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A B S T R A C T

Size-selected molybdenum sulfide (MoSx) nanoclusters obtained by magnetron sputtering and gas condensation
on glassy carbon substrates are typically sulfur-deficient (x= 1.6 ± 0.1), which limits their crystallinity and
electrocatalytic properties. Here we demonstrate that a sulfur-enriching method, comprising sulfur evaporation
and cluster annealing under vacuum conditions, significantly enhances their activity towards the hydrogen
evolution reaction (HER). The S-richness (x= 4.9 ± 0.1) and extended crystalline order obtained in the sulfur-
treated MoSx nanoclusters lead to consistent 200mV shifts to lower HER onset potentials, along with two-fold
and more-than 30-fold increases in turnover frequency and exchange current density values respectively. The
high mass activities (∼111mAmg−1 @ 400mV) obtained at ultra-low loadings (∼100 ng cm-2, 5% surface
coverage) are comparable to the best reported MoS2 catalysts in the literature.

1. Introduction

The interest in the hydrogen economy as a potential candidate to
replace the current fossil fuel-based energy system [1] has motivated
extensive research on environmentally-friendly hydrogen production
methods. The hydrogen evolution reaction (HER) taking place at a
water electrolyser cathode is a scalable yet energy-efficient route [2]
which demands earth-abundant catalysts to be commercially viable.
Among them, transition metal dichalcogenides (TMDs) and in parti-
cular molybdenum disulfide (MoS2) have stood out in the past decade
[3,4]. Their layered structure, analogous to that of graphene, also im-
plies anisotropic properties: only the metallic 1 T phase sites located at
the Mo-edge planes of naturally occurring MoS2 are active for the HER
[5,6], whereas the 2 H semiconducting basal planes are almost inactive
if no defects are present [7–9]. Several strategies have proven to
maximize MoS2 HER activities: [10] triggering the 2H→ 1T phase
transition in basal planes by chemical intercalation [11–13] or stress/
strain effects; [14,15] basal plane activation by incorporation of tran-
sition metals [16–20] or other chalcogenides; [21,22] and the fabrica-
tion of MoSx nanostructures which are defect-rich [23–30] or have

additional S vacancies [31–36]. However, the in-operando proven role
of S atoms as the HER active sites [37] indicates that sulfur-rich MoS2+x

materials should also present high HER activities [38–41]. Our recently
reported size-selected MoSx nanoclusters, obtained by magnetron
sputtering and gas condensation [42], were demonstrated to be sulfur-
deficient (x= 1.6 ± 0.1) with low crystallinities. In this article we
have evaluated the influence of sulfur content in the HER catalysis of
MoS2 materials through use of an in vacuo sulfur addition treatment
previously developed for freshly deposited, sulfur-deficient (MoSx)1000
nanoclusters [43]. We demonstrate that sulfur evaporation (5min)
followed by annealing treatment (7 min, 215 ± 5 °C) incorporates S in
the MoSx nanocluster structure (x= 4.9 ± 0.1), by reducing oxygen-
containing Mo surface species and converting the amorphous S22−

moieties to crystalline S2− sites, which also extends the crystalline
order. A consistent 200mV shift to lower HER overpotential, along with
a two-fold increased turnover frequency and more-than 30-fold increase
of exchange current density values proves the beneficial role of higher S
surface content and crystallinities in the (MoSx)1000 nanoclusters HER
catalysis.
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2. Experimental

2.1. (MoSx)1000 nanoclusters deposition and high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM) imaging

