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ABSTRACT In this paper, we propose a 4 × 4 low-profile wideband patch array antenna with radiation
pattern agility. The digital-controllable antenna element is composed of a square driven patch, a 2×2 parasitic
patch array, and two switchable feeding ports, which are connected to a designed single-pole double-throw
switch. Due to the symmetrical structure, individual excitation at the two feeding ports produces a 180◦ phase
difference, giving rise to two basic digital elements of ‘‘0’’ and ‘‘1,’’ respectively. By switching the feeding
ports for all antenna elements using a micro-controller unit, the radiation beam of the 4×4 array antenna can
be dynamically reconfigured. To validate the proposed concept, a prototype operating at 5.7 GHz with an
overall size of 3.42λ0 × 3.42λ0 × 0.069λ0(λ0 is the free-space wavelength at 5.7 GHz) was fabricated
and measured. The measured 10-dB return loss bandwidths for all the states cover the frequency band
of 5.12–6.32 GHz. The simulated and measured results show close agreement, which proves the powerful
dynamical beam manipulation capability of the proposed array antenna.

INDEX TERMS Electronic beam switching, low profile, wideband, stacked patch structure,
digital-controllable, array antenna.

I. INTRODUCTION
Compact and multifunctional antenna is one of the key
components of the rapidly developing 5G wireless system,
which is required to have the ability to provide multi-
ple radiation beams and switchable operating bandwidths.
In recent years, reconfigurable antennas, capable of switching
operating frequency [1], polarization [2], [3], radiation pat-
tern [4]–[6], or combinations of the above [7], have attracted
extensive attention from 5G wireless systems. In particular,
pattern reconfigurable antennas [8]–[10], with the ability to
dynamically switch radiation beam, have the advantages of
avoiding interference of noise sources, improving security,
and enhancing system performance.

Recently, a number of beam switchable antennas [11]–[22]
have been proposed based on different techniques. With rel-
atively narrow bandwidths, good beam-switching capabil-
ity has been demonstrated in [11] and [12] using coaxial
feeding or three-bit digital switch. Reconfigurable reflec-
tarray [15], [16] and transmitarray [17], [18] have been
developed with high gains. In [16], a dual-frequency 1-bit
antenna element was used in a 1600-element reconfigurable

reflectarray with excellent beam scanning performance.
In [18], a 400-element reconfigurable transmitarray in
X-band was presented to synthesize monopulse radiation
patterns for radar applications. More recently, some digitally
codingmetasurfaces [19]–[21] were proposed to dynamically
manipulate far-field beams by using p-i-n diodes. Compared
to conventional phased arrays, the technique of using p-i-n
diodes to adjust the scattering electromagnetic waves offers
an effective alternative to reconfigure the radiation beam
with low cost and low weight [15]–[21], but at a cost of
radiation performance in terms of side lobe level, scanning
resolution and scanning range. On the other hand, compared
with conventional switched beam antennas [8], [11]–[14], the
coding technique using p-i-n diodes [15]–[21] can provide
more switching radiation states. Hence, for applications in 5G
internet-of-thing (IoT) and cellular systems which require
low cost and dynamically switched multiple beams, the cod-
ing technique could be a very good choice.

In our previous work, a 2 × 2 low profile wideband
pattern reconfigurable stacked patch antenna array with four
switchable beams was briefly demonstrated [22] using four
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single-pole-double-throw (SPDT) switches. This paper
extends the idea in [22] with a wider operating bandwidth
and an enhanced beam manipulation capability by using
digital controlling technique [15]–[21] for a 4 × 4 array.
A number of radiation beams including sum-, quad-, as well
as difference-beams in different directions can be realized
in a wide frequency band by adjusting the coding sequence.
Due to the symmetrical structure of the radiation element,
individual excitation at the two ports can cause a 180◦ phase
difference over the broad operating frequency band. So, the
two symmetrical ports can be used to mimic the two basic
digital elements of ‘0’ and ‘1’, respectively, by using p-i-n
diodes. This paper is organized as follows. The operational
scheme and detailed design of the proposed array antenna are
presented in Section II, where multiple radiation beams under
different coding sequences are demonstrated with simulation
results. In Section III, experiments are performed to validate
the designed array antenna prototype. Finally, conclusions are
drawn in Section IV.

