

University of Birmingham

KR=3L
Sridharan, Mohan

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Sridharan, M 2016, KR=3L: an architecture for knowledge representation, reasoning and learning in human-
robot collaboration. in K Talamadupula, S Sohabri & MS Campbell (eds), Proceedings of the IJCAI 2016
Workshop - Closing the Cognitive Loop: 3rd Workshop on Knowledge, Data, and Systems for Cognitive
Computing. pp. 24-30, IJCAI 2016 Workshop - Closing the Cognitive Loop: 3rd Workshop on Knowledge, Data,
and Systems for Cognitive Computing, New York, United States, 11/07/16.
<http://www.cs.toronto.edu/~shirin/CogComp-2016.Final.pdf>

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility 11/06/2018

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 03. May. 2024

http://www.cs.toronto.edu/~shirin/CogComp-2016.Final.pdf
https://birmingham.elsevierpure.com/en/publications/4226b3f3-262e-45f8-b033-5b66a5963f2a

KR3L: An Architecture for Knowledge Representation, Reasoning and Learning in
Human-Robot Collaboration

Mohan Sridharan
Electrical and Computer Engineering

The University of Auckland, New Zealand
m.sridharan@auckland.ac.nz

Abstract
This paper describes an architecture that combines
the complementary strengths of declarative pro-
gramming, probabilistic graphical models, and re-
inforcement learning. Reasoning with different de-
scriptions of incomplete domain knowledge and
uncertainty is based on tightly-coupled representa-
tions at two different resolutions. For any given
goal, non-monotonic logical inference with the
coarse-resolution domain representation provides a
plan of abstract actions. Each abstract action is
implemented as a sequence of concrete actions by
reasoning probabilistically over a relevant part of
the fine-resolution representation, committing high
probability beliefs to the coarse-resolution repre-
sentation. Unexplained plan step failures trigger re-
lational reinforcement learning for incremental and
interactive discovery of domain axioms. These ca-
pabilities are illustrated in simulated domains and
on a physical robot in an indoor domain.

1 Introduction
Consider a robot assisting humans in locating and moving
objects to specific places in an office with multiple rooms.
While the robot typically needs considerable domain knowl-
edge to perform these tasks, it is difficult for humans to pro-
vide comprehensive domain knowledge. The robot may be
equipped with some commonsense knowledge, e.g., “books
are usually in the library”, and exceptions to this knowl-
edge, e.g., “cookbooks are in the kitchen”. In addition, the
robot’s actions are non-deterministic, and any information ex-
tracted from sensor inputs is likely to be incomplete and un-
reliable. To assist humans in such domains, the robot thus
has to represent knowledge, reason, and learn, at both the
sensorimotor level and the cognitive level. This objective
maps to some fundamental challenges in knowledge repre-
sentation, reasoning, and learning. For instance, the robot has
to encode and reason with commonsense knowledge such that
the semantics are readily accessible to humans, while also
quantitatively modeling the uncertainty in sensing and actu-
ation. Furthermore, for computational efficiency, the robot
has to tailor sensing and actuation to tasks at hand, incremen-
tally and interactively revising its knowledge over time. As a

step towards addressing these challenges, the architecture de-
scribed in this paper combines the knowledge representation
and non-monotonic logical reasoning capabilities of declara-
tive programming, with the uncertainty modeling capabilities
of probabilistic graphical models, and the incremental and in-
teractive learning capability of reinforcement learning. Key
features of this architecture are:
• An action language describes transition diagrams of the do-

main at two resolutions, with the fine-resolution diagram
being a refinement of the coarse-resolution diagram.

• For any given goal, non-monotonic logical reasoning with
the coarse-resolution commonsense knowledge provides a
tentative plan of abstract actions.

• Each abstract action is implemented probabilistically as a
sequence of fine-resolution concrete actions, by zooming
to the relevant part of the fine-resolution diagram and con-
structing suitable data structures.

• Unexplained plan step failures trigger incremental and in-
teractive discovery of previously unknown domain axioms
using relational reinforcement learning.

In our architecture, we translate the coarse-resolution rep-
resentation to an Answer Set Prolog (ASP) program, and
construct a partially observable Markov decision process
(POMDP) for probabilistic planning. The architecture has
been demonstrated to support reasoning with violation of de-
faults, noisy observations, and unreliable actions in large,
complex domains [Colaco and Sridharan, 2015; Zhang et al.,
2015; Sridharan et al., 2016; Zhang et al., 2014]. Here, we
summarize the technical contributions, and some results of
experimental trials in simulation and on a mobile robot mov-
ing objects to specific places in an office domain.

