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Abstract  

Effluents from wastewater treatment plants (WWTPs) have been proposed to act as 

point sources of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes 

(ARGs) in the environment. Hospital sewage may contribute to the spread of ARB and 

ARGs as it contains the feces and urine of hospitalized patients, who are more 

frequently colonized with multi-drug resistant bacteria than the general population. 

However, whether hospital sewage noticeably contributes to the quantity and diversity of 

ARGs in the general sewerage system has not yet been determined. 
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Here, we employed culture-independent techniques, namely 16S rRNA gene 

sequencing and nanolitre-scale quantitative PCRs, to assess the role of hospital effluent 

as a point source of ARGs in the sewerage system, through comparing microbiota 

composition and levels of ARGs in hospital sewage with WWTP influent with and without 

hospital sewage.  

Compared to other sites, hospital sewage was richest in human-associated bacteria and 

contained the highest relative levels of ARGs. Yet, the relative abundance of ARGs was 

comparable in the influent of WWTPs with and without hospital sewage, suggesting that 

hospitals do not contribute importantly to the quantity and diversity of ARGs in the 

investigated sewerage system. 

 

Introduction 

Antibiotic-producing and antibiotic-resistant bacteria (ARB) naturally and ubiquitously 

occur in the environment (Anukool et al., 2004; Wellington et al., 2013). However, 

human activities contribute importantly to the dissemination of resistant bacteria and 

resistance genes from humans and animals to the environment (Woolhouse & Ward, 

2013). Effluents of wastewater treatment plants (WWTPs) may represent an important 

source of ARB and antimicrobial resistance genes (ARGs) in the aquatic environment 

(Wellington et al., 2013; Rizzo et al., 2013; Stalder et al., 2014; Pruden, 2014; Czekalski 

et al., 2014; Blaak et al., 2014; Karkman et al., 2016; Karkman et al., 2017; Su et al., 

2017). Generally, WWTPs collect municipal wastewater, but also wastewater from 

industry, farms and hospitals, dependent on the size and nature of the communities 

connected to a single sewerage system. In hospitals, up to one third of patients receive 
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antibiotic therapy on any given day and consequently, hospitals may be important hubs 

for the emergence and spread of ARB and ARGs (Vlahovic-Palcevski et al., 2007; Bush 

et al., 2011; Robert et al., 2012). Several studies have highlighted that multidrug-

resistant nosocomial pathogens, ARGs and genetic determinants that contribute to the 

mobilization and dissemination of ARGs are abundant in hospital sewage, indicating that 

hospital sewage may play a role in the dissemination of bacteria and genetic 

determinants involved in antibiotic resistance (Stalder et al., 2013; Varela et al., 2013; 

Stalder et al., 2014; Szekeres et al., 2017; Jin et al., 2018).  

The extent by which hospital effluent contributes to the presence of ARGs in sewerage 

systems is still poorly understood. To quantify the role of hospital effluent as a point 

source of ARGs in the sewerage system, we compared the relative levels of ARGs in 

hospital sewage with the WWTP influent that received the hospital sewage (urban 

influent) and with WWTP influent from a suburban setting that does not receive hospital 

effluent (suburban influent). Furthermore, relative abundance of ARGs in urban effluent 

and the surface water in which the urban effluent was released were determined. In 

addition, we investigated the microbial composition of all samples in order to investigate 

whether hospital effluent affected the urban sewage microbiota, and to follow the fate of 

intestinal microbiota as sources of ARGs along this sample gradient.  
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Materials and Methods 

 

Sampling locations 

Sampling was conducted at the main hospital wastewater pipe of the University Medical 

Center Utrecht (UMCU), Utrecht in the Netherlands, and at two WWTP plants. One plant 

(termed „urban WWTP‟ in this manuscript) treats wastewater of approximately 290,000 

inhabitants of the city of Utrecht, including the investigated hospital and two other 

hospitals. The other plant („suburban WWTP‟ in Lopik, the Netherlands) treats 

wastewater of a suburban community of approximately 14,000 inhabitants and does not 

serve a hospital (Supplementary Figure 1). . Both plants apply secondary treatment 

including nitrification and denitrification in activated sludge systems. Phosphorus 

removal is performed chemically in the urban WWTP, and biologically in the suburban 

WWTP. The hospital has approximately 1,000 beds and 8,200 employees (full-time 

equivalents). Additionally, some 2,500 students are enrolled at the university hospital. 

