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Transgranular liquation cracking of grains in the
semi-solid state
S. Karagadde1,2,w, P.D. Lee1,2, B. Cai1,2, J.L. Fife3, M.A. Azeem1,2, K.M. Kareh4, C. Puncreobutr5, D. Tsivoulas1,

T. Connolley6 & R.C. Atwood6

Grain refinement via semi-solid deformation is desired to obtain superior mechanical

properties of cast components. Using quantitative in situ synchrotron X-ray tomographic

microscopy, we show an additional mechanism for the reduction of grain size, via liquation

assisted transgranular cracking of semi-solid globular microstructures. Here we perform

localized indentation of Al-15wt.%Cu globular microstructures, with an average grain size of

B480mm, at 555 �C (74% solid fraction). Although transgranular fracture has been

observed in brittle materials, our results show transgranular fracture can also occur in

metallic alloys in semi-solid state. This transgranular liquation cracking (TLC) occurs at very

low contact stresses (between 1.1 and 38 MPa). With increasing strain, TLC continues to

refine the size of the microstructure until the grain distribution reaches log-normal packing.

The results demonstrate that this refinement, previously attributed to fragmentation of

secondary arms by melt-shearing, is also controlled by an additional TLC mechanism.
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A
number of in situ experimental1–4 and modelling5 studies

have recently reported how partially solidified metals can
deform with the characteristics of a granular material1,6,7;

specifically, they form defects between the grains via pores/damage
occurring in the intergranular liquid1–3. However, a less-
frequently reported observation in non-metallic semi-solid
systems is transgranular cracking, which has been observed in
low-temperature brittle metals8,9, nano-crystals10, graphene11 and
other brittle materials (for example, glass beads12 and rocks13–15).
This failure mode has also been reported in a few high-
temperature systems, such as magmas16,17, using post-mortem
analyses. Although there have been a few cases of transgranular
failure reported in completely solid metals during fatigue at high
temperature18, such a mechanism has not been reported in semi-
solid metals, where the primary (solid) phase is expected to be
very ductile. Similarly, the process of liquation cracking, or
cracking along the liquid channels between grains, also known as
intergranular failure, is observed in heat affected zones during
welding of aluminium alloys19, austenitic steels20 and
superalloys21. However, it has not been reported to occur within
grains, typically due to the lack of pre-existing liquid channels.

Semi-solid microstructural response to the imposed deforma-
tion is important in advanced alloys because they are subject to
deformation due to shrinkage forces and thermal contraction
during conventional processing or when shear forces are
applied5,22–24. In these cases, a temperature window is
encountered where solid grains and intergranular liquid co-
exist; that is, the material is semi-solid but capable of transmitting
load25,26. The microstructural response to these forces is known
to strongly depend on the grain size and morphology of
the material27, which is important for thixoforming and
other forming processes28,29. The reduction in grain size
during semi-solid processing has been primarily attributed
to fragmentation of secondary arms25,30,31. During shearing of
semi-solid melts containing equiaxed dendrites, secondary arms
detach from the primaries, and subsequently coarsen to form
globular microstructures. This fragmentation process has
been hypothesized to occur by formation of high-angle
grain boundaries (large plastic deformations), and eventual
detachment30, in addition to remelting and pinch-off25,32.
Doherty et al.30 also hypothesise that these high-angle grain
boundaries might be subjected to wetting, further reducing the
energy required to break these secondary arms. Likewise in some
brittle materials, such as rock salts and Cu-based alloys,
transgranular cracking in single crystals has been accelerated by
the presence of a liquid phase (saturated solution) inducing a
stress-corrosion cracking-like mechanism14,33.

In this study, we investigate the micro-mechanical response
and failure mechanisms of a semi-solid granular material during
indentation using in situ synchrotron X-ray tomography.
Capturing the process at temperature allows us to quantify the
motion, deformation and failure of large globular grains in a
semi-solid alloy. Indentation of Al-15 wt.%Cu semi-solid globular
microstructures was performed using fast high-resolution X-ray
tomographic microscopy at the I12 beamline at the Diamond
Light Source, UK34. Although indentation is typically employed
on solids, the purpose of using an indenter in this study was to
obtain a localized deformation, preferably by pushing a single
grain to perturb and stress the granular system.

