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ABSTRACT This paper presents the strategic proposition for a micro virtual power plant (µ VPP) to
participate in the distribution level energy-reserve pool managed by a distribution system operator. A chance-
constrained two-stage stochastic formulation is proposed to derive the bidding strategy forµVPPmaximizing
its daily profit. The stochastic nature of renewable generation and load profile of theµVPP is captured by the
Monte Carlo method. The security of supply is guaranteed by controlling the loss of load probability, which is
modeled as chance constraint. The numerical tests are performed on µ VPPs with different penetration levels
of distributed energy resource (DER) and renewable energy source (RES), where the impact of the DER
and RES indexes and the impact of uncertainty levels are demonstrated. Also, the advantages of chance-
constrained formulation as the means of risk-hedging are addressed. Finally, the impact of rival µ VPPs on
the bidding behaviors and the impact of carbon taxes on the profit are analyzed.

INDEX TERMS Micro virtual power plant (µ VPP), local energy-reserve pool, distribution system
operator (DSO), chance-constrained formulation, carbon tax.

I. INTRODUCTION

THE duel challenges of making the transition to a low
carbon economy while securing energy supplies led to

a £32 billion plan to rewire Britain over a time span of
two decades, announced by the Office of Gas and Elec-
tricity Markets (OFGEM) in 2010 [1]. Distributed Energy
Resource (DER), despite of its inherent advantages, has also
brought negative impacts on electricity networks. The inter-
mittent nature of household renewable generation can poten-
tially compromise system reliability by inflicting balancing
challenges in the UK distribution network [2]. However, the
negative impacts can be mitigated and DER’s potential can
be better exploited in an aggregated approach such as Micro-
grid (MG) andVirtual Power Plant (VPP). A coordinated, dis-
tribution level pool should also be established which provides
access to the participating MGs and VPPs. The behavior of
each participant is worth investigating.

Previous publications have designed a two-stage market
consisting of a day-ahead (DA) market and a real-time bal-
ancing (RT) market for MG and VPP. MG and VPP are more
vulnerable to shortage risks due to volatility in market prices,
demand and generation capacity compared with Macrogrid.
If they practice as sole electricity market players, the only
available hedging method against shortage risk is to purchase
from grid at spot prices, which can be quite high at times of
peak load [3], [4]. Thus, in [5] and [6] it has been suggested
that MG and VPP should contribute reserve capacity to the
nearby feeders of distribution network when necessary. Also
in [3] it has been pointed out that small-scale MGs/VPPs par-
ticipating in the distribution level market could be modeled
as price-takers.

The bidding behavior of MG/VPP could be modeled as
a deterministic linear programming problem [7], [8] with
linearized fuel cost for dispatchable generators. To better
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address the considerable impact of uncertainties, stochastic
models were applied in [9]–[13]. The fluctuations in gener-
ation and demand were often assumed to follow a normal
distribution and adequate number of scenarioswere generated
to form the uncertain profile. Although in [9]–[12] the amount
of electricity to be purchased from/sold to the utility grid and
commitment of DERs that serve their optimization purposes
was identified, and there was a lack of concerns for reserve
flexibilities. A modified approach was proposed in [13] to
assess reserve capacity sourced from DERs. However, the
reserve resource in the works above was not contributing to
other participants of the reserve pool, thus its opportunity to
generate a value stream was denied.

Various optimization techniques were applied to hedge
against the risk brought by the uncertainties. In [14]–[16]
robust optimization approach was utilized to construct a solu-
tion that is deterministically immune for any realization of
the uncertainty in a given set. Conditional value at risk was
introduced as a risk management scheme in [11] and [12]
to control the trade-off between the expected economic
profit and the variability caused by uncertain components.
Chance-constrained optimization was introduced as a reliable
solution to stochastic optimization problems. In the chance-
constrained optimization, some constraints can be relaxed
with a predefined small level of probability, or must be satis-
fied with a high level of probability. The early application of
this method was found in unit commitment problems which
considers uncertain demand and random outages of power
system components [17], [18]. In recent years there has been
an increasing interest in utilizing chance-constrained opti-
mization due to the rising penetration level of RES [19]–[21]
where chance-constrained optimization is utilized in optimal
power flow, transmission network operation and unit com-
mitment scheduling. However, to the best of our knowledge,
application of chance-constrained optimization in deriving
theµVPPs’ bidding strategy has not been discussed in the lit-
erature yet. Compared with the proposed chance-constrained
method, robust optimization can be too conservative with
its worst-case-oriented decisions. Although conditional value
at risk method is a similar probabilistic risk measure, it
only controls the variability indirectly in financial terms.
On the other hand, the proposed chance-constrained method
interacts directly with the uncertainties in physical systems
such as LOLP. LOLP is the likelihood of involuntary load
disconnection due to the disruption in power supply.

This paper presents the bidding strategy for a micro Virtual
Power Plant (µVPP). µVPP is defined as an extension to the
MG concept since the DER located within the µVPP has a
capacity that can cover either partial or all of the load demand.
The bidding strategy is derived from a chance-constrained
two-stage stochastic formulation and the main contributions
of this paper are identified as follows:

1. µVPP is established as an active contributor of a distri-
bution level energy-reserve pool.

2. Compared with the classical Monte Carlo recourse
method, the proposed chance-constrained formulation

demonstrates its ability to maintain the LOLP at a
required level. It takes less processing time yet renders
no loss of optimality.

3. The impacts of different levels of forecast error and
LOLP on bidding behavior and expected profit are
analyzed, which provide insights to µVPP owners with
different sizes of DER and RES.

4. The impact of rival µVPP on the bidding behaviors
with congestion is analyzed. Also the results demon-
strate how µVPP owners will be affected by the imple-
mentation of carbon tax.