Sampling and DNA isolation 

Samples were taken during a period of 2.5 weeks in Spring on four days (Monday 31 

March 2014 = t1; Wednesday 2 April 2014 = t2; Monday 7 April 2014 = t3 and Monday 

14 April 2014 = t4). Cumulative precipitation in the three days preceding each sampling 

date amounted to maximally 15 mm. The daily flows amount to 74,800 ± 5,900 m3 for 

the urban WWTP, and 3,390 ± 380 m3 for the suburban WWTP during the four sampling 

days. The flows of the academic hospital amount to approximately 216,000 m3 on a 

yearly basis, i.e. on average 590 m3 per day (0.8% of the influent of the urban WWTP). 

Exact quantification of the flows of the academic hospital is not possible, as the daily 
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flows are not regularly registered. Flow-proportional sampling (over 24 hours) was used 

for sampling hospital wastewater and WWTP influent and effluent. Samples were kept at 

4°C during flow-proportional sampling. For the surface water samples, grab samples (5 

L) were taken at 50 cm downstream of the two effluent pipes of the urban WWTP 

discharging into a local river at a depth of 20 cm, in order to obtain a river sample under 

the direct influence of WWTP effluent. Samples were transported to the laboratory at 

4°C and samples were processed the same day. The biomass of the collected water 

samples was concentrated for subsequent DNA extraction (the samples ranging from 

4.4 Liter (urban WWTP effluent) to 0.9 Liter (hospital sewage, urban and suburban 

influent)). Cells and debris of sewage and surface water samples were pelleted by 

centrifugation (14000 g for 25 minutes). All pellets were resuspended in phosphate 

buffered saline (PBS; 138 mM NaCl, 2.7 mM KCl, 140 mM Na2HPO4, 1.8 mM KH2PO4, 

adjusted to pH 7.4 with HCl) with 20% glycerol and stored at -80 C° until DNA extraction. 

DNA was extracted from 200 µl of frozen samples as described previously (Godon et al., 

1997).  

16S rRNA gene sequencing and sequence data pre-processing 

16S rRNA gene sequencing was performed on the Illumina MiSeq sequencing platform 

(San Diego, CA). A dual-indexing approach for multiplex 16S rRNA sequencing targeting 

the V3-V4 hypervariable region of the 16S rRNA gene was employed as described by 

(Fadrosh et al., 2014), using the 300 bp paired-end protocol to sequence a pool of 24 

samples. Untrimmed paired-end reads were assembled using the FLASH assembler, 

which performs error correction during the assembly process (Magoc & Salzberg, 2011). 

Removal of the barcodes, heterogeneity spacers, and primer sequences, resulted in a 
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total of 1.4 million joined reads with a median length of 424 bases and a median number 

of 57860 joined reads per sample.  

16S rRNA gene sequence data analysis 

Joined reads were further analyzed using the QIIME microbial community analysis 

pipeline (version 1.8.0) (Caporaso, Kuczynski et al., 2010). Joined reads with a minimum 

of 97% similarity were assigned into operational taxonomic units (OTUs) using QIIME's 

open-reference OTU calling workflow. This workflow was used with the “-m usearch61” 

option, which uses the USEARCH algorithm (Edgar, 2010) for OTU picking and 

UCHIME for chimeric sequence detection (Edgar et al., 2011). Taxonomic ranks for 

OTUs were assigned using the Greengenes database (version 13.8) (McDonald et al., 

2012) with the default parameters of the script pick_open_reference_otus.py. A 

representative sequence of each OTU was aligned to the Greengenes core reference 

database (DeSantis et al., 2006) using the PyNAST aligner (version 1.2.2) (Caporaso, 

Bittinger et al., 2010). Highly variable parts of alignments were removed using the 

filter_alignment.py script, which is part of the pick_open_reference_otus.py workflow. 