Results
In situ observation. The in situ tomographic observations of
indentation into a semi-solid alloy are shown in Fig. 1. The
motion of the indenter (red, 2 mm s� 1) and granular flow of the
solid a-Al grains (light grey) in the copper-enriched liquid

(white) is captured at four time points (Fig. 1b–e; Supplementary
Movie 1). Unlike any prior studies on semi-solids, these results
capture the first instance of transgranular fracture of ductile
grains (Fig. 1d, region of interest marked with a yellow circle).
This is shown in three-dimension (3D) in Fig. 1g–j. At the
beginning of the deformation (Fig. 1c,h), grains near the indenter
show granular flow before being constrained by their neighbours.
This is followed by significant cracking of the highlighted grains
in the region of interest as well as those around the indenter
(Fig. 1d,i). Several other grains undergo cracking on continued
deformation as evident from the final scan at room temperature
(Fig. 1e,j). Note that the cracks are liquid filled. The load steadily
increases during indentation via a series of small jumps (Fig. 1f);
most likely due to an increase in local densification of the solid
with the load relaxing each time a grain fragments. Similar results
were observed for other indenter displacement rates of 0.5 and
10 mm s� 1, with prominent regions of cracking below the
indenter (Supplementary Fig. 1).

The region of highly fractured grains is localized near the
indenter, with the grains in the bottom half only undergoing
granular motion (2 mm s� 1; Fig. 1e), suggesting that a localized
force chain35,36 forms where a critical cracking stress is exceeded.
Similarly, in the other two cases (Supplementary Fig. 1), the
transgranular cracking is localized into a single constrained
region. As grains crack, the fragments rearrange through granular
flow accommodating the applied strain for a short time, until
the fragments are pinned again, with contact stresses rising
sufficiently to crack the grains into increasingly smaller
fragments. This fragmentation causes localized densification of
the solid phase, forcing liquid into the regions with lower load
and no fragmentation. This is quantitatively compared in Fig. 1e
where the yellow fragmented region has a solid fraction of
78% and the blue circled region has a solid fraction of 65%.
Scanning electron microscopy and electron backscatter
diffraction (EBSD) images of the initial microstructure and final
cracked microstructure (Supplementary Fig. 2; Supplementary
Note 1) clearly show transgranular fracture. Interestingly, even
when examining such early works as those of Doherty et al.30 and
Flemings25 on semi-solid deformation, similar features where a
globular grain has split into two hemispherical halves can be
observed; however, the present study is the first to provide an
explanation for these features.

Estimation of limiting contact stress. Figure 2a shows one of the
first fractured grains near the indenter tip (rendered in yellow)
before cracking; its immediate contacting neighbours are
coloured grey and their common contact areas are coloured red.
After an indenter displacement of 144 mm, the grain cracks into
two pieces (Fig. 2b, purple and pink). The observations in Figs 1
and 2 (Supplementary Figs 1 and 2) show that any grain in the
sample can potentially crack if it is constrained and loaded. To
estimate the contact stress responsible for cracking, we consider a
layer (or bed) of constrained grains (within a volume of an
average grain’s height), to which the applied load is transmitted
(shown schematically in Supplementary Fig. 3). Let ‘F’ be the load
from the indenter (transmitted to any single grain within a
constrained layer) linked through a force chain. The areas normal
to the applied load (marked in blue in Supplementary Fig. 3) are
likely to transfer the load directly. An estimate of stress trans-
mitted through these normal areas is given by sest ¼ FPnormal

k¼1
Ak

.