Size-selected MoS2 nanoclusters were produced using a DC mag-
netron sputtering and gas condensation cluster beam source as shown in
Fig. 1 from a 2-inch sputtering MoS2 target (PI-KEM, 99.9% purity)
[44]. The positively charged clusters were accelerated with ion optical
electrostatic lenses and then size-selected with a lateral time-of-flight
mass filter [45]. A mass of 160,000 amu, corresponding to 1000 MoS2
units (designated as (MoS2)1000), was selected for depositing onto an
amorphous carbon coated TEM grids (Agar Scientific, 200 Mesh Cu)
and onto glassy carbon (GC) stubs (5 mm×5mm x 3mm, mirror
finish). The loading of the TEM grid samples was approx. 5% projected
surface area coverage (i.e., approx. 5% of the surface covered by clus-
ters), while the loadings of the GC samples were 5%, 10% and 20%
projected surface area. The clusters were deposited onto amorphous
carbon covered TEM grids and GC stubs with an impact energy of 1.0 eV
and 1.5 eV per MoS2 unit, respectively. Sulfur addition was conducted
in a sulfur atmosphere created by evaporating sulfur using a home-built
in-situ thermal evaporator (5 min). Annealing (7min, 215 ± 5 °C) was
performed with an electron beam bombardment heating stage. The
temperature was monitored using a pyrometer (IMPAC Pyrometer, IPE
140). Scanning transmission electron microscopy (STEM) images were
acquired with a 200 kV spherical aberration-corrected STEM (JEOL
2100 F) in the high-angle annular dark-field (HAADF) mode [46,47].

2.2. Physical characterization of (MoSx)1000 nanoclusters: X-ray
photoelectron spectroscopy (XPS)

XPS spectra were recorded using a Kratos Axis SUPRA fitted with a
monochromated aluminium source (Al Kα, 1486.69 eV) and a charge
neutraliser. Samples were mounted on silicon wafers by use of silver
epoxy, and affixed to a sample bar using carbon tape. Wide scans were
recorded using pass energies of 160 eV and high-resolution scans were
recorded using pass energies of 20 eV and an analysis area of 30 μm2.
All scans were recorded at < 5×10−9 Torr using an emission current
of 15mA. All high-resolution spectra were corrected to the adventitious
C 1 s peak at 284.6 eV, and deconvoluted using the CasaXPS 2.3.18
software, applying a Shirley background correction before individual
peak deconvolution. MoaObSc is used to refer to the molybdenum
oxysulfide species: the superscript a represents the oxidation state of
Mo, whilst the subscripts b and c the stoichiometry of O and S atoms in
the specific oxysulfide.

2.3. Electrochemical characterization

All electrochemical measurements were performed in a

conventional 3-electrode electrochemical setup comprising a thermo-
statted two-compartment cell (295 ± 2 K), the first compartment
containing both a saturated calomel reference electrode (SCE, BAS Inc.,
Japan) and 5mm diameter, 3 mm thick glassy carbon working elec-
trodes (GC) type 2 stubs (Alfa Aesar, U.K.) modified with as deposited
or sulfur evaporated and annealed (MoSx)1000 nanoclusters; and a
second compartment containing a bright Pt mesh counter electrode
(Alfa Aesar, U.K.). All experiments were conducted using a PC-con-
trolled PGSTAT128N potentiostat (Metrohm Autolab B.V, Netherlands).
GC samples were polished to until a mirror finish was achieved by use
of decreasing size diamond (45–3 μm) and alumina slurries (1–0.05 μm)
on a Buehler MetaServ 250 automatic polisher using Trident/
Microcloth polishing pads. All GC samples were immediately tested
after nanocluster modification, being transported to the electro-
chemical cell in a N2-saturated sealed container to avoid exposure to
air. The nanocluster-modified GC stubs were embedded in a E4TQ
ChangeDisk RDE Tip and electrically connected to a E4 Series Rotating
Shaft and a Modulated Speed Rotator (Pine Research Instrumentation,
USA). No rotation was applied during any electrochemical experiment.