Subsequently, filtered alignment results were used to create an approximate maximum-

likelihood phylogenetic tree using FastTree (version 2.1.3) (Price et al., 2010). For more 

accurate taxa diversity distribution (Bokulich et al., 2013), OTUs to which less than 

0.005% of the total number of assembled reads were mapped, were discarded using the 

filter_otus_from_otu_table.py script with the parameter “--min_count_fraction 0.00005”. 

The filtered OTU table and generated phylogenetic tree were used to assess within-

sample (alpha) and between sample (beta) diversities.  
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Alpha- and beta-diversity of samples were assessed using QIIME's 

core_diversity_analyses.py workflow. For rarefaction analysis the subsampling depth 

threshold of 20681 was used, which was the minimum number of reads assigned to a 

sample. The UniFrac distance was used as input to calculate the Chao1 index as a 

measure of beta-diversity of the samples ( Lozupone & Knight, 2005). In addition to 

alpha- and beta-diversity analysis and visualizations, this workflow also incorporates 

principal coordinates analysis and visualization of sample compositions using Emperor 

(Vazquez-Baeza et al., 2013). Differences in the abundance of taxa are shown as 

averages over the four time points ± standard deviation resulting in six different 

comparisons between the different samples. The non-parametric Mann-Whitney test 

was used to test for significance; p values were corrected for multiple testing by the 

Benjamin-Hochberg procedure (Benjamini & Hochberg, 1995) with a false discovery rate 

of 0.05. The Kruskal-Wallis test was used to test for differences in the microbiota 

composition between the four sampling time points at the six sites.  

High-throughput qPCR 

Real-Time PCR analysis was performed using the 96.96 BioMark™ Dynamic Array for 

Real-Time PCR (Fluidigm Corporation, San Francisco, CA, U.S.A), according to the 

manufacturer‟s instructions, with the exception that the annealing temperature in the 

PCR was lowered to 56°C. DNA was first subjected to 14 cycles of Specific Target 

Amplification using a 0.18 μM mixture of all primer sets, excluding the 16S rRNA primer 

sets, in combination with the Taqman PreAmp Master Mix (Applied Biosystems), 

followed by a 5-fold dilution prior to loading samples onto the Biomark array for qPCR. 

Thermal cycling and real-time imaging was performed on the BioMark instrument, and 
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Ct values were extracted using the BioMark Real-Time PCR analysis software. A 

reference sample consisting of pooled untreated wastewater DNA (hospital, urban and 

suburban) was loaded in a series of 4-fold dilutions and was used for the calculation of 

primer efficiency. All primers whose efficiency was experimentally determined to be 

between 80% and 120% were used to determine the normalized abundance of the 

target genes. The detection limit on the Biomark system was set to a Ct value of 20. In 

addition, to assess primer specificity we performed melt curve analysis using the 

Fluidigm melting curve analysis software (http://fluidigm-melting-curve-

analysis.software.informer.com/). All PCRs were performed in triplicate and sample-

primer combinations were only included in the analysis when at least two of the triplicate 

reactions resulted in a CT-value below the detection limit.  

Other technical details of the nanolitre-scale quantitative PCRs to quantify levels of 

genes that confer resistance to antimicrobials (antibiotics and quaternary ammonium 

compounds (QACs)) were described previously (Buelow et al., 2017), with some 

modifications in the primers sequences (Supplementary Table 1).  

Calculation of normalized abundance and cumulative abundance 

Normalized abundance of resistance genes was calculated relative to the abundance of 

the 16S rRNA gene 2^(-(CTARG – CT16S rRNA)) . Data was log2 transformed for 

visualization by means of a heatmap that was generated using Microsoft Excel 2016 

(Figure 3). Cumulative abundance of each resistance gene family was calculated based 

on the sum of the normalized relative abundance 2^(-(CTARG – CT16S rRNA)) of all genes 

detected within a resistance gene family.. The non-parametric Mann-Whitney test was 

used to test for significance; p values were corrected for multiple testing by the 

Benjamin-Hochberg procedure (Benjamini & Hochberg, 1995) with a false discovery rate 
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of 0.05. The Kruskal-Wallis test was performed to test for differences in the resistome 

compositions between the four sampling time points at the six sites.  