We can bound this estimate with a lower bound stress, calculated
by assuming F is transmitted through all possible contact areas,
with slower ¼ FPall

k¼1
Ak

, and an upper bound using just a single

contact12, supper ¼ F
A1

. The contact areas were calculated directly
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from the 3D tomographic images captured immediately before
the grain cracked. From this, the estimated stress, and lower and
upper bounds of the load when this grain cracked (F¼ 0.49±0.1)
are: 11.8±2.5, 1.1 and 37.7 MPa, respectively. The bounds also
enclose the measured flow stress of B10 MPa for Al-3 wt.%Cu
material at 555 �C in ref. 5. The variation in lower and upper
bounds is large, and the localized force chains are difficult
to determine experimentally. Although the contact stresses
between grains have previously been estimated via force chains
and discrete element simulations idealized systems35–37, such
computational techniques have yet to include the multi-physics
approaches required to simulate remelting and liquation
processes.

Grain size distribution. The initial grain size distribution for the
2 mm s� 1 case is plotted in Fig. 3a (note the initial distribution of
grains is near identical for all samples since they were all
machined from one starting block), together with the final size
distribution at the end of the indentation sequence for the
three indenter velocities. Interestingly, for all speeds, indentation
causes the grains to fracture such that they form log-normal
distributions. Such a log-normal particle distribution is one

of the optimal distributions for obtaining maximum packing
density12,38. This implies that the system is responding to the
imposed deformation by naturally increasing its packing density
to best distribute the load. The 3D sectional views of the final
microstructures at indenter displacement rates of 0.5 and
10 mm s� 1 (Fig. 3c,e, respectively), show that the localized force
chain and associated cracking occurred directly below the
indenter. In all cases, the mode of the grain size halves on
deformation, and the number of grains doubles (as listed in
Table 1), but the greatest cracking and size reduction happens at
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Figure 1 | Semi-solid indentation of globular microstructures. (a) schematic of the set-up, (b–d) sequence of 2D longitudinal slices, with the indenter

coloured red, showing the onset and development of transgranular cracking of globular microstructures at 555 �C during indentation with a speed of

2 mm s� 1 (corresponding to the instances marked in f). (e) The final room temperature scan. (f) The load measurement (averaged). (g–j) The

corresponding 3D sectional views of segmented solid grains (coloured by size). ‘I’ denotes the corresponding indenter position. The yellow dashed circles in

b–e and the black circles in g and h highlight region of interest where transgranular fracture of seemingly ductile grains is occurring. The blue circle

indicates the region of apparent increase in liquid after indentation. Scale bar, 500mm.
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Figure 2 | 3D visualization of transgranular liquation cracking.

3D rendering of a grain (shown inside the black circle in Fig. 1g–h) cracking

into two during indentation: (a) initial arrangement at I¼0 mm with the

contact areas in the field of view coloured red and (b) cracked morphology

at I¼ 144 mm. Scale bar, 200mm.
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Figure 3 | Log-normal distribution of cracked grains. (a) Grain size

distribution of initial and final Al–Cu microstructures after semi-solid

indentation at various indentation speeds (units: mm s� 1). 3D rendering

of solid grains, coloured by size, at (b) the initial state for the 0.5 mm s� 1

indentation speed and at the final states for the (c) 0.5, (d) 2 and

(e) 10mm s� 1 indentation speeds, respectively. Scale bar, 750mm.
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2 mm s� 1 (Fig. 3d), where the first force chain forms to the
sidewall. This observation confirms the stochastic behaviour of
granular flow, even when constrained and subject to
transgranular failure. It is important to note that these
measurements are limited by the pixel size (4 mm per pixel) of
the imaging setup from I12 used in this study, whilst scanning
electron microscopy images show cracks and liquid films that
have thicknesses less than this39 (Supplementary Fig. 2).

Role of solid volume fraction. To determine the dependence of
cracking on the amount of liquid between grains, indentation
experiments were performed at a higher temperature (570±5 �C)
with a speed of 0.5 mm s� 1, where the solid volume fraction was
62±2% (as compared with 73% fraction solid for the previous
experiments). With the increased liquid fraction (from 27% to
almost 40%), no cracking was observed; see Fig. 4 and
Supplementary Table 1 for further experimental details. Much
more granular motion can be observed, with the grains freely
translating and rotating to accommodate deformation1. From this
data, it appears that the propensity of cracking is directly
influenced by the solid volume fraction. This is also consistent
with the observations shown in Fig. 1e, where increased packing
in the fragmented region was observed. Furthermore, the
occurrence of cracking is independent of the indenter shape
(Supplementary Fig. 4) and the deformation rate within the
observed range of deformation speeds (0.5–10 mm s� 1). Hence,
we can hypothesise that there is a minimum solid fraction above
which the grains contact sufficiently to form force chains that
constrain motion, and this leads to transgranular fracture.