This paper is organized into five sections. Section II
describes the market structure and the business model.
Section III presents the two-stage chance-constrained for-
mulation of the bidding strategy. The numerical results are
displayed and analyzed in Section IV. Section V draws the
conclusion and addresses the key findings.

II. µVPP BUSINESS MODEL IN
ENERGY-RESERVE POOL
By pooling the energy and reserve capacities resourced from
both local DERs and traditional suppliers, a market is estab-
lished in the distribution system as shown in Fig. 1. The

FIGURE 1. Energy-reserve pool in distribution system.

participants in the market including µVPPs and energy sup-
pliers are managed by a Distribution SystemOperator (DSO).
The dual role of µVPP as both producer and consumer
enables a submission of either energy offer or energy bid
to the market, depending on the capacity of DER and the
demand level inside µVPP. The proposed distribution system
pool introduces more competition to the retail energy mar-
ket and provides µVPPs with the liberty to switch between
producer and consumer in daily operation.

In DAmarket, the DA retail energy priceCE,DA
t (£/kWh) is

broadcasted by the DSO to the market participants. Based on
the price signals, µVPPs submit two sets of hourly quantity
bid/offer: the energy bid or offer PEDA,t (kW) to purchase
or sell energy and the upward or downward reserve offer
PRup,t/P

R
dw,t (kW) to provide regulating service. In the RT

market, the retail energy price is updated to CE,RT
s,t (£/kWh).

Thus, changes are made to the energy bid/offer as the µVPP
needs to purchase/sell more energy 1PE+s,t (kW) or less
1PE−s,t (kW). Should the need arise for the provision of
reserve capacity, call up signals SIGups,t/SIG

dw
s,t will be issued
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by the DSO and the µVPPs that are called up will produce
the requested amount of regulating power as they offer in the
DAmarket. To sum up, the DAmarket matches the electricity
demand bids and supply offers from pool participants and the
RT market settles the imbalanced power to achieve real-time
balance of supply and demand.

To illustrate the context and beneficiaries of the energy-
reserve pool in the distribution system, the µVPP business
model should be developed addressing the roles and value
transactions between players including DSO, µVPP and
end-users as presented in Fig. 2.

FIGURE 2. Value transactions between distribution system
market participants.

1) µVPP-DSO
DSO manages the pool market and channels the value stream
between participants from energy and reserve capacity trans-
actions. According to the Common Distribution Charging
Methodology [22] issued by OFGEM, a capacity charge
determined by the highest kW power flow at the grid con-
nection point will be included in the energy tariff. Thus, DSO
charges/pays µVPP for its DA energy bid/offer PEDA,t (kW)
at price ηCE,DA

t (£/kWh), where the ratio η implies that a
higher transaction limit corresponds to more expensive tariff.
Also in the DA market, the DSO pays each µVPP for the
submission of upward or downward reserve offer PRup,t/P

R
dw,t

(kW) at price CR
DA (£/kWh). Later in the RT market, µVPP’s

payment/income from the DA energy bid/offer could be
affected by two sources: the upward or downward changes
to the DA energy bid/offer and the difference between the
RT energy tariff CE,RT

s,t (£/kWh) and the DA energy tariff.
Another RT income for the µVPP comes from the provision
of reserve capacity at RT reserve price CR

RT (£/kWh). µVPP
will receive this income only if its DA reserve offer is called
up to produce.

SDSOuVPP = SRDA + S
R
RT − S

E
DA − S

E
RT

= CR
DA

NT∑
t=1

(
PRup,t + P

R
dw,t

)
+CR

RTπ
∗
s

NS∑
s=1

NT∑
t=1

(
PRup,tSIG

up
s,t + P

R
dw,tSIG

dw
s,t

)
−

NT∑
t=1

ηCE,DA
t PEDA,t

−π∗s

NS∑
s=1

NT∑
t=1

ηCE,RT
s,t

(
1PE+s,t −1P

E−
s,t

)
−π∗s

NS∑
s=1

NT∑
t=1

η
(
CE,RT
s,t − CE,DA

s,t

)
PEDA,t ∀s,∀t

(1)

where the first term of equation represents the revenue of
µVPP SRDA (£) for the provision of reserve offers in the DA
market. This income is obtained whether the offers are called
up or not. The second term stands for the payment SRRT (£)
in the RT market when the reserve capacity is called up to
produce. The third term is the cost SEDA (£) of purchasing
energy or the income of selling energy in the DA market.
The last two terms constitute the RT cost/income variation
SERT (£). In equation (1), the RT value stream SRRT and SERT
under each scenario s are assigned with the probability π∗s .

2) µVPP INHERENT COST
The DER located in the proposed µVPP includes small or
medium scale wind turbines and diesel generators. The oper-
ation cost of wind turbines is assumed to be zero, leaving the
inherent cost to be the operation cost of diesel generators

SGenDA =

NT∑
t=1

NG∑
i=1

(
CGen
i PGeni,t + C

SU
i ui,t + CSD

i vi,t
)
∀i,∀t

(2)

where the price parameters include fuel cost CGen
i (£/kWh)

for hourly power output PGeni,t (kW), start-up cost CSU
i (£)

and shut-down cost CSD
i (£). In the RT market, the diesel

generators must ramp up or ramp down their output power
1PGens,i,t (kW) to accommodate the changes in demand level
and fulfill the task to produce reserve capacity. The variation
of operation cost is therefore calculated as

SGenRT = π
∗
s

NS∑
s=1

NT∑
t=1

NG∑
i=1

CGen
i 1PGens,i,t ∀s,∀i,∀t. (3)