2 Related Work
Knowledge representation, reasoning, and learning are well-
researched areas in robotics and AI. Logic-based represen-
tations and probabilistic graphical models have been used
to control sensing, navigation and interaction for robots and
agents [Bai et al., 2014; Galindo et al., 2008]. Formulations
based on probabilistic representations (by themselves) make
it difficult to perform commonsense reasoning, whereas clas-
sical planning algorithms and logic programming tend to re-
quire considerable prior knowledge of the domain and the
agent’s capabilities. For instance, theories of reasoning about
action and change, and the non-monotonic logical reasoning

ability of ASP have been used by an international community
for controlling the behavior of one or more robots [Balduccini
et al., 2014; Saribatur et al., 2014]. However, ASP does not
support probabilistic representation of uncertainty, whereas
a lot of information extracted from sensors and actuators is
represented probabilistically.

Researchers have designed architectures that combine de-
terministic and probabilistic algorithms for task and motion
planning [Kaelbling and Lozano-Perez, 2013], or combine
a probabilistic extension of ASP with POMDPs for human-
robot dialog [Zhang and Stone, 2015]. Recent work used a
three-layered organization of knowledge and reasoning, and
combined first-order logic with probabilistic reasoning for
open world planning [Hanheide et al., 2015]. Some popular
formulations that combine logical and probabilistic reason-
ing include Markov logic network [Richardson and Domin-
gos, 2006], Bayesian logic [Milch et al., 2006], and proba-
bilistic extensions to ASP [Baral et al., 2009; Lee and Wang,
2015]. However, algorithms based on first-order logic do not
provide the desired expressiveness—they do not support non-
monotonic logical reasoning, and it is not always possible to
express degrees of belief quantitatively, e.g., by adding prob-
abilities to logic statements. Algorithms based on logic pro-
gramming do not support all the desired capabilities such as
incremental revision of (probabilistic) information, and rea-
soning with a large probabilistic component.

Many tasks that require an agent to learn from repeated
interactions with the environment have been posed as Re-
inforcement Learning (RL) problems [Sutton and Barto,
1998]. As a step towards addressing fundamental chal-
lenges such as scaling and transfer of learned knowledge, re-
lational RL (RRL) combines relational representations with
regression for generalization [Dzeroski et al., 2001]. Exist-
ing approaches, however, use RRL for planning, and gen-
eralization is limited to a single MDP for a specific plan-
ning task [Driessens and Ramon, 2003; Gartner et al., 2003;
Tadepalli et al., 2004].

As a step towards addressing the challenges described
above, we have developed architectures that couple declar-
ative programming, probabilistic graphical models, and rein-
forcement learning [Sridharan et al., 2016; 2015; Zhang et
al., 2015]. Here, we describe the architecture, and illustrate
its capabilities in simulation and in the context of a physical
robot assisting in an office domain.

3 Architecture Description
Figure 1 shows the components of our architecture. We illus-
trate the components using the following examples.

Office Domain: Consider a robot that is assigned the goal of
moving specific objects to specific places in an office. This
domain contains:

• Sorts such as place, thing, robot, and ob ject, with
ob ject and robot being subsorts of thing. Sorts textbook,
printer and kitchenware, are subsorts of ob ject. Also,
sorts for object attributes color, shape, and size.

• Four specific places: o f f ice, main library, aux library,
and kitchen. We assume that these places are accessible

ASP

POMDP

decision−making

Probabilistic

observations,
actions,

fluents action outcomes

Non−monotonic

logical reasoning

Representation

Coarse−resolution

Representation

Fine−resolution
probabilities

Formulation

Learning

Axioms

Reinforcement

Learning

Figure 1: Architecture integrates the complementary
strengths of declarative programming, probabilistic graphical
models, and reinforcement learning, for knowledge represen-
tation, reasoning, and learning, with qualitative and quantita-
tive descriptions of knowledge and uncertainty.

from each other without the need to navigate any corri-
dors, and that doors between these places are open.

• An instance of sort robot, called rob1. Also, a number of
instances of subsorts of the sort ob ject in specific places.

In this domain, coarse-resolution reasoning considers the lo-
cation of objects in places, while fine-resolution reasoning
considers the location of objects in grid cells in these places.
As an additional example used to illustrate the relational re-
inforcement learning, consider:

Blocks World (BW): a tabletop domain where the robot’s
objective is to stack blocks characterized by different col-
ors, shapes, and sizes, in specific configurations on a table.
The sorts of the BW domain include elements such as block,
place, color, shape, size, and robot. A scenario with four
blocks of the same size corresponds to ≈ 70 states under a
standard RL/MDP formulation [Dzeroski et al., 2001]. In this
domain, the robot may not know, for instance, that no block
can be placed on a prism-shaped block.