Discussion
These experimental findings pose important questions about how
and why transgranular cracking can occur so readily in the single-
crystal primary phase (a-Al) globular grains of an alloy in the

semi-solid state. Prior studies have only reported cracking (and
other defects such as damage voids) to occur between grains, or
intergranularly1–7. Further, liquation cracking during welding20

and liquid metal embrittlement40 are also assumed to occur
intergranularly. This is the first time transgranular liquation
cracking (TLC) has been observed in situ and quantified in semi-
solid alloys, similar to transgranular cracking in brittle materials.

On the basis of the experimental observations, we hypothesize
that the cracking happens via a combination of mechanisms in a
series of stages, shown schematically in Fig. 5a–d. As a semi-solid
globular alloy is compressed under constraint and the fraction of
liquid is low, intergranular liquid will flow to regions of lower
pressure2,22,23,41 and grains will contact each other forming a
force chain. Note that each grain is a near-perfect single
crystal but has a random crystallographic orientation (Fig. 5a;
Supplementary Fig. 2). Once the grains become pinned, they will
apply compressive and shear loads at a range of misorientations
depending on the orientation of the grain. A number of
neighbours will apply small but multiple contacts around the
primary a-grain (Fig. 5b). This leads to localized elastic and small
plastic strains (Fig. 5c), generating dislocations that move to the
surface quickly (dislocation mobility increases at elevated
temperatures). The dislocations are likely to pin and interlock,
as well as cause roughness at the surface and a localized increase
in free energy, which results in localized remelting. The
intergranular liquid is then drawn into the crack, causing TLC
(Fig. 5d). Note that the coarsening process can lead to an
occasional formation of small liquid pockets25 (o10 mm size),
which act as potential stress concentrators deflecting the crack
(curved crack in Supplementary Fig. 2b). Similar to stress- and
liquid-assisted cracking of rock salts42 and Cu-based alloys33, the

Table 1 | Comparison of cracking data for different deformation speeds.

Indentation Solid fraction (%)
(at 555 �C)

Before indentation After indentation

Speed (lm s� 1) Depth (mm) Number of grains Drain diameter (lm) Number of grains Grain diameter (lm)

Mean s.d. Mode s.d. (log-normal)

0.5 0.8 73.7±2 159 484 234 383 380 151, 242
2 2 73.4±2 162 489 253 511 205 126, 232
10 2 73.5±2 168 481 226 364 295 173, 384

a b

Figure 4 | Influence of solid fraction. Longitudinal slices of semi-solid

indentation of large globular Al–Cu grains at 570 �C: (62% solid volume

fraction, average grain size: B450mm): (a) before and (b) after 1-mm

indentation at 0.5mm s� 1. No cracking was observed unlike with the 73%

solid volume fraction sample. (Note: fine light grey patches are assumed to

be newly nucleated grains due to thermal fluctuations; scale bar 400mm).

f hge

Liquid
b dca

Remelting

Stress
state

Figure 5 | Mechanism of transgranular liquation cracking.

(a–d) 2D schematic of the four stages: (a) motion and pinning of grains

resulting in compressive and shear loads; (b) straining and dislocation

movement under a stress state; (c) possible remelting and interface

perturbation (shown for only one contact); and (d) crack growth from the

surface of the grain accelerated by liquid entrainment. (e–h) Region of

interest from Fig. 1b–e (yellow dotted circle) where transgranular fracture of

single-crystal grains is occurring. Scale bar, 150 mm.
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interdendritic liquid surrounding these grains acts as an interface
destabiliser, inducing a stress-corrosion type acceleration of the
crack (compressive stresses required for fracture range from 3 to
100 MPa (refs 14,43)). The proposed mechanism can also be
correlated to fragmentation of secondary arms during melt
shearing25,30, where forced melt flow induces large plastic
deformation, causing remelting25 and wetting31-assisted
detachment. We also see that the cracking occurs recursively
(Supplementary Fig. 4) until no further contacts with required
stress levels remain, that is, a log-normal distribution in grain size
is reached.