A 2mM HClO4 (ACS≥ 70%, Sigma-Aldrich), 0.1 M NaClO4

(ACS≥ 98%, Sigma-Aldrich) solution (pH 2.7) was used in all experi-
ments, freshly prepared with ultrapure water (Millipore Mili-Q Direct 8,
resistivity not less than 18.2MΩ cm). This fully supported, non-co-
ordinating anion-containing, low proton concentration electrolyte was
chosen in contrast to the more commonly reported high proton con-
centration electrolytes in hydrogen evolution experiments (0.5M
H2SO4, pH ≈ 0.3; 0.1M HClO4, pH ≈ 1) as previous experiments on
(MoSx)y nanoclusters yielded more reproducible electrochemical re-
sults, enabling accurate elucidation of the HER reaction kinetic para-
meters. Acidic electrolytes with lack of a supporting electrolyte (in our
case 0.1 M NaClO4) are reported to distort any kinetic analysis due to
migration effects of the electroactive species [48].

Nanocluster-modified GC electrodes were preconditioned prior to
HER experiments with 10 cycles from −0.045 to −1.645 V (vs. SCE) at
a voltage scan rate of 50mVs−1 to obtain a stabilized performance.
HER electrocatalysis measurements were then recorded at a range of
voltage scan rates from 2 to 1200mVs−1, and electrochemical im-
pedance spectroscopy measurements (EIS) were acquired in the −0.1
to −1.4 V vs. SCE with 100mV steps, using a frequency range of 10−1

to 105 Hz (voltage amplitude= 10mV) to apply the iR compensation
correction on all HER voltammograms. All HER potentials reported are
corrected versus the normal hydrogen electrode (NHE) using the
Nernstian shift correction (ENHE= 0.242 V+0.059 pH). The electro-
chemical cell was vigorously purged with N2 prior to any electro-
chemical experiment (Oxygen-free grade, BOC Gases plc), and a posi-
tive N2 pressure was maintained during experiments. All
electrochemical glassware was cleaned overnight by use of a dilute
KMnO4 (ACS≥ 99%, Sigma-Aldrich) solution in concentrated H2SO4

(> 95% analytical grade, Fisher Scientific) followed by rinsing with

Fig. 1. Cluster beam source schematic. It consists of five sections: magnetron sputtering, ion optics, mass filter, cluster deposition and cluster post-treatment.
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ultrapure water.

3. Results and discussion

3.1. Physical characterization of size-selected (MoSx)1000 nanoclusters:
HAADF-STEM imaging and XPS

Fig. 2 shows the aberration-corrected HAADF-STEM images of
(MoSx)1000 nanoclusters (selected mass at cluster source, 160,000 amu,
equivalent to 1000MoS2 units per cluster) at 5% projected surface area
coverage after deposition on amorphous carbon covered TEM grids. For
cluster source schematic and further deposition parameters, see Fig. 1.
Fig. 2a and b are acquired at low magnification before and after sulfur
evaporation and annealing, respectively. The as-deposited MoSx clus-
ters are rather irregular with poorly ordered structures, and a mean
diameter of 5.5 nm is given based on the projected surface area from
our previous study [43]. The STEM image of as-deposited MoSx cluster
at a higher magnification (Fig. 2c), together with its FFT pattern (inset),
show the amorphous feature of the cluster and confirm the absence of
extended crystalline order. The clusters have an uneven layered struc-
ture revealed by the HAADF intensity line profile, which agrees with
previous first-principle simulation studies [49]. Compared with the as-
deposited clusters, the sulfurised clusters become larger with a mean
diameter of 6.0 nm. This is due to the morphological reconstruction of
MoSx clusters with the added sulfur. In contrast to the as-deposited
clusters, the sulfurised clusters shown in Fig. 2d and e present rather
crystalline structures, which can also be confirmed by their FFT

patterns (inset). The sulfurised clusters retain the layered structure with
3–4 layers-thick. The Moirépattern shown in Fig. 2e indicates a mis-
orientation between layers, which can be commonly found in the sul-
furised clusters with 3 or more layers. Given that sulfur is long known
to sublime at temperatures well below 100 °C [50,51], we can conclude
that the crystalline structures come from the chemical bond between
the added sulfur and the clusters, and that the structural modification
into crystalline clusters mainly takes place within the 2D layers.

