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Abstract

We study asymptotic properties of Fisher memory of linear Echo State Net-
works with randomized symmetric state space coupling. In particular, two
reservoir constructions are considered: (1) More direct dynamic coupling
construction using a class of Wigner matrices and (2) positive semi-definite
dynamic coupling obtained as a product of unconstrained stochastic matri-
ces. We show that the maximal Fisher memory is achieved when the input-
to-state coupling is collinear with the dominant eigenvector of the reservoir
coupling matrix. In the case of Wigner reservoirs we show that as the system
size grows, the contribution to the Fisher memory of self-coupling of reservoir
units is negligible. We also prove that when the input-to-state coupling is
collinear with the sum of eigenvectors of the state space coupling, the ex-
pected normalized memory is four and eight time smaller than the maximal
memory value for the Wigner and product constructions, respectively.

Keywords: Fisher memory of dynamical systems, Recurrent neural
network, Echo state network, Reservoir Computing

1. Introduction

Input driven dynamical systems play a prominent role in machine learning
as models applied to time series data, e.g. [2, 10, 21, 15]. There has been
a lively research activity on formulating and assessing different aspects of
computational power and information processing in such systems (see e.g.
[5, 16]). For example, tools of information theory have been used to assess
information storage or transfer within systems of this kind [13, 14, 17, 3].
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Alternatively, dynamical systems have been assessed as feature generators
for machine learning algorithms in terms of class separability (in sequence
classification problems) or learnability [12].

To specifically characterize capability of input-driven dynamical systems
to keep in their state-space information about past inputs, several memory
quantifiers were proposed, for example short term memory capacity [9] and
Fisher memory curve [6]. Even though those two measures have been devel-
oped from completely different perspectives, deep connections exist between
them [20]. The concept of memory capacity, originally developed for uni-
variate input streams, was generalized to multivariate inputs in [8]. Couillet
et al. [4] rigorously studied mean-square error of linear dynamical systems
used as dynamical filters in regression tasks and suggested memory quantities
that generalize the short term memory capacity and Fisher memory curve
measures. Finally, Ganguli and Sompolinski [7] showed an interesting con-
nection between memory in dynamical systems and their capacity to perform
dynamical compressed sensing of past inputs.

In this contribution we concentrate ons Fisher memory of linear dynam-
ical systems with symmetric coupling. In Echo State Networks (ESN) [15]
large state space dimensionalities with random dynamical couplings are typ-
ically used and linear readout from the state space forms the only trainable
part of the model. It is therefore important to characterize important large
scale properties of Fisher memory in such systems (as the state space dimen-
sionality grows) and study optimal settings of input-to-state couplings that
maximize the memory. In particular, we rigorously study Fisher memory
of two subclasses of linear input driven dynamical systems with symmetric
dynamical coupling - a direct dynamic coupling construction using a class of
Wigner matrices (section 3) and a positive semi-definite dynamic coupling
obtained as a product of unconstrained stochastic matrices (section 4).

2. Fisher memory curve of linear dynamical systems

We consider linear input driven dynamical systems with N -dimensional
state space and univariate inputs and outputs with randomized symmetric
dynamic coupling.

In the ESN metaphor, the state dimensions correspond to reservoir units
coupled to the input s(t) and output y(t) through N -dimensional weight
vectors v ∈ RN and r ∈ RN , respectively. Denoting the state vector at time
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t by x(t) ∈ RN , the dynamical system (reservoir activations) evolves as

x(t) = vs(t) + Wx(t− 1) + z(t), (1)

where W ∈ RN×N is a N×N weight matrix providing the dynamical coupling
and z(t) are zero-mean noise terms. Parameters r of the adaptive linear read-
out, y(t) = rTx(t), are typically trained (offline or online) by minimizing the
(normalized) mean square error between the targets and reservoir readouts
y(t). For our analysis, however, the readout part of the ESN architecture is
not needed.

In ESN, the elements of W and v are fixed prior to training, often at
random, with entries drawn from a distribution symmetric with respect to the
origin. The reservoir connection matrix W is typically scaled to a prescribed
spectral radius < 1, although in this study we assume that the parameters
of the distribution over W are set so that asymptotically, almost surely, W
is a contractive linear operator.