3) µVPP-END-USER
To encourage end-users to join the µVPP community, a dis-
count rate ω is applied for the retail energy price. Based on
the DA prediction of load, µVPP estimates a retail income
SLoadDA (£) from end-users

SLoadDA =

NT∑
t=1

ωηCE,DA
t PL,DAt ∀t (4)

where ωηCE,DA
t is the DA energy price with discount for the

end-users in theµVPP and PL,DAt (kW) is the forecasted load.
In the RT market scenarios, both the retail energy price

and the actual demand vary from DA forecasted value, the
variation of retail income is calculated as

SLoadRT = π∗s

NS∑
s=1

NT∑
t=1

ωηCE,RT
s,t

(
PL,RTs,t − P

L,DA
t

)
∀s,∀t

(5)

where ωηCE,RT
s,t is the RT energy price and PL,RTs,t (kW) is

the RT load level in each scenario. Additionally, a small
level of load loss Plosss,t (kW) is tolerable in the µVPP supply
commitment but the end-users should be well compensated
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at the penalty price Closs (£/kWh)

SLossRT = π
∗
s

NS∑
s=1

NT∑
t=1

ClossPlosss,t ∀s,∀t. (6)

III. CHANCE-CONSTRAINED TWO-STAGE STOCHASTIC
µVPP BIDDING STRATEGY FORMULATION
The uncertain components in the µVPP include wind power
output, load level, RT energy price and RT call up sig-
nals for reserve offers. A truncated normal distribution is
used to mimic the DA forecast error of the first three
components [23].

PW ,RTs,t ∼ TN (PW ,DAt , σ 2
W ) ∀s, ∀t (7)

PL,RTs,t ∼ TN (PL,DAt , σ 2
L ) ∀s, ∀t (8)

CE,RT
s,t ∼ TN (CE,DA

t , σ 2
CE ) ∀s, ∀t (9)

where the DA forecasted values PW ,DAt , PL,DAt and CE,DA
t are

used as the mean value in equation (7)-(9) and the forecast
error is represented by the standard deviation of each compo-
nent. As for the RT call up signals for reserve offers, they are
generated as random binary signals with a low probability of
signal ‘‘1’’ (‘‘1’’ represents the offer is being called up). The
Monte Carlo method is applied to generate scenarios for the
uncertain components in the µVPP. To deal with computa-
tional complexity brought by large number of scenarios, this
paper applies a forward selection algorithm utilized in [24]
to perform scenario reduction and deliver a best possible
approximation of the initial stochastic data.

In this paper, a chance-constrained two-stage stochastic
formulation is utilized to devise the bidding strategy for a
µVPP. In the first stage, the objective is to maximize µVPP’s
expected net profit by adding up its income from the DA
energy-reserve market and deducting the operation cost of
generators. The decision variables determined in the first
stage include: 1) the energy bid/offer PEDA,t submitted to the
DAmarket; 2) the reserve bidPRup,t/P

R
dw,t submitted to theDA

market; 3) the operation schedule (ON/OFF status oi,t , start-
up decision ui,t and shut-down decision vi,t ) and output power
PGeni,t for each generator; 4) the available upward/downward

reserve power rGen,upi,t /rGen,dwi,t sourced from dispatchable
generator and 5) the scheduled usage PW ,St of wind power
based on the forecasted output.

The objective function of the first stage is formed as
follows:

max SRDA + S
Load
DA − S

E
DA − S

Gen
DA

=

NT∑
t=1

{
CR
DA

(
PRup,t + P

R
dw,t

)
+ωηCE,DA

t PL,DAt − ηCE,DA
t

×PEDA,t−
NG∑
i=1

(
CGen
i PGeni,t +C

SU
i ui,t+CSD

i vi,t
)}
(10)

where the DA revenue comes from submitting reserve offers
SRDA and energy retail SLoadDA . The DA cost includes expected

payment for energy bid SEDA (if the energy offer instead of bid
is submitted in DA market, SEDA is another source of revenue)
and operation cost SGenDA of generators.
Subject to the following constraints:

−EXCHmax ≤ PEDA,t ≤ EXCHmax (11)
PGeni ≤ PGeni,t oi,t ≤ P̄

Gen
i ∀i,∀t (12)

−oi,t−1 + oi,t − oi,k ≤ 0, 1 ≤ k − (t − 1) ≤ TGenon
∀i,∀t (13)

oi,t−1 − oi,t + oi,k ≤ 1, 1 ≤ k − (t − 1) ≤ TGenoff
∀i,∀t (14)

−oi,t−1+oi,t−ui,t ≤ 0 ∀i,∀t (15)
oi,t−1−oi,t−vi,t ≤ 0 ∀i,∀t (16)
PGeni,t − P

Gen
i,t−1 ≤

(
2− oi,t−1 − oi,t

)
PGeni

+
(
1+ oi,t−1 − oi,t

)
RUi ∀i,∀t

(17)
PGeni,t−1 − P

Gen
i,t ≤

(
2−oi,t−1−oi,t

)
PGeni

+
(
1−oi,t−1+oi,t

)
RDi ∀i,∀t

(18)
0 ≤ PW ,St ≤ PW ,DAt ∀t (19)

PEDA,t+
NG∑
i=1

PGeni,t +P
W ,S
t =PL,DAt ∀i,∀t (20)

0 ≤ rGen,upi,t ≤ ρupP̄Geni ∀i,∀t (21)

0 ≤ rGen,dwi,t ≤ ρdwP̄Geni ∀i,∀t (22)

PGeni,t + r
Gen,up
i,t ≤ P̄Geni oi,t ∀i,∀t (23)

PGeni,t − r
Gen,dw
i,t ≥ PGeni oi,t ∀i,∀t (24)