XPS measurements were acquired from molybdenum sulfide clusters
deposited onto amorphous carbon TEM grids to investigate the degree
of sulfur incorporation. The high-resolution Mo 3d and S 2p spectra of
the as-deposited molybdenum sulfide nanoclusters reveal a complex
surface composition (see Fig. 3a). The Mo spectra (Fig. 3, top row)
could not be solely deconvoluted into the Mo4+ 3d5/2:3/2 spin-orbit
doublet characteristic of MoS2 materials (binding energies of ∼229.8
and ∼232.9 eV, respectively). Two additional doublets were needed,
ascribed to MoaObSc (∼231.5 and ∼234.6 eV, see Experimental for
MoaObSc definition) and Mo6+ (∼233.1 and ∼236.2 eV) oxidation
states reported in molybdenum compounds such as molybdenum oxy-
sulfides [52] and MoO3 [53]. Analysis of the Mo4+: MoaObSc: Mo6+

relative percentages (at. %) from the XPS photoemission intensities
yields a relative ratio of 53.8:25.2:21.0 at. %, corroborating the sig-
nificant proportion of oxidized molybdenum species at the na-
noclusters. The S spectra (Fig. 3, bottom row) were deconvoluted using
two 2p3/2:1/2 spin-orbit doublets related to the S2− (∼161.3 and
∼162.5 eV) and S22− (∼162.6 and ∼163.8 eV) oxidation states con-
sistently reported for amorphous MoSx thin films and nanoparticles

Fig. 2. STEM images of as-deposited size-selected (MoSx)1000 nanoclusters shown at a) low and c) high magnification, and STEM images of (MoSx)1000 nanoclusters
after sulfur evaporation and annealing at b) low magnification and d, e) high magnification. The insets shown in c, d and e are the FFT patterns of corresponding
clusters.
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[54,55], yielding a S2−/ S22− relative ratio of 20:80. The broad S signal
centered at ca. 170 eV is ascribed to SOx

y- species [56], The XPS in-
tensity ratio between the S-containing Mo species (Mo4+/MoaObSc) and
the S2−/ S22− species yields a close-to-stoichiometric but still S-defi-
cient ratio (1:1.9 ± 0.1), similar to that found in our previous in-
vestigations [42,57].

Likewise, high-resolution XPS spectra on the sulfur-evaporated and
annealed (MoSx)1000 nanoclusters (Fig. 3c) reveal an almost total con-
version of oxidized Mo species to Mo4+ (Mo4+: MoaObSc: Mo6+ at. %
ratio of 88.9:8.0:3.1), as well as an effective S-enrichment, obtaining a
Mo4+/MoaObSc: S2−/ S22− ratio of 1: 4.9 ± 0.1. As for the S2−/ S22−

XPS intensity ratio, this is now 75:25. Further analysis of the sulfurised
but non-annealed (MoSx)1000 nanoclusters sample (Fig. 3b) reveals that
S incorporation onto the nanoclusters occurs at this stage to a certain
extent (Mo4+/MoaObSc: S2−/ S22− ratio of 1: 3.3 ± 0.1), but it leads
neither to an effective depletion of oxygen-containing Mo species
(Mo4+: MoaObSc: Mo6+ at. % ratio of 62.2:21.4:16.4), nor to full
crystallization of the nanocluster structures [43]. Hence, it is concluded
that the best methodology to produce S-enriched MoSx nanoclusters
with enhanced crystalline order is by the adoption of sequential sulfur
evaporation and thermal annealing.

3.2. Electrocatalytic activity to the hydrogen evolution reaction: influence of
sulfur enrichment

The hydrogen evolution activity of the as-prepared and sulfur-en-
riched (MoSx)1000 nanoclusters was evaluated in a 3-electrode electro-
chemical setup, by recording linear sweep voltammograms between 0
to −1.2 V (scan rate= 50mV s−1) in a 2mM HClO4/0.1M NaClO4

aqueous electrolyte (normalized vs. NHE and iR compensated, for fur-
ther details, see Experimental). The low proton concentration in the
electrolyte used ([H+] ≈2×10-6 mol cm-3, pH≈ 2.7) is responsible
for the diffusion decay peak profile in Fig. 4a and b, analogous to that
found with our previously reported magnetron-sputtered nanoclusters.