In [6] Ganguli, Huh and Sompolinsky proposed a particular way of quan-
tifying the amount of memory preserved in linear input driven dynamical
systems corrupted by a memoryless Gaussian i.i.d dynamic noise1 z(t). In
particular, z(t) is zero mean with co-variance εI, ε > 0, where I is the N ×N
identity matrix. Under such dynamic noise, given an input driving stream
s(..t) = ... s(t− 2) s(t− 1) s(t), the input-conditional state distribution

p(x(t)| ... s(t− 2) s(t− 1) s(t))

is a Gaussian with covariance [6]

C = ε
∞∑

`=0

W`(WT )`. (2)

Sensitivities of p(x(t)| s(..t)) with respect to small perturbations in the input
driving stream s(..t) (parameters of the dynamical system remain fixed) are

1As customary in the dynamical systems literature, we distinguish between the ”obser-
vational” and ”dynamic” noise. Observational noise refers to the noise applied to readouts
from the state space in the process of their measurement. This noise does not corrupt the
underlying dynamics of the system. On the other hand, dynamic noise corrupts the system
dynamics in the state space. The term dynamic noise does not in this case refer to the
possibility of its distribution changing in time.

3
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collected in the Fisher memory matrix F with elements

Fk,l(s(..t)) = −Ep(x(t)| s(..t))
[

∂2

∂s(t− k)∂s(t− l) log p(x(t)| s(..t))
]

and its diagonal elements JN(k) = Fk,k(s(..t)) quantify the information that
the state distribution p(x(t)| s(..t)) retains about a change (e.g. a pulse)
entering the network k > 0 time steps in the past. The collection of terms
{JN(k)}∞k=0 was termed Fisher memory curve (FMC) and evaluated to [6]

JN(k; W,v) = vT (WT )kC−1Wkv, (3)

where in the notation JN(k; W,v) we made explicit the dependence of FMC
on the dynamic and input and couplings W and v, respectively.

Analogously to memory capacity of dynamical systems [9], we extend the
Fisher memory curve to the global memory quantification,

JN(WN ,v) =
∞∑

k=1

JN(k; WN ,v).

We will refer to JN(WN ,v) as Fisher memory of the underlying dynamical
system. Obviously, increasing state space dimension N will increase the
amount of memory that can be usefully captured by the dynamical system
(1). To remove this bias, we introduce a new quantity, normalized Fisher
memory, which measures the amount of memory realisable by the dynamical
system per state space dimension:

J̄N(WN ,v) =
1

N
JN(WN ,v).

In the following we study asymptotic properties of the normalized Fisher
memory as the state space dimensionality grows and ask what kind of input
coupling v is needed to maximize its expectation. Again, it is important
to realize that as the state space dimensionality N grows, so does the in-
put weight dimensionality. Keeping the input weight norm constant while
increasing the state space dimensionality would result in diminishing indi-
vidual weights. To normalize the scales, so that asymptotic statements can
be made, we will require that the input weights live on (N − 1)-dimensional
hypersphere, v ∈ SN−1(

√
N), where for r > 0,

SN−1(r) = {v ∈ RN | ‖v‖2 = r}.
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3. Wigner ESN

Theory of random matrices has undergone considerable development, see
e.g. [19]. In this contribution we will study dynamical systems with random-
ized coupling constrained to the class of Wigner matrices (e.g. [1]). Let QN

be a random symmetric N ×N matrix with ”upper triangular” off-diagonal
elements Qi,j, 1 ≤ i < j ≤ N distributed i.i.d. with zero mean and fi-
nite moments - in particular, of variance σ2

o > 0. Diagonal elements Qi,i,
1 ≤ i ≤ N of QN are distributed i.i.d. with a zero-mean distribution of finite
moments and variance σ2

d > 0. The elements below the diagonal are copies
of their symmetric counterparts: for 1 ≤ j < i ≤ N , Qi,j = Qj,i. Asymptotic
properties of such matrices have been intensively studied, in particular the
convergence of eigenvalues, as N →∞. It can be shown that in the general
case, scaling down of random matrices is necessary to ensure convergence of
their spectral properties [1]:

WN =
1√
N

QN .

We will refer to ESN with dynamical coupling WN as Wigner Echo State
Networks. We are now ready to state the first result concerning maximal
Fisher memory of Wigner ESNs.