FIGURE 1. Geometrical configuration of the proposed wideband 1-bit
antenna element. (a) Side view. (b) Top view. (w1=14.6mm, g=2.2mm,
w0=13.4mm, W=1.5mm, L=3.5mm, df=7.8mm, ds=1mm, d= 1.4mm,
h1=0.508mm, h2=0.1mm, h3=0.508mm, h4=2mm, h5=0.508mm)

II. ARRAY ANTENNA DESIGN
A. 1-BIT ANTENNA ELEMENT
The geometrical configuration of the proposed 1-bit digi-
tal antenna element and the detailed dimensions are shown
in Fig. 1. The proposed antenna element is composed of three
layers: the parasitic patch layer, the driven patch layer, and the
feeding network layer. These are designed on two 0.508-mm

thick RO4350 substrates (εr = 3.66 and tanδ = 0.004 at
10 GHz), and a 0.508-mm thick TLY-5 substrate (εr = 2.2
and tanδ = 0.0009 at 10 GHz). The driven patch layer and
the feeding network layer are joined together using a piece
of bonding film, which is a 0.1-mm thick RO4450 substrate
(εr = 3.48 and tanδ = 0.004 at 10 GHz). The driven
patch layer consists of a square patch with a width of w0,
and two switchable feeding ports. The parasitic patch layer
is comprised of four square patches. The length of the four
parasitic patches and the gap between adjacent patches are
denoted byw1 and g, respectively. The height of substrates
and the air gap are h1, h2, h3 and h5, as shown in Fig. 1(a).
The driven patch is fed by a probe through a microstrip stub
with a dimension of W × L. The diameters of the circular
aperture at the ground plane and the feeding probe are d and
ds, respectively.

The initial sizes of the square driven patch and the par-
asitic patches are determined by the following empirical
formula [2]:

w0 = w1 =
λ0

2
√
εr

(1)

where λ0 is the free-space wavelength at the operation
frequency and εr is the relative dielectric constant of the
substrate.

FIGURE 2. Simulated return losses and gains of the designed antenna
element from different feeding ports.

The proposed antenna is designed and optimized by the
full-wave simulator HFSS. A prototype operating at 5.7 GHz
with a height of 0.069 λ0 is designed, and the final design
dimensions are included in the caption of Fig. 1. The
simulated reflection coefficients and gains of the designed
antenna element with different excitation ports are shown
in Fig. 2. The simulated 10-dB return loss bandwidth is from
5.05 to 6.3 GHz, approximately 21.9% fractional bandwidth.
The simulated gains are stable over the whole operating
frequency band, and the cross-polarization level is lower
than−30 dB. Simulated radiation patterns of the antenna ele-
ment at 5.7 GHz are plotted in Fig. 3(a) and (b) for excitation
at port 1 and 2, respectively, where co-polarization and cross-
polarization components at E- and H-plane are included for
comparison. Simulated results show that the antenna proper-
ties are almost identical for the two feeding ports. However, it
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FIGURE 3. Simulated radiation patterns of the antenna element for the
two different feeding ports. (a) Excitation at port 1; (b) Excitation at port2.

should be noted that a 180◦ phase difference between the two
feeding ports exists due to the structural symmetry.