qPCR to determine absolute copy numbers of 16S rRNA genes 
 
 qPCRs for the quantification of 16S rRNA were performed with the same primers that 

were used in the high-throughput qPCR (Supplementary Table 1). A PCR fragment 

(112bp) was generated using chromosomal DNA of E. coli DH5α as template and serial 

dilutions of this fragment were used to generate a standard curve. The qPCR was 

performed using Maxima SYBR Green/ROX qPCR Master Mix (Thermo Scientific, 

Leusden, The Netherlands) and a StepOnePlus instrument (Applied Biosystems, 

Nieuwekerk a/d IJssel, The Netherlands) with 5 ng DNA in the reaction and the following 

program: 95°C for 10 min, and subsequently 40 cycles of 95°C for 15 sec, 56°C for 1 

min. 

 

Results 

Composition of the microbiota of hospital sewage, WWTP influent, WWTP effluent 

and river water.  

The composition of the microbiota in hospital sewage, urban and suburban WWTP 

influents, the effluent of the urban WWTP and the surface water in which the effluent 

was released was determined by multiplexed 16S rRNA gene sequencing on the 

Illumina MiSeq platform (Figure 1A and Supplementary Table 2). At all sample sites, the 

microbiota consisted of a complex consortium of bacteria from different orders with the 

microbiota being most diverse in the effluent-influenced river samples and least diverse 

in hospital sewage (Supplementary Figure 2). Hospital sewage contained relatively high 
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levels (39.1 (± standard deviation of 1.9%) of anaerobic bacteria (Bifidobacteriales, 

Bacteroidales and Clostridiales) that are likely to originate from the human gut (Rajilic-

Stojanovic & de Vos, 2014). These orders were less abundant in WWTP influent (25.7 ± 

6.7%) and suburban WWTP influent (27.0 ± 2.7%; p < 0.05) compared to hospital 

sewage. Compared to the WWTP influent, abundance of Bifidobacteriales, 

Bacteroidales and Clostridiales was significantly (p < 0.05) lower in WWTP effluent (12.1 

± 2%) and effluent-influenced river water (7.0 ± 1.2% for site 1 and 10.2 ± 1.4% for site 

2). In contrast, bacteria that are associated with activated sludge, such as the 

Actinomycetales, Rhodocyclales, and Burkholderiales (Zhang et al., 2012) became more 

prominent during passage through the sewerage system and WWTP (Figure 1A and 

Supplementary Table 2). Principal coordinates analysis (PCoA) showed a clear 

distinction between the samples that were isolated prior to treatment in the WWTP and 

the samples of WWTP effluent and river water under direct influence of effluent (Figure 

1B). The three most abundant bacterial taxa detected in the hospital sewage were the 

genera Streptococcus (9.0%) and Arcobacter (6.9%) and the family Ruminococcaceae 

(6.3%). Both raw sewage influents (urban WWTP influent, suburban WWTP influent) 

clustered together and in both sites, the same three bacterial taxa were most abundant 

(Arcobacter: 17.9% in urban WWTP influent; 17.5% in suburban WWTP influent; 

Aeromonadaceae: 11.2% and 12.4% respectively; Carnobacteriaceae, 9.4% and 8.3% 

respectively). The comparison of urban WWTP influent with suburban WWTP influent 

shows that there is no significant difference in the microbiota composition between the 

two sewage influents (p=0.87).  The urban WWTP effluent samples were very similar to 

the surface water samples that were collected in close proximity of the effluent release 

pipes. Urban WWTP effluent shared the same three most common OTUs with one of the 
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effluent-influenced water samples (Actinomycetales, 15.4% in urban WWTP effluent and 

9.7% in effluent-influenced river site 2; Procabacteriaceae, 8.1% and 7.1% respectively; 

Comamonadaceae, 7.6% and 7.7% respectively). The surface water sample collected at 

the other release pipe (effluent-influenced river site 1) was slightly different and is 

defined by the following three most abundant OTUs: Comamonadaceae, 7.5%, 

Intrasporangiaceae, 6.1% and Candidatus Microthrix, 6.1%.    