Action Language: The transition diagrams of our architec-
ture’s coarse-resolution and fine-resolution domain represen-
tations are described in an action language AL [Gelfond and
Kahl, 2014]. AL has a sorted signature containing three
sorts: statics (domain properties whose truth values cannot
be changed by actions), f luents (domain properties whose
values can be changed by actions) and actions (elementary
actions that can be executed in parallel). AL allows three
types of statements: causal laws, state constraints and exe-
cutability conditions.

3.1 Coarse-Resolution Planning and Diagnosis
The coarse-resolution domain representation has a system
description DH and histories with defaults H . DH con-
sists of a sorted signature (ΣH) that defines the names
of objects, functions, and predicates available for use,
and axioms to describe the coarse-resolution transition di-
agram τH . Examples of sorts in the example domain are

place, thing, and robot. The fluents and actions are de-
fined in terms of their arguments, e.g., in our domain,
loc(thing, place) and in hand(robot,ob ject) are some iner-
tial fluents1, and move(robot, place), grasp(robot,ob ject),
putdown(robot,ob ject), and put(ob ject,ob ject) are some
actions. Examples of axioms include causal laws such as:

move(R,Pl) causes loc(R,Pl)
grasp(R,Ob) causes in hand(R,Ob)

state constraints such as:

¬loc(Ob,Pl1) if loc(R,Pl2), Pl1 6= Pl2
loc(Ob,Pl) if loc(R,Pl), in hand(R,Ob)

and executability conditions such as:

impossible move(R,Pl) if loc(R,Pl)
impossible grasp(R,Ob) if loc(R,Pl1), loc(Ob,Pl2),

Pl1 6= Pl2
impossible grasp(R,Ob) if in hand(R,Ob)

The recorded history of a dynamic domain is usually a
record of (a) fluents observed to be true at a time step
obs(f luent,boolean,step), and (b) the occurrence of an ac-
tion at a time step hpd(action,step). Our architecture ex-
pands on this view by allowing histories to contain (priori-
tized) defaults describing the values of fluents in their initial
states. For instance, the default “textbooks are typically in the
main library. If a textbook is not there, it is in the auxiliary
library. If the textbook is not there either, it is in the office”
can be represented elegantly as:

initial default loc(X ,main library) if textbook(X)

initial default loc(X ,aux library) if textbook(X),

¬loc(X ,main library)
initial default loc(X ,o f f ice) if textbook(X),

¬loc(X ,main library),
¬loc(X ,aux library)

This coarse-resolution domain representation is transformed
into a program Π(DH ,H) in CR-Prolog that incorporates
consistency restoring (CR) rules in ASP [Gelfond and Kahl,
2014]. ASP is based on stable model semantics and non-
monotonic logics, and includes default negation and epis-
temic disjunction, e.g., unlike ¬a that states a is believed to be
false, not a only implies that a is not believed to be true, and
unlike “p ∨ ¬p” in propositional logic, “p or ¬p” is not a
tautology. ASP can represent recursive definitions, defaults,
causal relations, and constructs that are difficult to express
in classical logic formalisms. The ground literals in an an-
swer set obtained by solving Π represent beliefs of an agent
associated with Π; statements that hold in all such answer

1Inertial fluents obey the laws of inertia and can be changed di-
rectly by actions, while defined fluents are not subject to inertia ax-
ioms and cannot be changed directly by an action.

sets are program consequences. Algorithms for computing
the entailment of CR-Prolog programs, and for planning and
diagnostics, reduce these tasks to computing answer sets of
CR-Prolog programs. Π consists of causal laws of DH , iner-
tia axioms, closed world assumption for defined fluents, real-
ity checks, and records of observations, actions, and defaults,
from H . Every default is turned into an ASP rule and a
CR rule that allows the robot to assume, under exceptional
circumstances, that the default’s conclusion is false, so as
to restore program consistency—see [Sridharan et al., 2015;
Zhang et al., 2014] for formal definitions of states, entail-
ment, and models for consistent inference.