[57,58] The as-prepared samples present onset potentials, |ηonset| for
current densities of |j|= 0.05mA cm-2, of ca. 690mV, which are
∼60mV positively shifted compared to the recorded |ηonset| for bare
glassy carbon. This confirms that even at ultra-low loadings MoS2 ef-
fectively catalyzes the HER. The peak half-maximum overpotentials
(|ηhalf max|) and current densities (|jhalf max|) metrics previously used to
describe the HER catalysis of magnetron-sputtered nanoclusters[57] are
found to be ca. 810mV and 0.31mA cm-2, respectively (see Table S1
ESI).

These are in good agreement with the results obtained for
(MoS0.9)300 nanoclusters, which presented a higher cluster loading (ca.
3.5 μg cm−2) but equivalent surface coverage given the smaller cluster
sizes (∼20%).[57] Interestingly, such ultra-low loadings of size-se-
lected MoSx nanoclusters used in the present work (5% coverage:
∼84 ng cm−2, 10% coverage: ∼168 ng cm−2, 20% coverage:
∼335 ng cm−2) already present HER activities comparable to those of
(MoS0.9)300 nanoclusters with loadings higher by 1 order of magnitude.
Despite both smaller dimensions (∼2.6 nm) and higher loadings, the S-
deficient Mo:S ratio and cluster overlapping upon random surface
landing can then explain the (MoS0.9)300 nanoclusters’ reported per-
formance. After sulfur incorporation, all (MoSx)1000 nanoclusters ex-
hibit remarkable improvements in their HER performance. A consistent
200mV shift in the HER |ηhalf max| was found independently of the
sample loading (see. Fig. 4a–b).

To gather further insight about the HER kinetics and electron
transfer properties, Tafel slope analysis and electrochemical impedance
spectroscopy (EIS) experiments were carried out before and after sulfur
enrichment of (MoSx)1000 nanoclusters. Tafel plots of the cathodic
linear sweep voltammograms (|η| vs. log|jgeom|, Fig. 4c) show Tafel
slopes in the 143–154mV dec−1 range for all (MoSx)1000 nanocluster
samples irrespective of both loading and sulfur modification, similar
values to the one found for bare GC (≈154mV dec −1). This indicates
that the sulfurisation treatment does not modify the mechanism under
which the HER operates: for slopes close to b≈ 120mV dec−1 this is

Fig. 3. High-resolution Mo 3d (top) and S 2p (bottom) XPS spectra of a) as-deposited (MoSx)1000 nanoclusters, b) sulfurised, non-annealed (MoSx)1000 nanoclusters
and c) sulfurised, annealed (MoSx)1000 nanoclusters. Labels: raw spectra (black), cumulative peak fit (red), Mo4+ 3d5/2:3/2 (green), MoaObSc 3d5/2:3/2 (blue), Mo6+

3d5/2:3/2 (orange), S 2p3/2:1/2 (S2−, yellow) and S 2p3/2:1/2 (S22−, magenta) (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article).
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the Volmer mechanism, its rate-limiting step being the electroadsorp-
tion of monoatomic hydrogen [59]. Previous reports on amorphous
MoSx catalysts have reported Tafel slopes of b≈ 40mV dec−1 (Volmer-
Heyrovsky rate-limiting step), significantly lower than the ones ob-
tained for the as-deposited amorphous (MoSx)1000 nanoclusters. Two
main factors are responsible for this: the electrolyte pH and the inherent
morphology or the clusters. Recent investigations by Dubouis et al. on
electrodeposited, amorphous MoSx materials have shown that the HER
mechanism (and consequently the Tafel slope) is pH-dependent: [60]
for pH≤ 1, the hydronium cation electroreduction governs the proton
reduction with pH-independent Tafel slopes of b≈ 40mV dec−1; at
higher pH values the lower proton concentration leads to mass trans-
port limitations which ultimately result in the proton electroadsorption
(i.e. Volmer rate-limiting HER step, b≈ 120mV dec−1) dominating the
HER. Alternatively, the 40mV dec-1 Tafel slopes reported on amor-
phous MoSx are well known to arise from the [Mo3S13]2- cluster-based
structure and the different sulfur moieties entailed [61,62]. The pH≥ 1
used for our electrolyte along with the trigonal prismatic coordination
as found in 2 H-MoS2 for our size-selected MoSx nanoclusters [42]
support the ca. 143–154mV dec−1 Tafel slopes obtained.

