
considered if more than one site was sampled for bee diversity using the same sampling method in the same 
season and geographic coordinates of each site were available. Papers were prioritised if their data were col-
lected from February 2000 onwards, so that biodiversity data could be matched with remote-sensed data from 
NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). Data were supplemented with sources found 
through the PREDICTS project (www.predicts.org.uk), which aims to develop global statistical models of how 
local biodiversity responds to human impacts28. The database presented here is not a comprehensive compilation 
of published sources on occurrence and abundance of bee species across sites differing in land use or intensity, 
because of regional differences in the ability to retrieve information about potential sources and because most 
researchers we contacted did not make their data available. The dataset will, however, still be useful for research-
ers wishing to study land-use impacts on this important taxonomic group.

Where possible we extracted site-level records of bee species (Hymenoptera: Apoidea) occurrence and abun-
dance from suitable papers, along with data for other taxonomic groups if available. Raw data were usually not 
included within the papers or supplementary files, so the papers’ corresponding authors were asked for these data. 
Relevant data were available from 69 papers, hereafter referred to as ‘sources’ (Table 1). Each source contains one 
or more studies, where a study is defined as the set of samples within the same country that were taken using the 
same methodology. By defining studies in this way, we reduce the impact of broad-scale biogeographic differences 
in diversity and avoid the confounding effects of methodological differences: within, but not between, studies, 
diversity data can be compared among sites in a straightforward fashion. Differences in sampling effort within 
a study were corrected for when necessary by dividing abundance by the sampling effort unit. This assumes 
a linear relationship between abundance and sampling effort; generalised additive models suggested that this 
assumption was appropriate (gamm4 package29, see Supplementary Data S1 for details). Within each study, we 
recorded any blocked or split-plot design. The major land-use class and use intensity at each site were assessed 
based on information in the associated paper, using the scheme described in Hudson et al.28 (reproduced in 
Supplementary Table S1). Briefly, land use was classified as primary vegetation (native vegetation not known to 
have ever been completely destroyed), secondary vegetation (where the primary vegetation has been completely 
destroyed; this can include naturally recovering, actively restored, or semi-natural sites), cropland (planted with 
herbaceous crops), plantation forest (planted with crop trees or shrubs), pasture (regularly or permanently grazed 
by livestock) or urban (areas with human habitation, where vegetation is predominantly managed for civic or 
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Reference Country
Sampling 