In addition to planning, the architecture supports reason-
ing about exogenous actions to explain the unexpected (ob-
served) outcomes of actions [Balduccini and Gelfond, 2003].
For instance, to reason about a door between two rooms being
locked unexpectedly (e.g., by a human), we introduce exoge-
nous action locked(door) and add the axioms:

is open(D) ← open(R,D), ¬ab(D)

ab(D) ← locked(D)

where a door is considered abnormal, i.e., ab(D), if it has
been locked, say by a human. Actions and suitable axioms
are included for other situations in a similar manner. We also
introduce an explanation generation rule and a new relation
expl as follows:

occurs(A, I) | ¬ occurs(A, I) ← exogenous action(A)
I < n

expl(A, I) ← action(exogenous,A),
occurs(A, I), not hpd(A, I)

where expl holds if an exogenous action is hypothesized but
there is no matching record in the history. We also include
awareness axioms and reality check axioms:

% awareness axiom
holds(F,0) or ¬ holds(F,0) ← f luent(basic,F)

occurs(A, I) ← hpd(A, I)
% reality checks
← obs(f luent, true, I), ¬ holds(f luent, I)
← obs(f luent, f alse, I), holds(f luent, I)

The awareness axioms guarantee that an inertial fluent’s value
is always known, and that reasoning takes into account ac-
tions that actually happened. The reality check axioms cause
a contradiction when observations do not match expectations,
and the explanation for such unexpected symptoms can be re-
duced to finding (and extracting suitable statements from) the
answer set of the corresponding program [Gelfond and Kahl,
2014]. The new knowledge is included in the ASP program
and used for subsequent inference. This approach provides
all explanations of an unexpected symptom. The other option
is to use a CR rule instead of the explanation generation rule:

occurs(A, I) +← exogenous action(A), I < n

where the robot assumes the occurrence of an exogenous ac-
tion, under exceptional circumstances, to restore consistency.

the set of CR rules with the smallest cardinality is consid-
ered to be the minimal explanation. The architecture also in-
cludes a similar approach (with CR rules) to reason about par-
tial scene descriptions, e.g., properties of objects and events,
extracted from sensor inputs such as camera images. Given
ideal descriptions of domain objects, and partial descriptions
extracted from sensor input, candidate explanations are sets
of CR rules that can be triggered to explain the descriptions,
the set with lowest cardinality is the minimal explanation—
see [Colaco and Sridharan, 2015] for more details.

3.2 Fine-Resolution Probabilistic Planning
For any given goal, the answer set obtained by ASP-based
coarse-resolution inference includes a sequence of abstract
actions. Each such action aH in state σ of τH is executed by
probabilistic reasoning at a fine-resolution. This reasoning
includes three steps:

1. Define the fine-resolution version of the coarse-
resolution transition diagram and randomize it.

2. Zoom to the part of the randomized fine-resolution tran-
sition diagram that is relevant to the execution of aH .

3. Construct a POMDP from the zoomed part, solve it to
obtain a policy, and use policy to execute a sequence of
concrete actions.

The fine-resolution system description DL has a sorted signa-
ture ΣL and axioms that describe transition diagram τL. Un-
like the coarse-resolution representation, the fine-resolution
representation implicitly includes a history of observations
and actions—the current state is assumed to be the result of
all information obtained in previous time steps. ΣL inher-
its the sorts, fluents, actions, and axioms from the coarse
resolution signature and introduces new ones (or revised
versions) that are viewed as components of their coarse-
resolution counterparts. For instance, sorts room and cell
are subsorts of place, while new fluent loc(thing,cell) rep-
resents the cell location of things in the domain. Since action
execution is considered to be non-deterministic in the fine-
resolution representation, we introduce new fluents to keep
track of observations, e.g., observed(f luent,value,outcome),
with outcomes = {true, f alse,undet}, keeps track of the ob-
served values of specific fluents. New actions are also intro-
duced, e.g., test(robot, f luent,value) is used to test a fluent
for a specific value. In addition, we define new statics to de-
scribe relations between the new sorts, and new axioms that
describe the relations between the coarse-resolution elements
and their fine-resolution counterparts. We specify a sequence
of steps that defines the fine-resolution transition diagram as
a refinement of the coarse-resolution diagram such that, for
every state transition T = 〈σ ,aH ,σ ′〉 in τH , there is a path in
τL from state s compatible with σ , to some state compatible
with σ ′—see [Sridharan and Gelfond, 2016] for details.

The certainty of the robot’s observations and the effects
of the actions executed are only known with some degree
of probability. We model this uncertainty by randomizing
DL, i.e., by replacing the deterministic causal laws in DL by
non-deterministic ones and modifying the signature to declare
each affected fluent as a random fluent. The randomized sys-
tem description DLR is used in semi-supervised experimen-

tal trials to collect statistics and compute the probabilities of
action outcomes and reliability of observations. Reasoning
probabilistically over DLR can result in incorrect behavior and
be computationally intractable for complex domains. To exe-
cute any given abstract action aH in state σ of τH , the archi-
tecture thus zooms to DLR(T), the part of DLR that is relevant
to the execution of aH—see [Sridharan and Gelfond, 2016]
for details.