PGeni,t − P
Gen
i,t−1 + r

Gen,up
i,t ≤

(
2− oi,t−1 − oi,t

)
PGeni

+
(
1+ oi,t−1 − oi,t

)
RUi ∀i,∀t

(25)
PGeni,t−1 − P

Gen
i,t + r

Gen,dw
i,t ≤

(
2− oi,t−1 − oi,t

)
PGeni

+
(
1− oi,t−1 + oi,t

)
RDi ∀i,∀t

(26)
0 ≤ PRup,t ≤ P

L,DA
t ∀t (27)

0 ≤ PRup,t ≤
NG∑
i=1

rGen,upi,t ∀i,∀t (28)

0 ≤ PRdw,t ≤ P
L,DA
t ∀t (29)

0 ≤ PRdw,t ≤
NG∑
i=1

rGen,dwi,t ∀i,∀t (30)

Pr

{
NG∑
i=1

PGeni,t +EXCHmax+

NG∑
i=1

rGen,upi,t ≥ PL,RTs,t −P
W ,RT
s,t

}
≥ 1− εLOLP ∀t (31)

Pr

{
NG∑
i=1

PGeni,t +P
E
DA,t−P

R
up,t +

NG∑
i=1

rGen,upi,t ≥PL,RTs,t −P
W ,RT
s,t

}
≥ 1− εLOLP ∀t (32)

where the constants include: transaction limitEXCHmax (kW)
between µVPP and distribution pool market; the upper limit
P̄Geni (kW) and the lower limit PGeni (kW) of the ith dispatch-
able generator output power; the minimum time TGenon (h)
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that generators should be on and the minimum time TGenoff (h)
they should be off per day; ramp up limit RUi (kW/h) and
ramp down limit RDi (kW/h) that characterize the speed of
providing upward or downward spinning reserve of the ith
generator; the DA forecasted wind power PW ,DAt (kW) and
forecasted load PL,DAt (kW) during period t; the RT wind
power PW ,RTs,t (kW) and RT load PL,RTs,t (kW) in scenario s
during period t; the percentage of ρup/ρdw that limits the
maximum capacity of upward/downward spinning reserve
with regard to generation capability; the LOLP level εLOLP
and the price constants.

The objective function (10) aims at maximizing the
expected DA profit of µVPP while considering the limits of
its generators and guaranteeing a small probability of load
loss. Constraints (11) - (32) apply in a day-ahead schedul-
ing period of 24 hours. In Equation (11) defines the upper
and lower limits of the DA energy bid/offer. Equation (12)
ensures the power output of each generator is within its
capacity. Equation (13) and (14) are the minimum on time
andminimum off time constraints for generators respectively.
Equation (15) and (16) define the start-up and shut-down
variables. Equation (17) and (18) apply the ramping rate
limits on the speed of each generator to increase or decrease
its power output. Equation (19) represents the fact that the
scheduled wind power will not exceed the forecasted value.
Equation (20) is the power balance constraint between supply
and demand inside µVPP. Should the DA reserve offer be
called up to produce, equation (21) and (22) set the upper limit
of upward and downward spinning reserve that are available
from each generator. However, the production of upward or
downward spinning reserve capacity should also abide by
the output power limit and ramping limit as indicated by
(23) - (24) and (25) - (26) respectively. Equation (27) indi-
cates that the upward reserve capacity offered by µVPP
should not exceed its demand level since satisfying the load
is the priority of DER production. Equation (28) explains
that the upward reserve capacity offer is originated from
ramping up the generator output. Similar constraints (29) and
(30) apply the same rules to the downward reserve offer.
Equation (31) is the chance constraint for LOLP if upward
reserve offer is not called up to produce. Equation (32) is the
chance constraint for LOLP if upward reserve offer is called
up to produce. In this case the power flows from the µVPP to
the distribution pool and the upward reserve capacity will be
deducted from the upward spinning reserves. The remainder
of the power supply should guarantee a low probability of
load loss.

The chance constraints (31) and (32) are converted into
their equivalent deterministic formulation as follows:

NG∑
i=1

PGeni,t + EXCHmax +

NG∑
i=1

rGen,upi,t

≥ E
(
PL,RTs,t − P

W ,RT
s,t

)
+ φ−1 (1− εLOLP)

× σ
(
PL,RTs,t − P

W ,RT
s,t

)
∀s,∀t (33)

NG∑
i=1

PGeni,t + P
E
DA,t − P

R
up,t +

NG∑
i=1

rGen,upi,t

≥ E
(
PL,RTs,t − P

W ,RT
s,t

)
+ φ−1 (1− εLOLP)

× σ
(
PL,RTs,t − P

W ,RT
s,t

)
∀s,∀t (34)

where the mean of the RT net load (i.e. net load is obtained
by deducing the wind power from load) is calculated as

E
(
PL,RTs,t − P

W ,RT
s,t

)
= PL,DAt − PW ,DAt ∀t. (35)

And the standard deviation of the stochastic net load is calcu-
lated as

σ
(
PL,RTs,t − P

W ,RT
s,t

)
=

√√√√π∗s NS∑
s=1

(
PL,RTs,t − P

W ,RT
s,t − E

(
PL,RTs,t − P

W ,RT
s,t

))2
.

∀t. (36)

Also, the component φ−1 (1− εLOLP) in the deterministic
equivalence computes the inverse of the normal cumulative
distribution function with the probability 1 − εLOLP, mean
0 and standard deviation 1. The conversion of chance con-
straints into their deterministic form is shown in the appendix.