years Studies
Within-

study sites
Bee taxa  

(% binomial)
Other 
taxa mMLE

Afrotropic 3 39 77 2304

Basset et al.67 +† Gabon 2001–2002 1 12 51 (19.61%) 1806 70

Gaigher & Samways68 +† South Africa 2006 1 10 6 (0%) 383 nr

Grass et al.69 +†‡ South Africa 2011 1 17 21 (9.52%) 115 100

Australasia 8 200 135 497

Blanche et al.70 +† Australia 2005 2 11 8 (89.36%) 17 nr

Cunningham et al.71 +† Australia 2007–2008 1 24 69 (100%) 0 nr

Lentini et al.72 +† Australia 2009–2010 1 104 36 (100%) 0 nr

Kessler et al.73 +† Indonesia 2004–2005 1 15 9 (0%) 24 nr

Malone et al.74 †‡ New Zealand 2006–2007 1 2 9 (100%) 0 nr

Todd et al.75 +† New Zealand 2007–2008 1 20 9 (100%) 442 27.3

Rader et al.21 +† New Zealand 2008–2009 1 24 5 (100%) 20 nr

Indo-Malay 4 16 1 0

Liow et al.76 +†‡ Singapore, Malaysia 1999 4 16 1 (0%) 0 3000

Nearctic 16 399 242 117

Boutin et al.77 +† Canada 2000 3 60 3 (0%) 116 nr

Richards et al.78 +† Canada 2003 3 18 127 (95.04%) 0 nr

Hatfield & Lebuhn79 † United States 2002–2003 1 120 13 (100%) 0 nr

McFrederick & LeBuhn80 †‡ United States 2003–2004 2 40 5 (100%) 0 nr

Shuler et al.81 +† United States 2003 1 25 5 (60%) 0 nr

Winfree et al.82 +† United States 2003 2 80 1 (0%) 0 nr

Kwaiser & Hendrix83 + United States 2004 2 18 53 (97.22%) 1 nr

Julier & Roulston84 +† United States 2006 1 20 3 (100%) 0 250

Tonietto et al.85 +† United States 2006 1 18 67 (89.55%) 0 nr

Neotropic 16 286 436 775

Vázquez & Simberloff86 + Argentina 1999, 2001 1 8 25 (52%) 104 nr

Quintero et al.87 † Argentina 2000–2001 1 4 14 (35.71%) 38 1280

Schüepp et al.88 +† Belize 2009–2010 1 15 43 (100%) 65 nr

Tonhasca et al.89 +†‡ Brazil 1997, 1999 1 9 21 (100%) 0 10

Barlow et al.90 +† Brazil 2005 1 3 22 (75%) 0 3500

Smith-Pardo & Gonzalez91 +† Colombia 1997 4 48 300 (46.2%) 0 nr

Parra-H & Nates-Parra92 +† Colombia 2003 1 26 21 (100%) 0 nr

Poveda et al.93 +† Colombia 2006–2007 2 34 4 (0%) 468 23

Tylianakis et al.94 +† Ecuador 2003–2004 1 48 16 (0%) 16 71

Vergara & Badano64 +† Mexico 2004 1 16 7 (71.43%) 8 nr

Fierro et al.95 †‡ Mexico 2009–2010 1 3 4 (100%) 0 346.41

Rousseau et al.96 +† Nicaragua 2011 1 72 2 (100%) 81 30

Palearctic 64 2271 601 788

Verboven et al.97 † Belgium 2009 1 9 6 (66.67%) 0 11.34

Billeter et al.98 +†, Diekötter  
et al.99 +† and Le Féon et al.100 +†

Belgium, Czech Republic, 
Estonia, France, Germany, 
Netherlands, Switzerland

2001–2002 14 873 276 (98.46%) 7 nr

Kruess & Tscharntke101 + Germany 1996 2 34 17 (100%) 18 nr

Meyer et al.102 +† Germany 2000, 2005 2 30 14 (75%) 8 34.51

Diekötter et al.103 † Germany 2001 1 124 2 (100%) 0 353.55

Meyer et al.104,105 +† Germany 2004 1 32 109 (100%) 75 nr

Herrmann et al.106 †‡ Germany 2005 2 26 1 (100%) 0 800

Holzschuh et al.107 + Germany 2007 2 134 3 (33.33%) 1 100

Weiner et al.108 + Germany 2007 1 29 59 (100%) 460 333

Nielsen et al.109 +†‡ Greece 2004 4 32 1 (0%) 0 nr

Power & Stout110 +† Ireland 2009 1 20 9 (88.89%) 24 1200.24

Davis et al.111 †‡ Ireland, United Kingdom 2005, 2007, 
2008, 2009 1 12 1 (100%) 0 nr

Quaranta et al.112 +† Italy 2000 1 2 31 (100%) 0 200

Yoon et al.113 Korea, Republic of 2000–2012 1 215 6 (100%) 1 nr

Kohler et al.114 +† Netherlands 2004–2005 4 19 26 (95.48%) 56 1500

Continued
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personal amenity). Use intensity was classified according to a three point scale: low, medium and high intensity. 
For instance, high-intensity cropland would be monocultures with many signs of intensification such as large 
fields with high levels of external inputs, irrigation and mechanisation; medium intensity cropland would only 
show some, but not all, features of higher intensity cropland; low-intensity would refer to small fields with mixed 
crops and little to no external inputs, irrigation or mechanisation. In one data source, information on the use 
intensity was unavailable at the site-level, so information at the landscape level was used.

The dataset contained 111 studies from 69 sources and 3211 within-study sites (Table 1). This amounted to 
195,357 species diversity measurements (i.e., bee taxa and other taxa, Table 1), including 107,176 measurements 
of bee diversity (a single measurement being, for example, the abundance of a given species at a given site; see 
Supplementary Data S2 for species list).