In order to see the 180◦ phase-difference characteristic
of the proposed antenna element for the two feeding ports,
the simulated surface current distributions on the parasitic
patches are illustrated in Fig. 4. For the two excitations at
the respective ports, the current vectors are opposite, which
clearly demonstrates the 180◦ phase-difference between the
two feeding ports. It can be concluded that the proposed
antenna element exhibits good performance and produces
two phase states, i.e., θ + 0◦ and θ + 180◦, respectively.
Hence, the antenna element at each state can be considered
as a basic digital element, mimicking the ‘0’ (state 1) and
‘1’ (state 2) for 1-bit. For example, the excitation at port 1
represents the ‘0’ state and the port 2 denotes the ‘1’ state.
In the implementation, a 1-bit digital programmable antenna
element is developed using a SPDT switch.

The SPDT switch is designed and integrated with the
antenna element to switch between the two feeding ports. The
layout and simulated results of the SPDT switch are shown
in Fig. 5. Two p-i-n diodes (MADP-000907-14020) from
MACOM [23] and two 2-pF capacitors fromMurata are used.
To control the SPDT switch, a dc voltage is supplied to the
p-i-n diodes through a biasing circuit using a thin microstrip
line as the inductor and a fan-shaped sector microstrip as

FIGURE 4. Simulated surface current distributions on the parasitic patch
at two different time phases for the two feeding ports at 5.7-GHz.
(a) Excitation at port 1; (b) Excitation at port 2.

FIGURE 5. Layout and simulated results of the designed SPDT switch.
(a) Layout; (b) Simulated results (port 2 on and port 3 off).

the shorting capacitor, as shown in Fig. 5(a). By parameter-
tuning in the HFSS software, the SPDT switch achieves good
performance in terms of isolation and insertion loss within the
frequency band of 4.8-6.4 GHz. The final design parameters
are marked in the layout. The simulated input–output and
output–output isolations are higher than 22 dB, and the return
loss is higher than 15 dB in the operating frequency band.
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FIGURE 6. Layout of the antenna elements used to investigate the mutual
coupling effect along (a) E-plane and (b) H-plane.

FIGURE 7. Mutual couplings of the antenna elements at the E- and
H-plane.

The simulated results show that the SPDT switch is capable
of switching the feeding port for the 1-bit antenna element.

B. 4× 4 ARRAY ANTENNA
Firstly, to study the mutual couplings between antenna ele-
ments, the proposed antenna elements are positioned along
the E- and H-plane with the same center-to-center separa-
tion of 38 mm, as shown in Fig. 6. Fig. 7 shows the
simulated mutual couplings of the antenna elements at the
E- and H-plane, which exhibits the coupling level of less than
−17 dB in both E- and H-plane over the whole operating
frequency band.

Then, based on the proposed 1-bit antenna element, a 4×4
low profile wideband patch array antenna with dynamically
tunable radiation beam is developed. Fig. 8(a) shows the
top view of the array antenna. The 16 antenna elements
are positioned with an inter-element spacing of 38 mm
(0.72λ0 at 5.7 GHz). The bottom view of the array antenna

FIGURE 8. Layout of the proposed antenna array. (a) Top view. (b) Bottom
view.

is depicted in Fig. 8(b), showing the 16-way power divider
integrated with SPDT switches and the dc biasing circuits.
Each antenna element can be independently controlled, and
the radiation beams of the array antenna can be dynamically
switched through different coding sequences of ‘0’ and ‘1’.
The simulated 3D radiation patterns of the proposed array
antenna under different coding sequences are shown in Fig. 9,
where the ‘0’ state and ‘1’ state are represented by the
black and white patch, respectively. Sum beam, difference
beams, two- and four-beam splitting can be achieved through
spatial mixtures of these 1-bit digital antenna elements. For
example, when the coding sequence of E1∼E16 is set as
0000000000000000, a sum beam can be generated in the
far-field as shown in Fig. 9(a), whereas under the coding
sequence of 0011001100110011, a difference beam can be
achieved as seen in Fig. 9(b). Two-beam splitting as shown
in Fig. 9 (d)-(e) and (h)-(m) and four-beam splitting as shown
in Fig. 9(f) and (g) are also produced by proper coding
sequences. It is worth noting that each radiation beam pattern
can also be generated by the corresponding complementary
coding sequence.