Next, DLR(T) is used to construct a POMDP defined by
the tuple 〈SL,AL,ZL,T L,OL,RL〉 for a specific goal state. The
first three elements are the set of states, actions, and the val-
ues of observable fluents. The next two elements are the
transition function T L : SL×AL×S′L→ [0,1], which defines
the probabilistic state transitions, and the observation func-
tion OL : SL × AL × ZL → [0,1], which defines the proba-
bility of observing the values of observable fluents by exe-
cuting knowledge producing actions in specific states—these
actions do not change the physical state. Functions T L and
OL describe a probabilistic transition diagram over the be-
lief state using the statistics collected experimentally. The
reward specification RL : SL ×AL × S′L → ℜ is used to en-
code the relative cost or utility of taking specific actions in
specific states, based on the goal state that is to be achieved.
Since the true state is partially observable, planning computes
a policy π : bt → at+1 that maximizes the cumulative reward
over a planning horizon to map belief states, i.e., probability
distributions over the states, to actions. The POMDP tuple
is constructed using data structures that allow the use of ex-
isting (approximate) POMDP solvers. Plan execution uses
the policy to repeatedly choose an action in the current belief
state, and updates the belief state after executing that action
and receiving an observation:

bt+1(st+1) ∝ O(st+1,at+1,ot+1)∑
s

T (s,at+1,st+1) ·bt(s)

Policy execution is terminated by a transition to a terminal
state. In our case, this transition occurs because the proba-
bility of one of the states is very high, or because none of
the states are very likely and there is no value in executing
the policy further—the latter case is interpreted as the inabil-
ity to execute aH . The corresponding action outcomes are
added as statements to the history in the coarse-resolution
description—see [Sridharan et al., 2015] for details about
constructing and solving the POMDP.

Constructing and solving a POMDP can become compu-
tationally inefficient for complex domains, e.g., rooms with
many cells connected to many other rooms, even with sophis-
ticated POMDP solvers. To address this problem, we have
explored reasoning in ASP at a finer resolution (e.g., areas
in places instead of places), with selective grounding of the
variables [Colaco and Sridharan, 2015]. Our prior work has
also explored hierarchical decompositions of POMDPs for re-
liable and efficient operation [Sridharan et al., 2010].

3.3 Reinforcement Learning
Consider the task of stacking books in the main library in
our illustrative domain, and assume that the axiom “larger
books cannot be stacked on smaller books” is not known to
the robot. Generating and executing plans that do not take this

Figure 2: Illustrative example of a planned goal state that the
robot cannot achieve.

axiom into account will result in the robot failing to accom-
plish the desired objective of stacking the books. Similarly,
in the BW domain, a robot that does not know the axiom “no
block can be placed on a prism-shaped block”, and asked to
stack any three of the four blocks placed on a table, may at-
tempt to reach the goal configuration shown in Figure 2. The
first action in the corresponding plan: move(b1,b0) followed
by move(b2,b1), will result in a failure that cannot be ex-
plained. Our architecture supports incremental discovery of
unknown axioms governing domain dynamics, by integrating
relational reinforcement learning (RRL). The current beliefs
of the robot, and the system descriptions at the two resolu-
tions, are used to formulate the task of incrementally discov-
ering domain axioms as an RL problem. Ideally, the state
should be estimated using the fine-resolution representation
and the corresponding (POMDP) belief states. However, to
explore the feasibility of RRL for discovering axioms, our
current RRL implementation abstracts away the uncertainty
in perception and consider the corresponding MDP. Further-
more, we currently focus on discovering executability con-
ditions for actions in the coarse-resolution description, i.e.,
axioms that encode the conditions under which each specific
action cannot be executed.

Axioms in the coarse-resolution ASP program eliminate
impossible state transitions in the RL formulation. In the
RL formulation, the goal (achieving which provides high re-
wards) is set to be the state that resulted in the unexplained
plan step failure. Over repeated episodes of Q-learning,
the relative values of different state-action pairs (i.e., the Q-
values) are computed. Once the Q-values converge, this ap-
proach can identify specific ground actions that should not
be attempted. However, these axioms may conflict with ex-
isting axioms, or include specific instances of more general
axioms. Conflicts can be identified as inconsistencies in the
answer set of the corresponding ASP program. To discover
the general axioms, we first support generalization within the
MDP, using state-action pairs visited in a set of episodes to
construct a binary decision tree—each path from the root to
a leaf corresponds to a state-action pair, and individual nodes
are specific fluents. This tree is used to provide a policy for
the subsequent episode(s). When Q-learning is terminated,
this tree relationally represents the robot’s experiences. The
second step simulates similar errors (to the one that triggered
RRL) and considers the corresponding MDPs. The Q-value