Analysis. For this analysis, we did not include studies that recorded only particular target species (for 
instance, studies that were only interested in the abundance of a single species across sites), so that site-level 
diversity measures would be meaningful. The final dataset for the analysis included 101,524 diversity records 
from 837 bee species at 2421 sites from across the globe (North America: 239 sites; Central America: 103; South 
America: 176; Western Europe: 1211; Northern Europe: 325; Eastern Europe: 64; Southern Europe: 50; Middle 
and Southern Africa: 39; South Eastern Asia: 31; Australia and New Zealand: 183). In this reduced dataset, many 
combinations of land use and use intensity had too few sites to permit robust modelling. The data were there-
fore aggregated to give a variable of combined Land Use and Intensity (LUI) with the following levels: primary 
vegetation, secondary vegetation, low-intensity cropland, medium-intensity cropland, high-intensity cropland, 
pasture, plantation forest and urban. All LUI levels had at least 170 sites, except for plantation forest and urban 
areas, which were scarce in the dataset with only 105 and 94 sites respectively. Sites were also classified by region 
and subregion (according to United Nations classifications), with Middle and Southern Africa combined into a 
single category to increase the sample size.

For each site, we calculated three measures of bee community diversity as our response variables: total abun-
dance, within-sample species richness and Simpson’s diversity. Simpson’s diversity was calculated as:

Reference Country
Sampling 

years Studies
Within-

study sites
Bee taxa  

(% binomial)
Other 
taxa mMLE

Goulson et al.115 † Poland 2006 1 32 22 (100%) 0 200

Mudri-Stojnic et al.116 +†‡ Serbia 2011 1 16 55 (100%) 8 nr

Öckinger & Smith117 Sweden 2004 1 36 11 (100%) 64 800

Franzén & Nilsson118 +† Sweden 2005 1 16 83 (100%) 43 nr

Samnegård et al.119 +† Sweden 2009 1 9 31 (100%) 0 90

Oertli et al.120 +† Switzerland 2001–2002 1 7 237 (100%) 0 2000

Albrecht et al.121 + Switzerland 2003–2004 2 202 75 (100%) 0 nr

Farwig et al.122 +† Switzerland 2008 1 30 1 (0%) 0 nr

Schüepp et al.123 +† Switzerland 2008 1 30 11 (72.73%) 69 0.2

Darvill et al.124 † United Kingdom 2001 1 17 3 (66.67%) 0 100

Marshall et al.125 +† United Kingdom 2003 2 84 25 (100%) 0 nr

Hanley (2005, unpublished 
data)† United Kingdom 2004–2005 1 6 11 (100%) 0 1000

Knight et al.126 †‡ United Kingdom 2004 1 12 1 (100%) 0 3.16

Connop et al.127 †‡ United Kingdom 2005 1 5 2 (100%) 0 nr

Goulson et al.128 † United Kingdom 2007 1 14 2 (100%) 0 200.25

Hanley et al.129 † United Kingdom 2007–2010 1 34 6 (100%) 0 200.04

Blake et al.130 † United Kingdom 2008–2010 2 6 8 (75%) 2 90

Redpath et al.131 † United Kingdom 2008 1 11 7 (85.71%) 0 nr

Bates et al.132 +† United Kingdom 2009–2010 1 24 58 (100%) 50 56.6

Osgathorpe et al.133 † United Kingdom 2009–2010 2 45 11 (90.91%) 1 nr

R. E. Fowler (PhD thesis, 
2014)+† United Kingdom 2011–2012 1 36 75 (100%) 0 nr

Hanley (unpublished data, 
2011)+† United Kingdom 2011 1 8 23 (82.61%) 110 nr

Table 1.  Data sources and sample sizes. mMLE =  largest Maximum Linear Extent (in meters) of any site in 
the source. MLE is the maximum distance between sampling points within a site, e.g. the length of a transect or 
the distance between pan traps. nr =  not reported. Numbers of taxa are the numbers of unique taxa for which 
diversity measurements are given (so, if diversity measurements are available only for all bees combined, this 
would count as one taxon). The percentage of bee species with a known binomial name is also given (% binomial). 
Note that the figures here represent available data as curated by the PREDICTS team; these will not necessarily 
match figures in the original papers. +Data were used in the presented analysis. †Data will be incorporated into 
the PREDICTS database (which will be made openly available). ‡Data are available from the referenced paper. For 
all other datasets, please contact the corresponding author of that paper directly.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:31153 | DOI: 10.1038/srep31153

∑= −D P1 (1)i
2

where Pi is the proportion of individuals belonging to species i. We use Simpson’s diversity as it stabilises faster 
than species richness and other diversity measures as specimens accumulate30.