Electrochemical impedance spectroscopy (EIS) Nyquist plots were
fitted with a simplified equivalent circuit model based on the recently-
used linear transmission model [63,64] for amorphous/porous MoSx
structures (see Fig. S1 ESI for further details) [65,66]. Unlike the
Randles circuit conventionally used to physically describe the HER on
TMD materials, this circuit not only accounts for the charge transfer

resistance (Rct), but also for the contact resistance between the na-
noclusters and the glassy carbon electrode interface (Rc). Such in-
formation is of physical relevance given the layer-dependent HER cat-
alysis of TMDs and their inherently high through-plane resistance
[67–71]. At −1.1 V vs. SCE (∼−0.7 V vs. NHE), a significant decrease
in all EIS resistance components was found after the combined treat-
ment of sulfur evaporation plus annealing on the (MoSx)1000 na-
noclusters (Fig. 4d, Table S2 ESI): Rct (∼1240 vs. ∼1180Ω, 5% cov-
erage; ∼6060 vs. ∼840Ω, 20% coverage), and Rc (∼4640 vs.
∼3250Ω, 5% coverage; ∼12,420 vs. ∼6820Ω, 20% coverage). We
postulate the extended crystalline order of the sulfur-enriched na-
nocluster structure to be the governing factor.

This can be supported by both the FFT analysis of the nanoclusters
imaged by HAADF-STEM and the high-resolution S 2p XPS results. The
former shows, after sulfur incorporation, that the (MoSx)1000 na-
nocluster FFT pattern changes from a diffuse ring characteristic of
highly amorphous materials to a well-defined set of diffraction spots
ranging from single sets ascribed to aligned MoS2 layers along the (100)
plane (intralayer spacing: 0.25 nm) to dual sets related to misoriented
stacking layer arrangements [43]. The high-resolution S 2p XPS data
monitoring the S2−/ S22− intensity ratio, which serves as a descriptor
of the degree of MoSx crystallinity, reveals an increased S2− relative
content after the sulfur evaporation treatment: 75:25 vs. the 20:80
found in pristine nanoclusters. Thus, the sulfur evaporation and an-
nealing not only incorporates sulfur into the nanocluster structures but
also converts the characteristic amorphous MoSx/MoS3 S22− moieties

Fig. 4. a,b) Linear sweep voltammograms recorded at 5mm diameter mirror-polished glassy carbon samples (black) modified with as-deposited (MoSx)1000 na-
noclusters (blue) and sulfurised, annealed (MoSx)1000 nanoclusters (gold) at surface coverages of 5% (a) and 20% (b). Red arrows denote overpotential shift due to
sulfurisation at |jhalf max|. c) Tafel plots (|η| vs. log|jgeom|) of the different (MoSx)1000 nanoclusters plotted in a,b). Scan rate: 50mV s−1. d) Electrochemical impedance
spectroscopy Nyquist spectra of samples in a,b) recorded at η∼ −700mV vs. NHE. Labels in c,d): mirror-polished glassy carbon (black), as-deposited (MoSx)1000
nanoclusters at 5% (red) and 20% (purple) coverage, and surfurised and annealed (MoSx)1000 nanoclusters at 5% (green) and 20% (blue) coverage (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article).
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[41,55,72,73] to S2− as found in crystalline MoS2 [74]. From these
findings we can conclude that the sulfur evaporation and subsequent
annealing of (MoSx)1000 nanoclusters results in an overall improvement
in their charge transfer properties. A previous report on polymorphic
MoS2 (a system which resembles the non-crystalline nature of our as-
deposited nanoclusters) revealed that electron hopping only occurs
between metallic 1T domains bounded by semiconducting 2H regions,
and therefore is limited [75].