of a state-action pair is now the the weighted average of the
values across different MDPs—the weight is inversely pro-
portional to the distance to the goal state based on the optimal
policy for the MDP. These similar MDPs may be chosen us-
ing the information encoded in the ASP program. The third
step identifies candidate axioms by constructing training sam-
ples based on specific actions and the corresponding related
fluents encoded in the binary decision tree. These training
samples are used to construct a decision tree in which each
path from the root node to a leaf is a candidate executability
condition. The final step considers all candidate axioms for
different actions, and uses K-means algorithm to cluster these
candidates based on their value. The axioms that fall within
the cluster with the largest mean are considered to represent
generalized axioms, and are added to the ASP program to be
used in the subsequent steps—see [Sridharan et al., 2016] for
details about our RRL approach.

4 Summary of Experimental Results
This section summarizes some experimental results in simu-
lation and on physical robots to demonstrate the capabilities
of the architecture—for more information, please see [Colaco
and Sridharan, 2015; Sridharan et al., 2015; Sridharan and
Gelfond, 2016; Sridharan et al., 2016]. The simulator uses
models that represent objects using probabilistic functions of
features extracted from images, and models that reflect the
robot’s motion and perception capabilities.

First, consider an execution scenario in which the robot is
in the o f f ice, and it is assigned the goal of moving a spe-
cific textbook tbk to the o f f ice. Based on default knowledge
(about the location of textbooks), the robot creates a plan of
abstract actions:

move(rob1,main library), grasp(rob1, tbk)
move(rob1,o f f ice), putdown(rob1, tbk)

where the robot rob1 will have to search for tbk in the
main library before grasping it. Each action is executed
probabilistically by constructing and solving the correspond-
ing POMDP, as described above.

Next, consider the comparison of the proposed architecture
(henceforth “PA”) with just using POMDPs (“POMDP-1”) in
simulation trials. In these trials, the objective of the robot
was to move specific objects (with unknown locations) to spe-
cific places in the domain. Note that POMDP-1 includes a
hierarchical decomposition to make the task of solving the
POMDPs computationally tractable [Zhang et al., 2013]. The
POMDP solver is given a fixed amount of time to compute ac-
tion policies. An object’s location in a cell is assumed to be
known with certainty if the probabilistic belief (of the object’s
existence in the cell) exceeds a threshold (0.85). The robot’s
ability to successfully complete the task is shown in Figure 3
as a function of the number of cells in the domain; each data
point is the average of 1000 trials, and each room has four
cells. As the number of cells increases, it becomes compu-
tationally difficult to generate good POMDP action policies
that, in conjunction with incorrect observations, significantly
impacts the ability to complete the trials. PA focuses the

10
0

10
1

10
2

10
3

20

40

60

80

100

Number of cells

S
u

c
c
e
ss

 (
%

)

 PA

 POMDP−1

Figure 3: With limited policy computation time, PA is much
more accurate than POMDPs as the number of cells increases.

Figure 4: Comparing the rate of convergence of Q-RRL with
that of Q-learning—Q-RRL converges much faster.

robot’s attention on relevant rooms and cells to improve com-
putational efficiency while still maintaining high accuracy—
for larger domains, there is a drop in accuracy but the impact
is much less pronounced.

The time taken by PA to generate a plan was also com-
puted as a function of the domain size (characterized as the
number of rooms and objects). PA generates appropriate
plans for domains with a large number of rooms and ob-
jects. Using only the knowledge relevant to the goal sig-
nificantly reduces the planning time in comparison with us-
ing all the domain knowledge available. This relevant part
of the domain knowledge can be identified using the rela-
tions encoded in the coarse-resolution description. We also
compared PA with POMDP-1 on a wheeled robot deployed
on multiple floors of an office building. POMDP-1 takes
1.64 as much time as PA to move specific objects to spe-
cific places; this 39% reduction in execution time is statis-
tically significant. Furthermore, we instantiated and evalu-
ated our architecture in a different domain, e.g., of a robot
waiter assisting in seating people and delivering orders in a
restaurant. Results indicated that a purely probabilistic ap-
proach takes twice as much time as PA to locate and move
objects to specific places. Videos of experimental trials can
be viewed online: http://youtu.be/8zL4R8te6wg,
https://vimeo.com/136990534