As total abundance measurements are not necessarily integers (e.g. densities and effort-corrected measures), 
use of the Poisson error structure was not possible, so total abundance was ln +  1 transformed before model-
ling to normalise residuals and equalise variance. Total abundance and Simpson’s diversity were modelled using 
Gaussian errors (model-checking showed that these treatments were appropriate). Species richness was mod-
elled with Poisson error distribution and log-link function; there was evidence of significant overdispersion in 
these models so an observation-level random effect was included to account for this (i.e., a Poisson-lognormal 
model)31.

All analyses were carried out using R 3.1.032. We constructed models for each response variable, using 
mixed-effects models (lme4 package33) to account for non-independence of data due to differences in collectors 
(‘source’), sampling methodologies and biogeographic source pools (‘study’) and the spatial structure of sites 
(‘block’); the initial random-effects structure was therefore block nested within study within source. The initial 
fixed-effects structure of models included LUI, subregion and their interaction. Subregion is treated as a fixed 
rather than random effect as we are interested in testing the effect, rather than simply estimating the variance 
associated with geographic subregion. We test differences in responses to LUI among subregions rather than 
assessing how responses vary with the latitude and longitude of sites, as subregions represent political differences 
in land-use patterns and data availability, as well as to some extent reflecting biogeographical differences in com-
munity composition.

The best random-effects structure was assessed using likelihood ratio tests34, with models fit using Restricted 
Maximum Likelihood for total abundance and Simpson’s diversity, and Maximum Likelihood for species rich-
ness. We then attempted to simplify the fixed-effects structure using backwards stepwise model simplification and 
likelihood ratio tests, with models fit using Maximum Likelihood34–36. Significance of terms in the minimum ade-
quate models were assessed using Type II Wald Chi Square Tests37. However, to better appreciate the uncertainty 
in the models38, if the interaction between LUI and subregion remained in the minimum adequate model, we also 
constructed the following models: additive model (with LUI and subregion included as additive effects); LUI only 
(univariate model); and subregion only (univariate). We then compared the explanatory power and predictive 
error of the interactive model with these simpler alternatives.

Explanatory power was calculated using the MuMIn package in R39, as the marginal and conditional R2glmm 
values: i.e., the variance explained by fixed effects alone and by fixed and random effects combined, respectively40. 
Predictive error was calculated as the Mean Squared Error (MSE) from ten-fold cross validation, where the model 
was iteratively fit to nine-tenths of the data (training set), and validated on the final tenth (validation set); we did 
this by randomly assigning sites into ten approximately equal-sized groups41. As the data are structured, the train-
ing data may not be fully independent of the validation data42, but any bias in prediction error that this causes will 
apply equally to all models being compared as the random effect structures are identical. In addition, some com-
binations of explanatory variables only occur in few studies or sources; splitting the dataset by these higher-level 
strata would mean that some combinations would rarely appear in the training data, leading to overestimates of 
predictive error. MSE was decomposed into measures of bias and variance, which give an indication of the accu-
racy and precision of predictions respectively43 (See Supplementary Methods for details).

The dataset was then subset to include only studies where both bumblebees (Apidae: Bombus) and other bees 
were sampled (bumblebees contributed over 19% of the bee abundance records); this resulted in 1636 sites from 
47 studies. We calculated the site-level diversity measures separately for each group and fitted the initial model 
with a three-way interaction between LUI, subregion and taxonomic group (Bombus or otherwise). The initial 
random structure was as above, but included a site-level random effect to account for multiple samples (bum-
blebees and other bees) being taken from the same site. As above, we first attempted to simplify the initial model 
(both in terms of random effects and then fixed effects) and, if the initial three-way interaction remained in the 
model, compared the explanatory power and predictive error with simpler models, where responses to LUI were 
permitted to vary with subregion (LUI, subregion and their interaction) or with taxonomic group (LUI, taxo-
nomic group and their interaction).

To further understand heterogeneity in community response to LUI, planned comparisons were performed 
(multcomp package44). Within each subregion (and each taxonomic group, if assessed), we tested for differ-
ences between natural vegetation (primary vegetation) and all other land uses; between semi-natural vegetation 
(secondary vegetation) and all other land uses (except primary); whether low-intensity cropland differed from 
medium-intensity cropland; and whether medium-intensity cropland differed from high-intensity cropland. To 
avoid rank-deficiency, LUI and subregion were collapsed into a single factor in these models. Not all comparisons 
were possible in all subregions. Multiple comparisons were corrected for using the False Discovery Rate method 
to adjust significance values45,46.