On a separate note, it is also noteworthy to explore which are the
potential HER active sites in our MoSx nanoclusters. For amorphous
MoSx, terminal S22− [76], bridging S22- [37] or unsaturated MoIV

centers (i.e. S vacancies) [40] have been proposed as moieties re-
sponsible for hydrogen evolution, reaching no unambiguous consensus
to date. For the as-prepared (MoSx)1000 nanoclusters, the presence of
terminal/ bridging S22− as found in our S 2p XPS spectra seems to in-
dicate they might participate in the HER along with the well-estab-
lished TMD unsaturated S2− active sites [5,77]. In the case of our S-
enriched (MoSx)1000 nanoclusters, the almost total conversion of the
partially-oxidized MoaObSc and S22− species to Mo4+ and S2− as found
in crystalline MoS2 and subsequent HER enhancement lead us to believe
that the main HER actives are the unsaturated S2− moieties.

3.3. Evaluation of figures of merit and catalyst benchmarking

Further catalyst benchmarking by turnover frequency (TOF) and
exchange current density (j0) analysis also demonstrates the HER en-
hancement observed. For 5% surface coverage, as-deposited (MoSx)1000
nanoclusters present TOF≈ 3.0 H2 s−1 and j0≈ 8.8×10-10 A cm-2 at
|ηhalf max|= 825mV, whereas for an equivalent |ηhalf max| the sulfur-
modified (MoSx)1000 nanoclusters sample exhibits TOF≈ 6.1 H2 s−1

and j0≈ 2.8×10-8 A cm-2. At 20% surface coverage, similar enhance-
ments can be found (TOF ≈ 1.4 vs. 0.8 H2 s−1 at |ηhalf max|= 814mV;
j0≈ 5.2× 10-8 vs. 7.9× 10-10 A cm-2). The two-fold increase in TOF
and more than 30-fold increase in j0 indicates improved per-site ac-
tivities and active site densities: positive shifts in onset potential values
under given HER kinetics (i.e. same Tafel slope values) have been re-
lated to higher densities of active sites [11]. This, along with the onset
potential shift, significantly surpasses the HER enhancement (ca. 70mV
at |jhalf max|, see Fig. S2a ESI), found after S-edge site doping with Ni in
(Ni-MoS2)1000 nanoclusters (3-fold increase in j0 but lower TOF after
doping) [57], indicating that the synergistic effect of sulfur enrichment
and improved crystallinity prevails over a S-edge activation strategy on
as-deposited MoSx nanoclusters.

We finally proceeded to benchmark the performance of our
(MoSx)1000 nanoclusters with recently-reported MoS2-based catalysts
from the literature. (Table S3 ESI) However, the ultra-low loadings
utilized in this report preclude quantitative comparisons based on the
HER metrics commonly cited (|η| at 10mA cm−2 and |jgeom| at
200mV). It is well known that these metrics are heavily affected by the
catalyst loading (for loading-dependent HER see Fig. S2b ESI)
[54,78–81], catalyst layer thickness [67,82,83] and TMD morphologies
[25,41,84]. Instead, we normalized all previous |jgeom| reported values
by mass activity (mAmg-1), a metric widely accepted in the noble metal
electrocatalysis community (see Table S3 ESI) [85,86]. The mass ac-
tivities found for (MoSx)1000 nanoclusters at |η| values as low as 400mV
(close to the HER onset) are, after sulfur evaporation and annealing,
comparable with the best reported MoS2 catalysts at 200mV tested
using a high proton concentration electrolyte. The values obtained are
ca. 110mAmg-1 at 5% coverage and ca. 70mAmg-1 at 20% coverage
(see Table S1 ESI). For |ηhalf max|, mass activities are in the 1000mAmg-
1 range: for 5% coverage, ca. 3620mAmg-1 (pristine) and ca.
4010mAmg-1 (sulfurised); for 20% coverage, ca. 980mAmg-1 (pris-
tine) and ca. 1040mAmg-1 (sulfurised). This highlights the remarkable
activities of the sulfurised (MoSx)1000 nanoclusters obtained at very low
loadings.