III. EXPERIMENTS AND MEASUREMENT RESULTS
To validate the simulated results, the designed 1-bit
digital-controllable array antenna has been prototyped
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FIGURE 9. Simulated far-field 3D radiation beams of the proposed 1-bit digital array antenna under
different coding sequences at the center frequency of 5.7 GHz. (a) Mode 1 (0000000000000000). (b) Mode 2
(0011001100110011). (c) Mode 3 (0000000011111111). (d) Mode 4 (1001100110011001). (e) Mode 5
(1111000000001111). (f) Mode 6 (1100110000110011). (g) Mode 7 (0110100110010110). (h) Mode 8
(1111001100010001). (i) Mode 9 (0001000100111111). (j) Mode 10 (1110100000010111). (k) Mode 11
(1100100110010011). (l) Mode 12 (0111000110001110). (m) Mode 13 (0011100110011100). (n) Color scale.

FIGURE 10. (a) Photograph of the antenna prototype. (b) The
measurement setup.

and measured. The photograph of the fabricated prototype
is shown in Fig. 10(a). M3 nylon bolts and plastic wash-
ers with a thickness of 2 mm are used to support the
parasitic patch layer. In measurement, a MCU hardware
(STM32F103V8) [24] is used to digitally control the coding
sequences. The reflection coefficients of the proposed digital-
controllable array antenna under different coding sequences
are measured by Agilent Vector Network Analyzer (VNA),
and the results are plotted in Fig. 11. It can be observed that

FIGURE 11. Measured reflection coefficients of the fabricated array
antenna at different states.

the measured 10-dB return loss bandwidths for all modes
cover a wide frequency band from 5.12 to 6.32 GHz, approx-
imately 21.4% fractional bandwidth.

The radiation properties under different coding sequences
are measured in microwave anechoic chamber using a near-
field test method [25]. A photograph of the measurement
setup is shown in Fig. 10(b). The far-field radiation patterns
are obtained through the near-field to far-field transformation.
The measured 5.7 GHz 3D normalized radiation beams under
different coding sequences are illustrated in Fig. 12. From
Fig. 9 and 12, it can be observed that the measured results
agree well with the simulated results.

The measured and simulated far-field radiation patterns at
corresponding cut-planes are compared at 5.7 GHz, as shown
in Fig. 13-16. The results for Mode 1 are compared at both
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FIGURE 12. Measured 5.7 GHz normalized 3D radiation beams of the proposed 1-bit digital array antenna under different coding
sequences.

FIGURE 13. Measured and simulated 5.7 GHz normalized radiation
patterns of the array antenna for Mode 1.

E- and H-plane, showing a close agreement between the sim-
ulation and experiment. It is worthwhile to point out here
that the Mode 1-3 can be used as a monopulse antenna,
where Mode 1 produces a sum beam, and Mode 2-3 produce
two difference beams. The measured null-depth for Mode 2
and Mode 3 are −22.5 dB and −23 dB, respectively. For
Mode 6 and Mode 7, four beams can be produced in the
four quadrants, φ = 45◦, 135◦, 225◦ and 315◦. The radi-
ation patterns at these two cut-planes are drawn in Fig. 16.
The measured half power beam-widths (HPBWs) and beam
direction for Mode 1-7 at 5.7 GHz have been listed in Table 1.
As confirmed in Fig. 13-16, the measured results are in good

FIGURE 14. Measured and simulated 5.7 GHz E-plane normalized
radiation patterns of the array antenna for Mode 2 and Mode 4.

agreement with the simulation except that the measured null-
depths are higher than the simulated results. This is caused
by the relatively low isolation between the output ports of the
SPDT. This can be improved by adopting a higher isolation
switch, such as a MEMS switch.