Next, to evaluate the robot’s ability to discover previously
unknown executability conditions, we designed multiple sim-
ulated trials in which the robot had to arrange objects in

specific configurations. Some axioms were hidden from the
robot, resulting in failure when certain intermediate config-
urations were reached. Rewards were provided by the sim-
ulator based on the success or failure of the plan. The robot
successfully identified actions that could not be executed, and
added suitable axioms to the coarse-resolution system de-
scription. For instance, in the BW domain, Figure 4 shows
the rate of convergence of the average Q-values obtained us-
ing Q-RRL (i.e., our approach for relational reinforcement
learning) is much better than that of Q-learning. It does not
matter whether the actual average Q-values of Q-Learning are
higher or lower than those of Q-RRL. In the BW domain, the
robot also successfully discovered that no object should be
stacked on a prism-shaped object:

impossible move(A,D) if has shape(D, prism)

In a similar fashion, in the context of stacking books in the
office domain, the robot discovered that bigger books should
not be stacked on smaller ones:

impossible put(B1,B2) if bigger(B1,B2), textbook(B1),

textbook(B2).

Including such axioms in the ASP program enables the robot
to generate plans that can be successfully executed to achieve
the desired goal state, e.g., stacking of blocks or books in a
desired configuration. For additional experimental results of
evaluating our RRL approach, see [Sridharan et al., 2016].

5 Conclusions
This paper described an architecture that combines the com-
plementary strengths of declarative programming, probabilis-
tic graphical models, and relational reinforcement learning
(RRL). Tentative plans created by reasoning with common-
sense knowledge in the coarse-resolution are implemented
in the fine-resolution using probabilistic algorithms, adding
statements to the coarse-resolution history. The incremental
and interactive discovery of previously unknown domain ax-
ioms is formulated as an RRL problem. Experimental results
indicate that the architecture supports reasoning and learning
at the sensorimotor level and the cognitive level, and scales
well to complex domains. These capabilities are important
for robots collaborating with humans. Future work on the
architecture will explore tighter coupling of the logical and
probabilistic reasoning, and extensive trials on robots collab-
orating with humans in different domains.

Acknowledgments
The architecture summarized in this paper is based on collab-
oration with Michael Gelfond, Jeremy Wyatt, Shiqi Zhang,
Zenon Colaco, Rashmica Gupta, and Prashanth Devarakonda.
This work was supported in part by the US Office of Naval
Research Science of Autonomy award N00014-13-1-0766.
All opinions and conclusions described in this paper are those
of the author.

References
[Bai et al., 2014] Haoyu Bai, David Hsu, and Wee Sun Lee. In-

tegrated Perception and Planning in the Continuous Space: A

POMDP Approach. International Journal of Robotics Research,
33(8), 2014.

[Balduccini and Gelfond, 2003] Marcello Balduccini and Michael
Gelfond. Diagnostic Reasoning with A-Prolog. Theory and Prac-
tice of Logic Programming, 3(4-5):425–461, 2003.

[Balduccini et al., 2014] Marcello Balduccini, William C. Regli,
and Duc N. Nguyen. An ASP-Based Architecture for Au-
tonomous UAVs in Dynamic Environments: Progress Report. In
International Workshop on Non-Monotonic Reasoning (NMR),
Vienna, Austria, July 17-19, 2014.

[Baral et al., 2009] Chitta Baral, Michael Gelfond, and Nelson
Rushton. Probabilistic Reasoning with Answer Sets. Theory and
Practice of Logic Programming, 9(1):57–144, January 2009.

[Colaco and Sridharan, 2015] Zenon Colaco and Mohan Sridharan.
What Happened and Why? A Mixed Architecture for Planning
and Explanation Generation in Robotics. In Australasian Confer-
ence on Robotics and Automation (ACRA), Canberra, Australia,
December 2-4, 2015.

[Driessens and Ramon, 2003] Kurt Driessens and Jan Ramon. Re-
lational Instance-Based Regression for Relational Reinforcement
Learning. In International Conference on Machine Learning
(ICML), pages 123–130. AAAI Press, 2003.

[Dzeroski et al., 2001] Saso Dzeroski, Luc De Raedt, and Kurt
Driessens. Relational Reinforcement Learning. Machine Learn-
ing, 43:7–52, 2001.

[Galindo et al., 2008] Cipriano Galindo, Juan-Antonio Fernandez-
Madrigal, Javier Gonzalez, and Alessandro Saffioti. Robot Task
Planning using Semantic Maps. Robotics and Autonomous Sys-
tems, 56(11):955–966, 2008.

[Gartner et al., 2003] Thomas Gartner, Kurt Driessens, and Jan Ra-
mon. Graph Kernels and Gaussian Processes for Relational Re-
inforcement Learning. In International Conference on Inductive
Logic Programming (ILP), pages 140–163. Springer, 2003.

[Gelfond and Kahl, 2014] Michael Gelfond and Yulia Kahl.
Knowledge Representation, Reasoning and the Design of
Intelligent Agents. Cambridge University Press, 2014.