Resistome composition of hospital sewage compared to receiving urban sewage  

A total of 67 ARGs were detected in the different samples, conferring resistance to 13 

classes of antimicrobials. ARGs encoding efflux pumps that confer resistance to at least 

one of the 13 antimicrobial classes were also targeted, which resulted in the grouping 

and analysis of 14 ARG classes. The levels of ARGs were calculated as a normalized 

abundance relative to levels of the 16S rRNA gene, which provides an indication of the 

relative levels of ARGs within the bacterial population in each sample (Figure 2b, Figure 

3, and Supplementary Table 3). Absolute copy numbers of the 16S sRNA gene per 

milliliter of water were also determined as a proxy for bacterial biomass. The biomass in 

hospital sewage, urban WWTP influent and suburban WWTP influent were comparable 

(Figure 2a). Biomass in the urban WWTP effluent and the effluent-influenced river sites 

was 2 to 3 logs lower compared to the untreated sewage waters (Figure 2a). Hospital 

sewage was found to be richer in ARGs, than the other samples. The normalized 

abundance of 12 out of 14 classes of ARGs was significantly (p<0.05) higher in hospital 

sewage than in the urban WWTP influent, particularly so for aminoglycoside (12.0 ± 5.0-

fold higher in hospital sewage), β-lactam (15.4 ± 3.6-fold higher in hospital sewage) and 

vancomycin resistance genes (175 ± 14-fold higher in hospital sewage, based on the 
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three days when vancomycin resistance genes could be detected in the WWTP influent). 

Only the streptogramin resistance gene vatB was significantly less abundant (p<0.05) in 

hospital sewage than in WWTP influent. The combined levels of chloramphenicol and 

quinolone resistance genes were not different between the sites. Seven ARGs (two 

aminoglycoside resistance genes, aph(2”)-Ib and aph(2”)-I(de), the quinolone resistance 

gene qnrA, the erythromycin resistance gene ermC, the vancomycin resistance gene 

vanB, the AmpC-type β-lactamases blaDHA-1 and blaCMY-2 and the carbapenemase 

blaNDM) were only detected in hospital sewage (Figure 3). The carbapenemase blaIMP 

was detected in effluent and river water samples, but not in hospital sewage or WWTP 

influent. The relative abundance of ARGs in the urban WWTP influent, which receives 

sewage from the sampled hospital and two additional hospitals in the same city, and the 

suburban WWTP influent is comparable and not significantly different for any of the 

detected ARG families (Figure 2b, Figure 3, and Supplementary Table 3). For nine 

classes of antibiotics (aminoglycosides, β-lactams, chloramphenicols, macrolides, 

polymyxins, puromycins, trimpethoprim, quinolones, and tetracyclines), and for ARGs 

encoding efflux pumps, the levels of ARGs in the urban WWTP effluent were 

significantly (p <0.05) lower than in the WWTP influent (ranging between a 8.0 ± 2.3-fold 

reduction for macrolide resistance genes to a 2.8 ± 0.9-fold reduction for β-lactam 

resistance genes), with the remaining classes of ARGs not changing significantly in 

abundance (Figure 2b, Figure 3 and Supplementary Table 3). The levels of ARGs in 

WWTP effluent were comparable to the levels of ARGs in effluent-influenced river water 

(Figure 2b, Figure 3 and Supplementary Table 3).  
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Discussion  

Our study demonstrates that hospital sewage harbours considerable levels of ARGs. 

The influents of the urban and suburban WWTPs studied here show very similar levels 

of ARGs, even though the urban WWTP receives sewage from a variety of sources 

including three hospitals, while the sub-urban WWTP does not have a hospital in its 

catchment area. This reflects the relatively limited effect of hospital sewage on the level 

of ARGs in WWTP influent and the low contribution of hospital sewage (an estimated 

0.8%) to the total volume of wastewater treated in the urban WWTP that we 

investigated. Our study further demonstrates the capacity of WWTPs to importantly 

reduce the relative abundance of ARGs that are present in urban WWTP influent. 