The electrochemical stability of MoSx electrocatalyts is also an

important feature for evaluating prospective long-term HER perfor-
mance. A preliminary comparison of the very first cathodic HER cycle
recorded during our preconditioning step with the final pseudo-sta-
tionary LSV reported (11th real HER cycle, as shown in Fig. 4a and b)
reveals clear differences in stability before and after sulfur evaporation
and enrichment (Fig. S3 ESI). For 20% surface coverage, as-deposited
and S-defficient (MoSx)1000 nanoclusters present an extraordinarily
high activity on their first cathodic polarization scan (|ηhalf
max|≈ 380mV) which dramatically decays shown by a 415mV over-
potential shift at the 11th scan (Fig. S3a). This indicates that, despite of
their high activity, the edge/defect-abundant nature of amorphous
MoSx nanoclusters also confers them a high electrochemical instability.
Remarkably, the S-enriched crystalline (MoSx)1000 nanoclusters present
a dramatically enhanced stability (Fig. S3b): although their initial ac-
tivity is not as high as the amorphous nanocluster counterparts, |ηhalf
max| is modified less than 30mV. We believe that the improved crys-
tallinity and subsequent minor presence of dissolution-prone under-
coordinated Mo sites after S-enrichment mitigates electrochemically-
induced MoSx leaching yielding higher stabilities.

4. Conclusions

In summary, the initially sulfur-deficient (MoS1.9)1000 size-selected
nanoclusters obtained by magnetron sputtering and gas condensation
and deposited onto glassy carbon substrates have been successfully
sulfur-enriched, by sequential application of sulfur evaporation and
annealing, for HER applications. This treatment has been shown to
induce extended crystalline order, compared with the initially amor-
phous nanocluster morphology, plus the incorporation of S2− moieties
at the (MoSx)1000 nanocluster surface to yield Mo4+/MoaObSc: S2−/
S22− ratios of 1: 4.9 ± 0.1 instead of 1:1.9 ± 0.1. The annealing step
is found key to reducing fully the oxygen-containing Mo species to
Mo4+ and maximizing sulfur incorporation at the nanoclusters surface.
A consistent positive shift in the HER |ηonset| was found irrespective of
sample loading of S-enrichened (MoSx)1000 nanoclusters (approximately
200mV), whilst the Tafel slope remained unaffected by the sulfur
treatment (ca. 145mV dec-1). The 2-fold and more than 30-fold in-
creases in TOF and j0 values, respectively, surpass the HER enhance-
ments previously reported after S-edge site activation by Ni in (Ni-
MoS2)1000 hybrid nanoclusters. The results illuminate the critical role
played by S-enrichment and crystallinity in MoSx nanocluster hydrogen
electrocatalysis: creating higher densities of proton-acceptor S sites and
lower charge transfer resistances, as well as conferring higher electro-
chemical stabilities. Nanocluster benchmarking by mass activity em-
phasizes the remarkable performance of S-rich (MoSx)1000 size-selected
nanoclusters at the ultra-low loading level (83.78 ng cm-2, 5% surface
coverage): 110.5 mAmg-1 at 400mV overpotential, and 4010.5mAmg-
1 at |ηhalf max|= 652mV. These results are comparable to the state-of-
the-art MoS2-based catalysts, reflecting the significant activities of size-
selected MoSx nanoclusters obtained at ultra-low loadings, resembling
previous enhancements reported for noble metals [87–89].
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