Theorem 1: Consider a sequence of Wigner dynamical systems (1) with
couplings {WN}N>1. The maximum normalized Fisher memory is attained
when for every realization of Wigner coupling WN , the input weights v are
collinear with the dominant eigenvector2 of WN . In that case, as N → ∞,
almost surely,

J̄N(WN ,v)→ 4

ε
σ2
o .

Proof: For a fixed N , let WN be a realization of Wigner coupling. Since
WN is symmetric, it can be diagonalised,

WN = UNΛNUT
N , ΛN = diag(λ1, λ2, ..., λN). (4)

Without loss of generality assume λ1 ≥ λ2 ≥ ...λN . Columns of UN are
eigenvectors {ui}Ni=1 of WN , forming an orthonormal basis of RN . Let ṽ be

2the eigenvector corresponding to the maximal eigenvalue

5
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the expression of input weights v in this basis, i.e. ṽ = UT
Nv. It has been

shown in [20] that for symmetric dynamic couplings,

JN(k; WN ,v) =
1

ε

N∑

i=1

ṽ2i λ
2k
i (1− λ2i ).

We therefore have

ε · JN(WN ,v) =
∞∑

k=1

N∑

i=1

ṽ2i λ
2k
i (1− λ2i )

=
N∑

i=1

ṽ2i (1− λ2i )
∞∑

k=1

λ2ki

=
N∑

i=1

ṽ2i λ
2
i . (5)

Letting N−1/2v be the dominant eigenvector u1 of WN results in

ṽ =
√
N UT

Nu1 =
√
N e1,

where ei the i-th standard basis vector, i.e. ei ∈ RN is the vector of 0’s,
except for the value 1 at index i. We thus have

ε · JN(WN ,u1) = N λ21

and hence ε · J̄N(WN ,u1) = λ21. Now, the maximal eigenvalue of Wigner ma-
trices converges to 2σo almost surely [1], giving the almost sure convergence
of J̄N(WN ,u1) to (4σ2

o)/ε.
To show that collinearity of input weights v ∈ SN−1(

√
N) with dominant

eigenvector of WN is the optimal setting, we note that since ṽ expresses v in
another orthonormal basis UN , the norm is preserved, ‖v‖2 = ‖ṽ‖2. Hence,
ṽ ∈ SN−1(

√
N). In line with eq. (5) we therefore consider the following

optimization problem:

max
q∈SN−1(1)

N ·
N∑

i=1

q2i λ
2
i .

Reparametrization ai = q2i , bi = λ2i and ignoring constant scaling leads to

max
a∈ZN−1

bTa, (6)

6
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which is a linear optimization problem on simplex

ZN−1 = {a ∈ [0, 1]N | ‖a‖1 = 1}.

Let the largest element of b be bi∗ , i.e. i∗ = arg maxi bi. Then the quantity
in (6) is maximized when a = ei∗ , in other words, ai∗ = 1 and aj = 0, j 6= i∗.
In our case i∗ = 1 and so the non-zero element of a is a1 = q1 = 1. It follows
that ṽ21 = N and ṽj = 0, j = 2, 3, ..., N . This directly implies v ∈ SN−1 and
collinear with u1. �

The last result imposes an asymptotic upper bound on normalized Fisher
memory of Wigner ESNs. Obviously, J̄N(WN ,v) can be made vanishingly
small by making the input weights v collinear with the least significant eigen-
vector of WN (see semicircular law of eigenvalue distribution for Wigner ma-
trices [1]). In the following we ask to what degree will the Fisher memory
of (1) degrade if instead of the dominant eigenvector the input weights are
made collinear with the sum of eigenvectors of WN .

Theorem 2: Consider a sequence of Wigner dynamical systems (1) with
couplings {WN}N>1. For every realization of Wigner coupling WN , let the
input weights v be collinear with the sum of eigenvectors of WN . Then, as
N →∞, for the expected normalized Fisher memory we have,

EWN
[J̄N(WN ,v)]→ 1

ε
σ2
o .