To view the radiation performance over the whole operat-
ing frequency band, the measured far-field radiation patterns
versus angle and frequency for the Mode 1-3 are illustrated
in Fig. 17-19. The measured radiation patterns for Mode 1
(sum beam) at the E- and H-plane are plotted in Fig. 17,
which clearly shows that the radiation pattern is stable over
the operating frequency band of 5.1-6.3 GHz. The difference
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FIGURE 15. Measured and simulated 5.7 GHz H-plane normalized
radiation patterns of the array antenna for Mode 3 and Mode 5.

FIGURE 16. Measured and simulated 5.7 GHz normalized radiation
patterns of the array antenna for Mode 6 and Mode 7. (a) 45-degree
plane. (b) 135-degree plane.

beams at the H-plane (Mode 2) and E-plane (Mode 3) are
shown in Fig. 18 and Fig. 19, respectively. The traditional
180◦ phase shifter, in the form of a half-wavelength transmis-
sion line, has a narrow frequency band. When the operating
frequency departures the center frequency, the prescribed
phase difference cannot be satisfied. So, the null-angle will
normally deviate slightly from the boresight direction. Here,
no deviation of the null-angle is observed at the boresight
direction over the broad operating frequency band due to the

TABLE 1. Measured HPBWs and beam direction for mode 1-7.

FIGURE 17. Measured radiation patterns as a function of frequency for
Mode 1. (a) E-plane. (b) H-plane

symmetrical structure used, as confirmed in Fig. 17-19. It can
be concluded that the radiation gains and null-depth are stable
over the whole operating bandwidth for Mode 1-3, which can
be used as a monopulse antenna.

Themeasured gain and radiation efficiency at the boresight
direction for the sum beam (Mode 1) are presented in Fig. 20,
where the simulated results are also presented for compari-
son. Themeasured peak gain, including the loss of the feeding
network, SPDT switches, SMA connectors, and conductors,
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FIGURE 18. Measured radiation patterns as a function of frequency for
Mode 2.

FIGURE 19. Measured radiation patterns as a function of frequency for
Mode 3.

FIGURE 20. Measured and simulated gain and radiation efficiency of the
fabricated antenna for the sum beam (mode 1).

achieves 19 dBi at 6GHz and the 3-dB gain bandwidth is from
5.1 to 6.35 GHz, approximately 21.9% fractional bandwidth.
This indicates that the measured gain is stable over a wide
frequency band. The measured radiation efficiency, which
is obtained by calculating the ratio of the measured gain to
the simulated directivity, is around 60% within the whole
operating frequency band. Due to the symmetrical structure,
the radiation efficiency for other modes is similar with that
for the sum beam.

Finally, comparisons between previously reported beam
switchable antennas and this work are made in Table 2.

TABLE 2. Performance comparison with previously reported beam
switchable antennas.

It is evident that the proposed pattern reconfigurable patch
antenna array in this work exhibits the widest impedance
bandwidth and the highest peak gain. It also has the ability
to control radiation beams, including single radiation beam,
double radiation beams as well as multiple radiation beams.
In addition, the beams are stable over the whole operating
frequency band due to the symmetrical structure. This shows
that the proposed antenna has the flexibility in manipulating
the radiation beams over a wide frequency band.

IV. CONCLUSION
In this paper, a wideband 1-bit 4×4 digital-controllable patch
array antenna with dynamic beam manipulation capability
is developed. It consists of 16 1-bit antenna elements. The
operating bandwidths are broadened by adopting a stacked
patch structure and the probe-fed technique. The code of
each antenna element can be independently controlled, and
the radiation beams of the array antenna can be dynamically
switched through different coding sequences using a MCU.
Multiple radiation beams including sum beam, difference
beams as well as quad-beams can be achieved. A prototype of
array antenna is fabricated and tested under different coding
sequences. The measured results agree well with the simu-
lated results. The proposed array antenna shows the capability
of powerful dynamic beam manipulation, wide operating
bandwidth, and the ease of design and fabrication.
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