An alpha value of 0.05 was used in all tests for significance. Spatial autocorrelation was assessed in residuals 
of minimum adequate models using Moran’s I, for each study in turn (spdep package47,48). As multiple tests are 
carried out, we expect 5% of these to be significant by chance so we additionally test whether the proportion of 
studies showing autocorrelation exceeds this expected proportion (using a one-sided Chi squared test).

Results
For total abundance, Simpson’s diversity and species richness, the minimum adequate models were those in 
which responses to LUI were free to vary among geographic subregions. These models also always had the great-
est explanatory power and were always among the models having the lowest predictive error (Fig. 1). Overall, 
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Figure 1. The predictive error and explanatory power of models that include only the intercept (NULL), 
LUI alone, subregion alone, additive effects, or interactive effects. LUI =  Land Use and Intensity. For 
explanatory power, solid bars show the marginal R2glmm (the variance explained by fixed effects) and the 
hashed bars show the conditional R2glmm (the variance explained by both random and fixed effects). Error bars 
show the standard error of the mean predictive error across 10 folds of cross validation. Note that the predictive 
error should only be compared among models assessing the same response variable, as absolute values depend 
on the measurement scale.
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however, explanatory power of fixed effects alone was fairly low, with most variation instead being attributed to 
random effects, which is not surprising given the variation in sampling methodology and effort among studies 
and sources.

For total abundance, the interaction between LUI and subregion explained a highly significant amount of 
variation (χ2 =  133.15, df =  27, p <  0.0001) (Fig. 2), which resulted in this model having the lowest predictive 
error compared to simpler models. The interaction between LUI and subregion was also significant for Simpson’s 
diversity (χ2 =  66.48, df =  27, p <  0.0001) and species richness (χ2 =  96.41, df =  27, p <  0.05), although the predic-
tive error was not much lower than for models based on subregion alone. In all cases, the interactive model had 
slightly higher bias than some simpler models, but the lowest variance (See Supplementary Table S2).

As Fig. 2 shows, the response of total bee abundance to land use differs significantly among regions. In Western 
Europe, agricultural land maintained higher bee abundances than secondary vegetation (low-intensity cropland: 
z =  8.21; medium-intensity cropland: z =  5.33; high-intensity cropland: z =  9.19; all p <  0.0001; pasture: z =  4.18, 
p =  0.012). Low-intensity cropland also maintained higher diversity than secondary vegetation (Simpson’s diver-
sity: z =  4.22, p =  0.017) and medium-intensity cropland (Simpson’s diversity: z =  − 5.68, p <  0.0001; Species rich-
ness: z =  − 4.82, p =  0.0015).

In South America, bees were more sensitive to agricultural land uses: medium-intensity cropland maintained 
significantly lower Simpson’s diversity than secondary vegetation (z =  − 5.15, p =  0.00029). Urbanization had dif-
fering effects between subregions, with increased species richness (z =  5.29, p =  0.00022) in Middle and Southern 
Africa, but no strong effect detected elsewhere.

When the dataset was split by taxon (Bombus vs. others), the best models for each response variable accord-
ing to likelihood ratio tests included significant three way interactions between LUI, subregion and taxon (total 
abundance: χ2 =  217.9, df =  13, p <  0.0001; Simpson’s diversity: χ2 =  27.62, df =  13, p =  0.0102; species richness: 
χ2 =  76.08, df =  13, p <  0.0001). These models also had the greatest explanatory power and lowest predictive error, 
compared with simpler models (Fig. 3); for total abundance, the lower predictive error was driven by both lower 

Figure 2. Predicted means of total (logged) abundance of bees for different land-use classes in each 
subregion, with 95% confidence intervals. Also shown are significant results of multiple comparisons, testing 
differences between natural (Primary vegetation) and semi-natural land uses (Secondary vegetation) to human-
dominated land uses, and differences between low, medium and high intensity cropland (*p <  0.05 , * *p <  0.01 , 
* * *  p <  0.001).
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Figure 3. The predictive error and explanatory power of models that include three way interactions 
between LUI, subregion and taxon (Bombus or not), and models with two way interactions between LUI 
and taxa, or LUI and Subregion. LUI =  Land Use and Intensity. For explanatory power, solid bars show the 
marginal R2glmm (the variance explained by fixed effects) and the hashed bars show the conditional R2glmm 
(the variance explained by both random and fixed effects). Error bars show the standard error of the mean 
predictive error across 10 folds of cross validation. Note that the predictive error should only be compared 
among models assessing the same response variable, as absolute values depend on the measurement scale.
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bias and variance, while for Simpson’s diversity and species richness, the slightly higher bias was offset by lower 
variation (See See Supplementary Table S2).