In the second stage, the objective is to maximize the gains
(or minimize the losses) ofµVPP profit brought by RT uncer-
tainties. The second stage objective function is presented in
equation (37)

max SRRT + S
Load
RT − SERT − S

Gen
RT − S

Loss
RT

=

NS∑
s=1

NT∑
t=1

{
π∗s

{
CR
RT

(
PRup,tSIG

up
s,t + P

R
dw,tSIG

dw
s,t

)
+ωηCE,RT

s,t

(
PL,RTs,t − P

L,DA
t

)
− ηCE,RT

s,t

(
1PE+s,t −1P

E−
s,t

)
− η

(
CE,RT
s,t − CE,DA

t

)
PEDA,t

−

NG∑
i=1

CGen
i 1PGens,i,t − ClossPLosss,t

}}
. (37)

Subject to the following constraints:

−rGen,dwi,t ≤ 1PGens,i,t ≤ r
Gen,up
i,t ∀s,∀i,∀t (38)

0 ≤ 1PE+s,t ≤ EXCHmax,

0 ≤ 1PE−s,t ≤ EXCHmax ∀s,∀t (39)

−EXCHmax ≤ PEDA,t +1P
E+
s,t −1P

E−
s,t ≤ EXCHmax

∀s,∀t (40)

0 ≤ PW ,As,t ≤ P
W ,RT
s,t ∀s,∀t (41)

0 ≤ PLosss,t ≤ ζP
L,RT
s,t ∀s,∀t (42)(

PEDA,t +1P
E+
s,t −1P

E−
s,t

)
+

NG∑
i=1

(
PGeni,t +1P

Gen
s,i,t

)
+ PW ,As,t

= PL,RTs,t − P
Loss
s,t ∀s,∀t (43)
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−PRup,tSIG
up
s,t + P

R
dw,tSIG

dw
s,t

= 1PE+s,t −1P
E−
s,t ∀s,∀t. (44)

The second stage objective function (37) aims at maximiz-
ing the increment (or equally minimizing the decrement) of
expected µVPP profit in different scenarios with specified
probability. The first term represents the RT income SRRT
from delivering the offered reserve capacity. The second term
refers to the income variation SLoadRT caused by uncertain RT
load. The third and fourth terms of equation (37) stand for cost
variation SERT which settles the RT payment for any upward or
downward changes to energy bid and for the price difference
between the DA market and the RT market. The fifth term
is the cost variation SGenRT for the increment or decrement in
output power for all generators. The last termClossPLosss,t is the
compensation cost SLossRT to end-users for possible load loss
in certain scenarios. The first stage decision variables PEDA,t ,

PRup,t , P
R
dw,t , P

Gen
i,t , rGen,upi,t and rGen,dwi,t are still involved in

the second stage formulation. Additional decision variables
include: 1) the upward change 1PE+s,t (kW) or downward
change 1PE−s,t (kW) to the DA energy bid/offer in scenario
s during period t; 2) the change to the ith scheduled generator
output power1PGens,i,t (kW) in scenario s during period t; 3) the
actual wind power usage PW ,As,t (kW) in scenario s during
period t according to the RT wind power production and
4) the load loss PLosss,t (kW) in scenario s during period t .
Additional constants include: probability π∗s of selected sce-
narios; call up signals SIGups,t/SIG

dw
s,t for reserve offers in

scenario s during period t and the constant ζ that represents
the maximum percentage of load loss that is tolerable for
end-users.

As for constraints, (38) - (44) still apply in the DA
scheduling period although they define the RT variables.
Equation (38) ensures that the adjustment to the generator
output lies within the limits of upward/downward spinning
reserve. Equation (39) and (40) address that the transaction
limit should not be exceeded when changing the energy
bid/offer capacity in RT market. Equation (41) represents the
constraint for actual wind power usage in different scenarios.
The chance constraints (31) - (32) guarantee a low probability
of load loss event, however, the capacity of load loss should
be confined to a small portion ζ of load as equation (42)
indicates. Equation (43) is the RT power balance constraint
between supply and demand for theµVPP. Finally, the power
flow relationship at the distribution network connection point
is described in an equality constraint (44).

To sum up, the two-stage stochastic bidding strategy is
formulated as a mixed-integer linear programming (MILP)
problem with the first stage objective (10) subjected to the
first stage constraints (11) - (32) and the second stage objec-
tive (37) subjected to the second stage constraints (38) - (44).
The two-stage problem aims at deriving a well-informed day-
ahead operation schedule with estimated real-time realization
of uncertain components. It is solved concurrently with state-
of-the-art solvers such as CPLEX.

IV. COMPARATIVE PERFORMANCE STUDY
In the comparative performance study, the interrelation
between µVPP design and its projected profit is addressed.
Two parametric indexes are introduced: the DER index
that represents the ratio of on-site DER capacity over the
value of maximum load level and the Renewable Energy
Source (RES) index that is defined as the ratio of RES capac-
ity over the total DER capacity. The first case is set up with
fixed uncertainty level for volatile parameters, where µVPPs
with different DER indexes and RES indexes are studied. The
second case studies the impact of wind power uncertainty,
load uncertainty and LOLP level individually. The third case
compares the proposed chance-constrained formulation with
the classical Monte Carlo RT recourse approach. The fourth
case analyzes the impact of the congestion on the µVPP
bidding behaviors. Considering the decarbonization strategy
promoted by the UK government, the last case investigate
the impact on µVPPs’ profit brought by the introduction of
carbon tax.