[Hanheide et al., 2015] Marc Hanheide, Moritz Gobelbecker, Gra-
ham Horn, Andrzej Pronobis, Kristoffer Sjoo, Patric Jensfelt,
Charles Gretton, Richard Dearden, Miroslav Janicek, Hendrik
Zender, Geert-Jan Kruijff, Nick Hawes, and Jeremy Wyatt. Robot
Task Planning and Explanation in Open and Uncertain Worlds.
Artificial Intelligence, 2015.

[Kaelbling and Lozano-Perez, 2013] Leslie Kaelbling and Tomas
Lozano-Perez. Integrated Task and Motion Planning in Be-
lief Space. International Journal of Robotics Research, 32(9-
10):1194–1227, 2013.

[Lee and Wang, 2015] Joohyung Lee and Yi Wang. A Probabilistic
Extension of the Stable Model Semantics. In AAAI Spring Sym-
posium on Logical Formalizations of Commonsense Reasoning,
March 2015.

[Milch et al., 2006] Brian Milch, Bhaskara Marthi, Stuart Russell,
David Sontag, Daniel L. Ong, and Andrey Kolobov. BLOG:
Probabilistic Models with Unknown Objects. In Statistical Re-
lational Learning. MIT Press, 2006.

[Richardson and Domingos, 2006] Matthew Richardson and Pedro
Domingos. Markov Logic Networks. Machine Learning, 62(1-
2):107–136, February 2006.

[Saribatur et al., 2014] Zeynep Saribatur, Esra Erdem, and Volkan
Patoglu. Cognitive Factories with Multiple Teams of Heteroge-
neous Robots: Hybrid Reasoning for Optimal Feasible Global
Plans. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2014.

[Sridharan and Gelfond, 2016] Mohan Sridharan and Michael Gel-
fond. Using Knowledge Representation and Reasoning Tools
in the Design of Robots. In IJCAI Workshop on Knowledge-
based Techniques for Problem Solving and Reasoning (Know-
ProS), New York, USA, July 10, 2016.

[Sridharan et al., 2010] Mohan Sridharan, Jeremy Wyatt, and
Richard Dearden. Planning to See: A Hierarchical Approach
to Planning Visual Actions on a Robot using POMDPs. Artificial
Intelligence, 174:704–725, 2010.

[Sridharan et al., 2015] Mohan Sridharan, Michael Gelfond, Shiqi
Zhang, and Jeremy Wyatt. A Refinement-Based Architecture for
Knowledge Representation and Reasoning in Robotics. Techni-
cal report, Unrefereed CoRR abstract: http://arxiv.org/
abs/1508.03891, August 2015.

[Sridharan et al., 2016] Mohan Sridharan, Prashanth Devarakonda,
and Rashmica Gupta. Discovering Domain Axioms Using Rela-
tional Reinforcement Learning and Declarative Programming. In
ICAPS Workshop on Planning and Robotics (PlanRob), London,
UK, June 13-14, 2016.

[Sutton and Barto, 1998] R. L. Sutton and A. G. Barto. Reinforce-
ment Learning: An Introduction. MIT Press, Cambridge, MA,
USA, 1998.

[Tadepalli et al., 2004] Prasad Tadepalli, Robert Givan, and Kurt
Driessens. Relational Reinforcement Learning: An Overview.
In Relational Reinforcement Learning Workshop at the Interna-
tional Conference on Machine Learning, 2004.

[Zhang and Stone, 2015] Shiqi Zhang and Peter Stone. CORPP:
Commonsense Reasoning and Probabilistic Planning, as Applied
to Dialog with a Mobile Robot. In AAAI Conference on Artificial
Intelligence, pages 1394–1400, Austin, USA, 2015.

[Zhang et al., 2013] Shiqi Zhang, Mohan Sridharan, and Christian
Washington. Active Visual Planning for Mobile Robot Teams
using Hierarchical POMDPs. IEEE Transactions on Robotics,
29(4):975–985, 2013.

[Zhang et al., 2014] Shiqi Zhang, Mohan Sridharan, Michael Gel-
fond, and Jeremy Wyatt. Towards An Architecture for Knowl-
edge Representation and Reasoning in Robotics. In International
Conference on Social Robotics (ICSR), pages 400–410, Sydney,
Australia, October 27-29, 2014.

[Zhang et al., 2015] Shiqi Zhang, Mohan Sridharan, and Jeremy
Wyatt. Mixed Logical Inference and Probabilistic Planning for
Robots in Unreliable Worlds. IEEE Transactions on Robotics,
31(3):699–713, 2015.