Proof: In this case, v =
∑N

i=1 ui ∈ SN−1(
√
N), ṽi = 1, i = 1, 2, ..., N . By

(5),

‖WN‖2F =
N∑

i,j=1

W 2
N,ij

=
N∑

i=1

λ2i

= ε · JN(WN ,v),

7
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where ‖ · ‖F is the Frobenius norm. This implies

ε · EWN
[J̄N(WN ,v)] =

1

N

N∑

i,j=1

E[W 2
N,ij]

=
1

N
σ2
d +

N − 1

N
σ2
o

and the result follows from sending N →∞. �

4. Symmetric Positive Semi-definite Reservoirs

In the previous section, the symmetry of randomized dynamic reservoirs
was imposed directly by stipulating that the matrix elements Qi,j and Qj,i

must be equal. This is achieved by randomly generating Qi,j above the
diagonal and then copying Qi,j to their symmetric counterparts Qj,i below
the diagonal (Wigner random matrices). In this section we ask whether the
nature of the results derived for Wigner ESN changes if another, less direct
construction of randomized symmetric reservoirs is used. In particular, we
generate QN as

QN = YT
NYN , (7)

where YN is a random N × N matrix with elements Yi,j, 1 ≤ i, j ≤ N ,
distributed i.i.d. with zero mean and finite moments - in particular, of vari-
ance σ2

Y > 0. As before, to ensure convergence of spectral properties of
random matrices YN , a scaling factor of N−1/2 needs to be applied to YN

[1], resulting in:

WN =
1

N
QN . (8)

Note that each realization of YN yields a positive semi-definite matrices QN

and WN .
Recall that to show that the optimal (i.e. maximizing Fisher memory)

setting of input weights (up to necessary scaling) is the leading eigenvector
of WN , we only needed symmetry of WN . Considering that the individual
items of random matrix are generated i.i.d. from a 0-mean distribution with
variance σ2

Y , the question is to what extent does the particular randomized

8
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construction of WN matter when asymptotic properties of Fisher memory
are considered. We have the following result:

Theorem 3: Consider a sequence of dynamical systems (1) with randomized
positive semidefinite couplings {WN}N>1 (7)-(8). If the input weights v are
collinear with the dominant eigenvector of WN , as N →∞, almost surely,

J̄N(WN ,v)→ 16

ε
σ4
Y .

Proof: Let smax(YN) be the maximal singular value of the N ×N matrix
YN . As N →∞,

1√
N
smax(YN)→ 2σY

almost surely [18]. This implies that the maximum eigenvalue λmax(WN) of
WN approaches 4σ2

Y .
We have shown in the proof of Theorem 1 that if the input weight is

collinear with the dominant eigenvector of WN , we have ε · J̄N = λ2max(WN).
Hence, as N →∞, J̄N(WN ,v) converges to 16 σ4

Y /ε almost surely. �

Theorem 3 demonstrates that the asymptotic properties of Fisher memory
translate directly to the case of symmetric randomized dynamical couplings
constructed as products of unconstrained random matrices. Of course, since
WN is now constructed as a product of random matrices, it is natural that
the asymptotic Fisher memory is expressed as a square of the expression in
Theorem 1. Indeed, consider an alternative construction of the symmetric
reservoir:

Q̃N =
[
YT
NYN

] 1
2 . (9)

Each realization of YN yields a positive semi-definite matrix YT
NYN that has

a unique square root - a realization of Q̃N . Again, to ensure convergence of
spectral properties of random matrices YN , a scaling factor of N−1/2 needs
to be applied:

W̃N =
1√
N

Q̃N , (10)

Now, since N−1/2smax(YN)→ 2σY almost surely, as N →∞,

1

N
λmax(Y

T
NYN)→ 4σ2

Y .

9
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Hence, the maximum eigenvalue λmax(W̃N) of W̃N approaches 2σY . It fol-
lows that if the input weight is collinear with the dominant eigenvector of
W̃N , we have ε · J̄N = λ2max(W̃N) and as N → ∞, J̄N(W̃N ,v) converges
to 4 σ2

Y /ε almost surely. This is in direct correspondence with the result of
Theorem 1 for Wigner ESN. In this case, irrespective of whether the sym-
metry of randomized dynamical coupling is obtained directly (Wigner ESN),
or indirectly as a product of unconstrained random matrices, the maximal
normalized Fisher memory approaches 4

ε
σ2 and is determined solely by the

second moment of the zero-mean random variables generating the strength
of dynamic couplings within the reservoir.