The UK DA forecasted retail electricity price is extracted
from Nord Pool price data 2016 [25], while the carbon tax
rates are calculated according to the UK government’s policy
on carbon pricing [26]. The µVPP candidate, a residential
community located in West Midlands County, has around
200 households with an average of 533kWdaily consumption
power. End-users of the community are subject to a 10%
discount on retail price and 200% compensation for load
loss. To provide guidance to deploy DERs in this community,
different sizes of dispatchable generators from 165kW to
660kW and wind turbines from 20kW to 660kW are stud-
ied. All case studies are coded with YALMIP and CPLEX
12.1.4 is utilized as the solver. The program runs on an Intel
Core-i5 2.5-GHz computer and the run time for the algorithm
is around 80 seconds.

A. IMPACT OF DER INDEX AND RES INDEX
In this case, four DER indexes of 1/4, 1/2, 3/4 and 1 are
studied. Nine RES indexes from 0 to 1 with a gradient of
1/8 are also introduced. Firstly, the bidding behavior in DA
energy-reserve market for different combinations of DER
index (I1) and RES index (I2) is depicted in Fig. 3.

The diagram on the left-hand side of Fig. 3(a) shows a
similar pattern of bidding behavior for µVPPs with the same
RES index and different DER index: the peak and valley
bidding curves overlap with peak and valley load. When the
DER capacity is large enough, the µVPP can make energy
offers to the pool during low demand period of 3-4 a.m. and
6-7 a.m. The diagram on the right-hand side of Fig. 3(a)
demonstrates how the RES index impacts the bidding behav-
ior under a fixed DER capacity: with a low RES penetration
level of 0 and 1/4 Index value, the µVPP is more inclined
to an autonomy state from the grid and will only make
energy bid during energy intensive period of the day. The
capacity of the bid is also lower with low RES indexes since
dispatchable generators, which account for the larger half of
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FIGURE 3. µVPP bidding behaviors: (a) energy market bidding;
(b) upward reserve offering; (c) downward reserve offering.

the DER, can provide more upward spinning reserve to be
used inside the µVPP. For higher RES index of 1/2 and 1,
the bidding/offering pattern becomes more volatile. Such a
volatile bidding/offering behavior leads to heavy reliance on
the utility grid, which increases µVPP’s vulnerability to fault
events.

In the left diagram of Fig. 3(b), the upward reserve offers
submitted by µVPPs with different DER indexes share the
same pattern. Intuitively, a larger DER capacity means a
higher offer capacity from dispatchable generators. When the
DER is made up entirely of wind generation, µVPP becomes
incapable of providing upward reserve offer.

The provision of downward reserve offer as indicated in
Fig. 3(c) shares similarities with upward reserve offering
except for the energy intensive period of 10 a.m. to 18 p.m.,
when the µVPP rarely submits downward reserve offers.
This is because the submission of downward reserve offers
during the high demand period is only driven by lower energy
price. If the cost of dispatchable generation is lower than the
RT energy price, µVPP will not provide downward reserve
service for economic concerns.

Secondly in Case A, the daily profit of the µVPP in terms
of DER index and RES index is presented in Fig. 4.

The profit of µVPP increases with a rising DER index
and RES index, this is due to the assumption that wind

FIGURE 4. µVPP profit for different DER and RES indexes.

turbine has zero operation cost which is an optimistic setup
compared with practice. However, the µVPP business model
has incorporated a pricing mechanism to improve the fair-
ness to different DER allocations: for those µVPPs with
high RES penetration (i.e. marked by a RES index that is
close to or equal to 100%), the transaction limit EXCHmax
between theµVPP and the main grid is also high to guarantee
that µVPP could always import from the main grid when
underproduction occurs in real-time. Based on the µVPP-
DSO agreement described in Section II, a higher transaction
limit corresponds to more expensive tariff for energy import.
As shown in the right diagram of Fig. 3(a), µVPP with high
RES index has more frequent and larger purchases in the
energy market to make up for the shortage caused by wind
production uncertainty. Another reason for the high projected
profit earned by RES-dominated µVPP is that the energy
offers from the large wind generation are assumed to be
accepted by the pool market completely. Additionally, high
penetration of RES requires major initial investment followed
by regular expenses on maintenance and repair. A µVPP
with a seemingly high daily profit could also risk being put
on a slow lane to recoup its capital investment. To sum up,
Fig. 4 is produced under an optimistic market setup with
pricing measure to increase the credibility of the result. It
provides a reference baseline to observe the effect of altering
the DER allocation on the projected µVPP profit.

B. IMPACT OF UNCERTAINTIES AND LOLP
In this case, the impact of narrowing down the parame-
ter uncertainties of wind power and load is demonstrated
in Fig. 5. It is pointed out that extra revenue can be generated
by acquiring more accurate forecast information during DA
bidding stage. Fig. 5(a) shows how much extra revenue can
be obtained by narrowing down the wind forecast error from
20% to 0. The revenue rises with an increasing capacity of
DER and the increasing share of RES, but the additional
income barely achieves 5% increase in percentage terms for
all possible configurations. Therefore, a small level of wind
power forecast error is tolerable for µVPPs but an accurate
forecast system will be beneficial to those with large wind
turbine assets. Fig. 5(b) displays the extra revenue generated
by slashing the load forecast error from 5% to 0. Unlike
wind power uncertainty, an accurate load forecast informa-
tion proves to be crucial for µVPPs with all configurations.
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FIGURE 5. Extra revenue obtained by (a) eliminating 20% wind
forecast error and (b) eliminating 5% load forecast error.