Effluents from WWTPs are thought to contribute to the dissemination of pollutants, multi-

drug resistant bacteria and resistance genes in the environment (Rizzo et al., 2013; 

Wellington et al., 2013; Karkman et al., 2017). Particularly high levels of ARB and ARGs 

have previously been reported in hospital sewage (Diwan et al., 2010; Wellington et al., 

2013; Harris et al., 2013; Harris et al., 2014; Berendonk et al., 2015; Rowe et al., 2017). 

Large amounts of antibiotics and QACs are used in hospitals and these may promote 

the establishment of ARB and selection of ARGs in patients and hospital wastewaters 

(Stalder et al., 2014; Varela et al., 2014; Rodriguez-Mozaz et al., 2015; Barancheshme 

& Munir, 2018). Here we show that the relative abundance of a broad range of ARGs 

conferring resistance to 11 classes of antimicrobials is significantly higher in hospital 

sewage compared to urban and suburban WWTP sewage. In particular, genes 

conferring resistance to aminoglycosides, β-lactams and vancomycin are enriched in 

Downloaded from https://academic.oup.com/femsec/advance-article-abstract/doi/10.1093/femsec/fiy087/4995906
by Universite Laval user
on 15 May 2018



hospital sewage, presumably due to the frequent use of these classes of antibiotics in 

the hospital (Chandy et al., 2014).  

The most abundant bacterial taxa detected in the hospital sewage are different from 

those found in the urban and suburban WWTP influent, which are dominated by 

bacterial taxa (Arcobacter; Aeromonadaceae; Carnobacteriaceae) that are commonly 

found in the microbial sewerage  ecosystem (Moreno et al., 2003; Vandewalle et al., 

2012; Shanks et al., 2013; Fisher et al., 2014). Compared to the WWTP influent 

samples, several members of the human gut microbiota are significantly more abundant 

in hospital sewage, most probably due to the close proximity of the sampling location to 

the hospital sanitation systems. These human-associated taxa include the genus 

Streptococcus, of which many species interact with humans either as commensals or 

pathogens (Kalia et al., 2001), and the Ruminococcaceae, which are one of the most 

prevalent bacterial families in the human gut (Arumugam et al., 2011; Lozupone et al., 

2012). These human-associated bacteria appear to be ill-suited for surviving the 

complex and, at least partially oxygenated, sewage environment and progressively 

decrease in abundance, leading to lower levels of human gut-associated bacteria in the 

urban WWTP influent (Pehrsson et al., 2016). Because most ARGs from the human 

microbiota appear to be carried by non-pathogenic commensal bacteria (Sommer et al., 

2009; Buelow et al., 2014), a general loss of human commensal bacteria in the 

sewerage system (Pehrsson et al., 2016) may contribute to a decrease in the 

abundance of ARGs during the passage of wastewater through the sewerage system.  

The reduction of ARGs shown in urban WWTP effluent compared to WWTP influent may 

be explained by a further significant reduction of the relative abundance of human-
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associated bacterial taxa. The continuous reduction of these bacterial taxa could be 

mediated by their removal through sorption to activated sludge, by replacement with the 

bacteria that populate activated sludge, and/or by predation of protozoa during 

wastewater treatment (Wen et al., 2009; Calero-Caceres et al., 2014).  Interestingly, the 

presence of Procabacteriales in WWTP effluent and effluent-influenced river water may 

point towards a relatively high abundance of protists in these samples, as these bacteria 

are intracellular symbionts or pathogens of amoeba (Horn et al., 2002; Greub & Raoult, 

2004).   

Sampling for this study was limited to one single season, but was repeated on four days 

in dry weather conditions using mostly flow-proportional sampling as previously 

recommended (Ort et al., 2010). Microbiota and resistome profiling of our samples 

showed limited variation between the four sampling days for each sample, hence 

allowing for analysis of the treatment efficacy on the removal of ARGs relative to 16S 

rRNA in this particular WWTP. The reduction of the abundance of ARGs from hospital 

sewage to WWTP effluent highlights the importance of wastewater treatment in reducing 

the discharge of ARGs originating from human sources into the environment. However, 

the detection of blaIMP in some of the WWTP effluent samples, while being non-

detectable in all WWTP influent samples, suggests that this gene is present in the 