Planned comparisons provided more detail into these context- and taxon-specific differences in response 
to human impacts. In Western Europe, bumblebees and other species respond similarly in terms of total abun-
dance, which was higher in cropland than in secondary vegetation (e.g. in low-intensity cropland, Bombus: 
z =  6.85, p <  0.0001; other species: z =  9.33, p <  0.0001). However, bumblebee species richness tended to be 
higher in low-intensity cropland than secondary vegetation (z =  4.68, p =  0.004), which was not true for other 
bees (z =  1.96, n.s.). Increasing agricultural intensity also resulted in a decline in species richness, but the response 
was consistent across taxa: low-intensity cropland maintained higher richness than medium-intensity cropland 
both in bumblebees (z =  − 4.30, p =  0.016) and other bees (z =  − 3.75, p =  0.042).

Bumblebees also responded differently from other bee species in North America. Bombus species richness 
was lower in secondary vegetation relative to primary vegetation (z =  − 3.93, p =  0.027), but this was not true for 
other bees (z =  0.86, n.s.); similarly, total abundance was slightly lower for bumblebees (z =  3.64, p =  0.064) but 
not other species (z =  0.45, n.s.). However, other genera in North America appeared to be relatively more sensi-
tive to medium-intensity cropland, with reduced species richness relative to both primary vegetation (z =  − 3.90, 
p =  0.027) and secondary vegetation (z =  − 3.33, p =  0.017). Other genera were also more sensitive to urban areas, 
with reduced species richness in urban sites relative to primary vegetation (z =  − 3.99, p =  0.027), while bumble-
bees showed no significant response (z =  − 2.5, n.s.).

The number of studies showing significant autocorrelation was not significantly higher than the 5% expected 
by chance (See See Supplementary Table S3 for details).

Discussion
Bees are facing declines across the globe as a result of changing and intensifying land use4,17,49. Detailed statistical 
models that relate bee diversity to drivers of change have the potential to inform mitigation and conservation 
efforts and to help safeguard food security. However, the transferability of models based on restricted data to other 
regions and taxa is not guaranteed11,50. If responses to threats are context dependent, extrapolation from well 
known study systems could carry significant risks for biodiversity and food security. The areas where food produc-
tion is most highly dependent upon animal pollination are also those for which the fewest data are available11,13,51, 
due to a lack of infrastructure and funding in many areas of the world11. These same areas are often poorly buffered 
against the disruption of ecosystem service provision from whatever cause, meaning that effects of any ecological 
surprises on human well-being could be more severe here than elsewhere. We have shown that bee commu-
nity responses to land-use change and agricultural intensification can indeed be highly context-dependent, but 
whether this impacts the transferability of models depends on the facet of diversity that is of interest.

The response of total abundance, Simpson’s diversity and species richness of bee communities to land use and 
intensity (LUI) varied significantly with geographic region, in line with our hypotheses and with previous work 
in tropical regions52. For all response variables, the greatest predictive ability could only be achieved by allowing 
regional variation in responses to LUI; at the very least, it was necessary to allow regional variation in baseline 
diversity. This suggests that conclusions based on geographically restricted data cannot reliably be generalized to 
other regions. Indeed, bee community responses to agricultural intensification varied between regions; only in 
Western Europe was there an evident decline in diversity with increasing use-intensity of cropland, in line with 
previous suggestions that agricultural land-use intensity is more important in temperate than in tropical or sub-
tropical systems10. The most negative impact of agriculture, however, was seen in South America, where Simpson’s 
diversity was significantly lower than in secondary vegetation; this is congruent with a previous meta-analysis by 
Gibson et al.52 that focussed on tropical areas. The effects of urbanisation likewise depended on the subregion—
with increased abundance in Africa but few effects seen elsewhere—but these inferences were based on relatively 
few data. More data from more regions are needed to better understand the impact of urbanisation on bee com-
munities and associated ecosystem services53.