The maximum profit increments in percentage terms are
71.28%, 36.88% and 86.66% for µVPP with DER index 1/2,
3/4 and 1 respectively. For theµVPPwith DER index 1/4, the
forecast error reduction of load could even recover a losing
business back to a break-even point. To sum up, accurate load
forecast system is mandatory for profit-motivated µVPPs,
especially for those with small wind turbine assets because a
more volatile load would cost more energy bidding variations
and more spinning reserves to be consumed inside the µVPP.
The second result presented in this case is the impact

of LOLP level on the profit and upward reserve offering
behavior. The European Parliament has issued a regulation
on risk-preparedness in the electricity sector, in which the
security of power supply requires that 95% to 99% of the time
no one should be involuntarily disconnected. Consequently,
the value of LOLP could be set as 0.01, 0.02 and 0.05. The
result of an example µVPP with DER index 1/4 is given
in Table 1.

TABLE 1. Impact of LOLP on profit and upward reserve offering
for DER index 1/4.

Four specific configurations are worth highlighting: for
µVPPs with extremely high share of dispatchable gener-
ators in their energy mix (represented by low RES index
0 and 1/8), the LOLP setting has a tremendous impact on
the upward reserve offer behavior and a LOLP relaxation
from 0.01 to 0.05 could potentially recover a losing µVPP
operation to the break-even point. To achieve the tradeoff
between supply security (guaranteed by low LOLP) and eco-

nomic viability (financially sound under higher LOLP), these
µVPPs with low RES index should consider the deployment
of controllable load to actively shed the lost load. On the
other hand, some µVPPs have extremely low capacity of
dispatchable generators (represented by high RES index 7/8
and 1) and the upward spinning reserve is not enough to
be submitted as reserve offers. Thus, it is not necessary for
these µVPPs to participate in the reserve market. Also, the
insignificant rise in extra revenue makes them less motivated
to secure low LOLP.

C. COMPARISON OF RISK-HEDGING METHODS
To address the competitiveness of the proposed chance-
constrained formulation, a reference case is derived by
solving a deterministic DA problem and applying the
Monte Carlo recourse method in the RT stage to obtain the
best approximation of µVPP profit. The DA objective (10)
subjected to constraints (11) - (30) is solved independently as
a deterministic problem, with chance constraints (31) - (32)
replaced by the following limits (45) - (46):

−EXCHmax ≤ PEDA,t − P
R
up,t ≤ EXCHmax ∀t (45)

−EXCHmax ≤ PEDA,t + P
R
dw,t ≤ EXCHmax ∀t (46)

where the provision of upward and downward reserve
strictly obeys the transaction limit at the grid connection
point, regardless of any RT stochastic parameters. Then
the already derived bid/offer capacities and the dispatchable
generation schedule are utilized in the RT recourse with
objective (37) subjected to constraints (38) - (44). Both
risk-hedging methods are applied in an example µVPP with
DER index 1 and RES index 1/2. The result is displayed
in Table 2.

TABLE 2. Comparison between two risk-hedging methods in
µVPP bidding strategy.

Based entirely from DA forecasted knowledge, the deter-
ministic formulation requires the forecasted load to be satis-
fied without any tolerance to loss, thus the µVPP becomes
more conservative in terms of providing upward reserve ser-
vices. Although the RT recourse has made every effort to
accommodate the uncertainties and achieved 97.3% of the
proposed profit, it still yields a staggering 69% probability of
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load loss event and a daily penalty that is more than 100 times
of the proposed method. On the other hand, the proposed
method excels in terms of accurate control of load loss, higher
daily profit and computational efficiency.

D. RIVAL’s IMPACT ON BIDDING BEHAVIORS
The bidding behavior of the µVPP is influenced by rivals
located at its nearby buses. For price-taking µVPPs, such
impact takes place in the event of distribution line congestion
when the feeders are heavily loaded. A three bus DC net-
work model is utilized in this case and presented in Fig. 6:
two rival µVPPs are represented by two adjacent nodes
(node 1 and node 2) while node 3 is the energy-reserve pool
managed by the DSO.

FIGURE 6. Three bus DC network model for µVPPs.

With the following additional constraints of the DC power
flow model added to the optimization problem:

PG1 − PL1 −
(

1
X12
+

1
X13

)
θ1 +

1
X12

θ2 +
1
X13

θ3 = 0

(47)

PG2 − PL2 −
(

1
X12
+

1
X23

)
θ2 +

1
X12

θ1 +
1
X23

θ3 = 0

(48)

0− PLG3 −
(

1
X13
+

1
X23

)
θ3 +

1
X13

θ1 +
1
X23

θ2 = 0

(49)

where the parameter PLG3 represents the net load or the net
surplus of the pool market.

And the following additional constraints of the line limits
are added to the optimization problem:

−Pmax
12 ≤ P12 ≤ Pmax

12 (50)

−Pmax
13 ≤ P13 ≤ Pmax

13 (51)

−Pmax
23 ≤ P23 ≤ Pmax

23 . (52)

And the constraints for state variables are added to the
optimization problem

0 ≤ θ1 ≤ 0 (53)

−∞ ≤ θ2 ≤ ∞ (54)

−∞ ≤ θ3 ≤ ∞. (55)

If network congestion is not considered, the bidding quan-
tity of individual µVPPs in the energy market is limited only

by the overall transaction limit. However, the distribution
line 1-3 between node 1 and node 3 is congested during peak
load period since the power flow requested by the µVPP
exceeds the thermal limit. As shown in Fig. 7(a), the energy
bidding trajectory becomes flat with congestion considered.

FIGURE 7. Impact on behaviors: (a) energy market bidding;
(b) dispatchable generation; (c) upward reserve offering;
(d) downward reserve offering.

To satisfy the demand within µVPP that has conges-
tion, the dispatchable generators must ramp up and produce
more power as Fig. 7(b) indicates. Consequently, Fig. 7(c)
and Fig. 7(d) show the decreased ability to provide upward
reserve offer and the increased ability to provide downward
reserve offer.