WWTP ecosystem and is shed into the environment through this effluent. Notably, blaIMP 

was previously detected in the activated sludge of WWTPs in China and the USA (Yang 

et al., 2012). The blaIMP gene encodes a carbapenemase and is clinically mostly 

associated with Pseudomonas aeruginosa but it has also been detected in Beta- and 

Gammaproteobacteria of environmental origin (Riccio et al., 2000; Zhao & Hu, 2011). 
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With respect to the abundance of ARGs relative to the 16S rRNA gene, it has been 

debated whether sewage treatment could selectively affect the percentage of resistant 

bacteria within a given species, or within the total community (Rizzo et al., 2013; Laht et 

al., 2014; Alexander et al., 2015). Here, and in line with (Karkman et al., 2016), we 

observed that wastewater treatment led to a decrease in the relative abundance of the 

majority of ARGs.  Absolute copy numbers of 16S rRNA genes per ml water are 2-3 log 

lower in effluent than in influent, i.e. the decrease in the abundance normalized to the 

16S rRNA gene observed here translates to an even larger decrease in the absolute 

abundance (in copies/ml) of ARGs.  

Advanced water treatment methods have been proposed as a selective measure for 

hospital wastewater, specifically to decrease pharmaceuticals and the release of 

pathogens by hospitals (Lienert et al., 2011). For the investigated municipal sewerage 

system, hospital wastewater seems to play a limited role for the level of resistance 

genes in the influent. Our findings suggest that -in the presence of operational WWTPs- 

hospital-specific sewage treatment will not lead to a substantial further reduction of the 

release of ARGs into influent.  
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Figure 1: Microbiota composition of the sample locations at different time points. 
a: Relative abundance of bacteria at the order level in different samples as detected by 
dual indexing 16S rRNA Illumina MiSeq sequencing. The 24 most abundant bacteria at 
the order level for all samples are depicted, where the “others” represents percentage of 
the remaining taxa and “Unassigned” shows percentage of OTUs that could not be 
assigned to any known taxonomy. The different sampling time points are indicated as t1 
(Monday 31 March 2014); t2 (Wednesday 2 April 2014); t3 (Monday 7 April 2014); t4 
(Monday 14 April 2014). b: Principal coordinates analysis (PCoA) of microbiota 
composition for all different sampling locations and time points. PCoA based on the 
weighted UniFrac distance depicts the differences in microbiota compositions.  
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Figure 2: Biomass (copies of 16S rRNA gene/ml) and averaged relative abundance 
levels of ARG classes at the different sites.  

a: Copies of 16S rRNA genes per ml as indicator for bacterial biomass at the different 
time points (t1-t4) for the individual sites. b:16S rRNA - normalized abundance of ARG 
families detected in all samples. The cumulative abundance of the ARG classes 
detected for the different samples per site are averaged over all time points (t1-t4) and 
shown as an averaged fold-change ± standard deviation. ARGs are grouped according 
to resistance gene classes (aminoglycosides; bacitracin, β-lactams;  chloramphenicols; 
macrolides; efflux; polymyxins; QAC (quaternary ammonium compounds) resistance 
genes; quinolones; streptogramins; sulphonamides; tetracyclines; trimethoprim; 
vancomycin).  
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Figure 3: Relative abundance levels of individual ARGs in hospital sewage, urban 
and suburban WWTP influent, urban WWTP effluent and effluent-influenced river 
water.  

16S rRNA - normalized abundance of individual ARGs detected in all samples. ARGs 
are grouped according to resistance gene families (aminoglycosides; B, bacitracin, β-
lactams; C, chloramphenicols; macrolides; efflux; P, polymyxins; Qa, QAC resistance 
genes; Qi, quinolones; St, streptogramins; Su, sulphonamides; tetracyclines; Tr, 
trimethoprim; V, vancomycin). The colour scale ranges from bright red (most abundant) 
to bright yellow (least abundant). White blocks indicate that a resistance gene was not 
detected. The different sampling time points are indicated as t1 (Monday 31 March 
2014); t2 (Wednesday 2 April 2014); t3 (Monday, 7 April 2014); t4 (Monday, 14 April 
2014). 
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