It is likely that the geographic variation in responses is in part due to differences in community composition11, 
as we found that taxonomic biases towards bumblebees, which frequently dominate datasets geographically lim-
ited to North America and Western Europe, can mask the responses of other species. In Western Europe, for 
instance, bumblebees had higher species diversity in low-intensity cropland than in secondary vegetation, while 
other bee species did not show the same effect. Bumblebees have longer flight distances than many smaller bees, 
so may be better able to persist in more human-dominated land-uses, where foraging resources tend to be further 
from nesting sites22, and can benefit from mass-flowering crops such as oilseed rape54.

The effect of taxonomic group on responses to LUI also differed between subregions, suggesting that other 
factors may also affect generalities. For instance, geographic variation in the nature of threats may be impor-
tant. Although our land-use intensity classification is applied in an equivalent fashion across regions, it remains 
extremely coarse. For example, high-intensity cropland may be more intensive in Western Europe than in South 
America, with regards to some pressures (e.g., pesticide load55) but potentially not others (e.g. spatial extent 
of monocultures). Such variation in agricultural intensification among regions (even within the same land-use 
intensity class) could in part be driving observed regional differences in biodiversity responses. More detailed 
data on different aspects of land-use intensity, such as pesticide load and fertilizer application rates, as well as data 
on the landscape structure, would enable a more robust and precise analysis of how responses vary across regions. 
This limitation still highlights, however, that models mostly underpinned by data from regions with a long and 
intensive history of cultivation are unlikely to provide meaningful inferences for many other regions of the world.

Variation in response among regions could also be driven by differences in community composition and 
therefore in the distribution of traits that may confer resistance or resilience to human impacts. Previous work has 
shown that trait-based models of species distributions are only transferable—even within a subregion—when land 
cover is similar56. Transferability across subregions is likely to be even more difficult: variability in the sensitivity 
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of bee communities will be influenced by a complex interaction between the trait distribution (and phylogeny) 
across communities and variation in the threats they face. For instance, in a global analysis, species that reproduce 
socially were more vulnerable to isolation and pesticide use than solitary species, but were less sensitive to tillage 
and agricultural intensity than solitary species20; however, bees that reproduce solitarily are more common in 
temperate areas than the tropics57, while the distribution of these pressures also vary regionally55. While we only 
assessed how a single aspect of community composition may influence results (bumblebees vs other bees), further 
work into phylogenetic patterns of sensitivity may help to disentangle these two mechanisms that may be driving 
regional variation in responses. Another important extension to our work would be to explore the interaction of 
multiple threatening processes, as the pressures faced by bee communities can vary regionally58. For instance, 
competition with introduced species and fragmentation are likely to be more important drivers of native bee 
diversity in the Neotropics than in temperate regions59. While it was not the focus of this work, a spatially-explicit 
analysis of latitudinal gradients in vulnerability to land-use pressures may be an interesting avenue for further 
research, potentially highlighting other factors of the environment or community structure that could contribute 
to geographic variation in sensitivity. For example, species richness of bees peaks at approximately 35° latitude, in 
dry, Mediterranean climates60, rather than in the tropics (as is the case for many other groups61) and this variation 
in baseline diversity may alter both actual and detected responses to human impacts.

Although our dataset includes over 2000 sites from five continents, it is not a comprehensive compilation of 
published sources and is still both geographically and taxonomically biased. Africa and Asia in particular are still 
poorly represented and as a consequence we may still be underestimating the uncertainty in bee responses to land 
use in these regions. Even biomes that have high bee diversity are underrepresented; for example, only six studies 
were in the Mediterranean biome although bee species richness tends to peak at this latitude60. In addition, the 
explanatory power of fixed effects was fairly low, as most variation in diversity is explained by methodological 
differences between studies and sources in most models. Nonetheless, our analysis has important implications 
for pollinator research and conservation action. We show that results based on geographically and taxonomically 
restricted datasets may not be transferable to other regions. Responses vary across regions due to a combination 
of differences in the inherent vulnerability of species and variation in the nature of threats. The provision of 
pollination services can be influenced by the abundance62,63, species diversity64 and species richness64–66 of bee 
communities, although the relative importance of each facet of diversity appears to vary with study system62,64. 
Therefore, if we are to safeguard pollinators and the services they provide, research effort to enhance the repre-
sentativeness (if not the amount) of available data will be needed to make context-dependent recommendations 
and to better understand the state of pollination services worldwide.
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