E. IMPACT OF IMPLEMENTING CARBON TAX
To promote the decarbonization of electricity supply and
reduce greenhouse gas emissions, the UK government has
introduced a carbon tax levied on the electricity produced
by generators using fossil fuels. The carbon tax ranges from
1.3p/kWh to 3.9p/kWh and it will be added to the variable unit
cost for the dispatchable generators in the original two-stage
µVPP bidding formulation presented in Section III. This
case investigates how µVPPs, with their different shares of
dispatchable generators, are affected by the implementation
of carbon tax in terms of economic profit.

In Fig. 8, the blue bar representsµVPPs’ profit without the
consideration of carbon tax, where the variable unit cost is the
actual production cost of dispatchable generators. The green
bar and yellow bar depict µVPPs’ profits with a low carbon
tax rate of 1.3p/kWh and a high rate of 3.9p/kWh respectively.
The introduction of carbon tax decreases µVPPs’ profit due
to an increased operation cost of dispatchable generators and
the reduction grows more significant with a higher tax rate.
For those µVPPs with extremely high share of dispatchable
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FIGURE 8. Impact of carbon tax on ţVPPs with different RES
indexes.

generators (characterized by low RES index of 1/8), the profit
even drops to zero in the presence of a high carbon tax rate.
Secondly, with the RES index increases from 1/8 to 7/8, the
electricity supply of the µVPP becomes more decarbonized
and the reduction on profit brought by carbon tax becomes
less obvious. With the implementation of carbon tax, higher
penetration of RES is recommended for µVPP investors.

V. CONCLUSION
This paper describes the bidding strategy formulation for
price-taking micro Virtual Power Plants (µVPPs) to gain
competitive advantage in the upcoming deployment of the
distribution system pool. Beside active bidding and offering
in the energy pool, theµVPP also has its asset value stretched
to provide ancillary services. In a foreseeable future, the
energy-reserve equilibrium will be achieved locally by the
interworking of multiple µVPPs. The decreasing investment
for distribution network expansion and the increasing revenue
for µVPPs will encourage the newborn distribution system
pool to become a highly competitive market. End-users will
have a greater choice of energy suppliers which may yield
retail electricity price reductions. µVPPs, recognized as full-
dependent, semi-autonomous and full-autonomous in terms
of DER coverage and full-dispatchable, semi-renewable and
full-renewable in terms of RES share, are shown to have
significant differences in bidding behaviors and projected
daily profit. Also the results have demonstrated how µVPP
owners are affected by the implementation of carbon tax.

The numerical tests have shown that accurate wind power
and load forecasting bring additional revenue to the µVPP.
The extra income can also be obtained by relaxing the
required LOLP level but a compromise must be made finan-
cially to guarantee the level of the security of supply. As a
computationally efficient and technically secure method, the
proposed chance-constrained two-stage µVPP optimization
provides valuable guidance to investors in the determina-
tion of DER and RES capacities and the mitigation of risks
brought by uncertainties. The deployment of such µVPPs
in the distribution network is a potential solution to better
integrate DERs into the existing networks without inflicting
high retrofit cost.

Further improvement on the µVPP profit and supply ade-
quacy could be achieved by introducing demand response

program in the form of contractual commitment with end-
users. By installing controllable loads, the load power could
be adjusted or shed when the ‘‘Loss of Load’’ scenario arises
again. Consequently, µVPP could avoid paying high penalty
for the load loss and free more capacity of the dispatch-
able generators to be consumed inside the µVPP or offered
to the pool market. Part of the newly generated revenue
stream could be used to reward and motivate the participating
end-users.

APPENDIX
DETERMINISTIC EQUIVALENCE OF CHANCE
CONSTRAINTS (31) – (32)
The general form of chance constraint is presented as
follows:

Pr {h (x) ≥ ξ} ≥ α (56)

where x is the decision variable, ξ is a random coefficient
whose value subjects to stable distribution and α is the confi-
dence level which means the probability of the value of h (x)
being higher than or equal to ξ should be at least α. The
conversion of chance constraint to its deterministic equiva-
lence consists of two steps: firstly, the inequality h (x) ≥ ξ

is transformed into h′ (x) ≥ ξ ′ where ξ ′ subjects to stan-
dard normal distribution; then the deterministic equivalence
of (56) is derived as

h′ (x) ≥ φ−1 (α) (57)

where φ−1 (α) computes the inverse of normal cumulative
distribution function with probability α, mean 0 and standard
deviation of 1.

The chance constraint (31) is reformulated in its general
form and its terms are denoted as

h (x) =
NG∑
i=1

PGeni,t + EXCHmax +

NG∑
i=1

rGen,upi,t

ξ = PL,RTs,t − P
W ,RT
s,t

α = 1− εLOLP. (58)

By carrying out the first step of the conversion, the updated
terms are derived in (59)

h′ (x)

=

(
NG∑
i=1

PGeni,t +EXCHmax+
NG∑
i=1

rGen,upi,t

)
−E

(
PL,RTs,t −P

W ,RT
s,t

)
σ
(
PL,RTs,t − P

W ,RT
s,t

)
ξ ′ =

(
PL,RTs,t − P

W ,RT
s,t

)
− E

(
PL,RTs,t − P

W ,RT
s,t

)
σ
(
PL,RTs,t − P

W ,RT
s,t

) . (59)

Therefore, the deterministic equivalence of the chance con-
straint (31) is derived as (33) shows. And the same procedure
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applies for chance constraint (32)(
NG∑
i=1

PGeni,t +EXCHmax +
NG∑
i=1

rGen,upi,t

)
−E

(
PL,RTs,t − P

W ,RT
s,t

)
σ
(
PL,RTs,t − P

W ,RT
s,t

)
≥ φ−1 (1− εLOLP).
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