The four stages during TLC are therefore hypothesized (Fig. 5):
motion and pinning of grains resulting in compressive and
shear loads (Fig. 5a); dislocation generation, leading to surface
perturbations and internal preferential crack paths44 (Fig. 5b);
remelting25,32 at the surface perturbation45 (Fig. 5c); and crack
growth from the surface of the grain accelerated by liquation
(Fig. 5d). Although drawn schematically in Fig. 5a–d, we observe
these same stages in our experiments, as shown in Fig. 5e–h from
a zoomed-in region circled in Fig. 1b–e, clearly demonstrating the
power of in situ synchrotron experiments to inform and quantify
new mechanisms.

In summary, using in situ synchrotron X-ray tomographic
microscopy, we have shown for the first time that, in addition to
known fragmentation mechanisms, TLC of grains contributes to
grain size reduction in semi-solid alloys with high solid volume
fractions. Localized deformation comparable to an average grain
size on a constrained specimen is found to initiate cracks.
Furthermore, liquation is observed to assist the propagation of
cracks and the eventual granular separation. This fragmentation
of primary a-grains leads to final microstructures with log-
normal size distributions, providing the highest packing density
and optimal load distributions for the microstructures. The study
has presented a quantified hypothesis of a new mechanism to
achieve grain refinement that is relevant to materials processing,
magmatic flows and oil/mineral extraction.

Methods
Thermomechanical setup. A bespoke thermal-mechanical setup was used to
perform the semi-solid indentation. The apparatus consisted of a mechanical
testing rig (P2R)1,2,46 and a loop-feedback controlled resistance furnace with an
X-ray transparent window1,2,47. The samples were previously prepared by heat-
treating the alloy in the semi-solid state for 23 days at 555 �C (7 �C above the
eutectic temperature)1. A 3-mm diameter, 3-mm long (| 3� 3 mm) cylindrical
specimen was placed at the centre of an alumina holder (Fig. 1a) in preparation for
tomographic imaging. This specimen size ensured sufficient number of globular
grains within the sample, without compromising the pixel resolution. The
specimen was heated at a rate of 40 �C min� 1 to 555±2 �C and subsequently held
isothermally for 10 min. At this temperature, the sample volume had a solid
volume fraction of 73±2% (as determined by image processing). Each sample was
then indented using a conical alumina indenter (15o cone angle) at displacement
rates of 0.5, 2 and 10mm s� 1, or equivalently, with strain rates of 6� 10� 4,
1� 10� 3 and 5� 10� 3 s� 1, respectively48. Indentation experiments were also
performed on smaller |1.8� 2-mm cylindrical specimens at the TOMCAT
beamline of Swiss Light Source49 (Paul Scherrer Institut, Villigen Switzerland),
providing a range of liquid volume fractions. The mechanical setup was similar but
the heating was performed using a laser-based heating system50 instead of a
resistance furnace.

Data acquisition and image processing. During the experiment at the I12
beamline of Diamond Light Source, 2 sets of 9 tomographic scans at 9-s intervals
were acquired, with a 5-min interval in between each set of scans to offload the data
from the camera. Each scan consisted of 900 projections, acquired using a 53-keV
monochromatic X-ray beam. The camera consisted of a single-crystal cadmium
tungstate scintillator, lens coupled with a Vision Research Miro 310M camera,
giving a 4-mm pixel size. Each 3D scan was reconstructed using filtered back-
projection51 to produce a 1,200� 1,200� 800 voxel volume per scan. Each 3D
volume was filtered with median and anisotropic diffusion filters to reduce the
noise, and then solid grains were segmented using a watershed-separation
algorithm in Avizo (FEI VSG, France).
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