We now turn our attention to the case of input weight vector collinear
with the sum of eigenvectors of WN . We have shown that, compared to
the maximum Fisher memory (input weight vector collinear with the leading
eigenvector of WN), this results in reduced asymptotic Fisher memory by
a factor of 4 (see Theorems 1 and 2). Is this a property of the particular
randomized construction of symmetric dynamic coupling as a Wigner matrix,
or does it reflect a more general tendency?

Theorem 4: Consider a sequence of Wigner dynamical systems (1) with
couplings {WN}N>1 (7)-(8). Assume that the entries of YN are i.i.d. gen-
erated from a symmetric distribution with 0-mean, variance σ2

Y and finite
first four moments. For every realization of dynamic coupling WN , let the
input weights v be collinear with the sum of eigenvectors of WN . Then, as
N →∞, for the expected normalized Fisher memory we have,

EWN
[J̄N(WN ,v)]→ 2

ε
σ4
Y .

Proof: In the proof of Theorem 2 we have shown that if the input weight
vector v is collinear with the sum of eigenvectors of WN , then

ε · JN(WN ,v) =
N∑

i=1

λ2i , (11)

where λi’s are eigenvalues of WN . Furthermore,

N∑

i=1

λ2i = trace(W2
N), (12)

10
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and so the expected Fisher memory can be evaluated as

EYN
[JN(WN ,v)] =

1

ε
EYN

[trace(W2
N)],

where

W2
N =

1

N2
YT
NYNYT

NYN .

Fix a positive semi-definite N ×N matrix ΓN with eigenvalues γ1, ..., γN .
Kabán showed ([11], Lemma 2) that the expectation of YT

NYNΓNYT
NYN

reads

EYN
[YT

NYNΓNYT
NYN ] = Nσ4

Y

[
(N + 1)ΓN + trace(ΓN)IN + E

N∑

i=1

γiA
(i)

]
,

where IN is N × N identity matrix, E is excess kurtosis of the distribution
generating elements of YN and A(i) are N ×N diagonal matrices with j-th
diagonal elements equal to

∑N
a=1 u

2
a,iu

2
a,j and ua,i is the a-th item of the i-th

eigenvector of ΓN .
In our case ΓN = IN with eigenvectors ei standard basis (all elements

equal to 0 and the i-th element 1) and eigenvalues γ1 = γ2 = ... = γN = 1.
Note that (ei)a = δ(i, a), where δ is the Kronecker delta. Hence,

A
(i)
j,j =

N∑

a=1

δ(i, a)δ(j, a) = δ(i, j)

and so A(i) = diag(ei). It follows that

N∑

i=1

γiA
(i) = IN .

We can now evaluate

N2 EYN
[W2

N ] = EYN
[YT

NYNYT
NYN ]

= EYN
[YT

NYNINYT
NYN ]

= Nσ4
Y [(N + 1)IN +NIN + EIN ]

= N(2N + 1 + E)σ4
Y IN . (13)

11
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It follows that

EYN
[W2

N ] = σ4
Y

(
2 +

1 + E
N

)
IN .

We thus have

EYN
[trace(W2

N)] = σ4
Y (2N + 1 + E)

From (11) and (12) we conclude that as N →∞, the normalized expected
Fisher memory per dimension,

J̄N(WN ,v) =
1

N · εEYN
[trace(W2

N)],

converges to 2σ4
Y /ε. �

This result offers an interesting insight into the asymptotic behavior of
Fisher memory for symmetric dynamic reservoirs. Whereas in the case of
direct Wigner construction, when changing the input weight vector from the
optimal setting of the leading eigenvector of dynamic coupling WN to the
sum of its eigenvectors, the Fisher memory drops by a factor of 4, in the case
of symmetric positive semi-definite WN obtained as a product of random
matrices, the drop in Fisher memory is twice as large - by a factor of 8 (see
Theorems 3 and 4). A deeper investigation of this phenomenon is beyond
the scope of this study and here we can only speculate. It is possible that the
faster drop in the Fisher memory reflects the fact that while the diagonal and
upper-off-diagonal coupling weights in Wigner ESN are truly independent,
in the positive semi-definite construction a more rigid dependency structure
is imposed.

5. Discussion and Conclusion

We have rigorously studied Fisher memory of two subclasses of linear
input driven dynamical systems. In order to study how memory properties
of such systems scale with the system size, we investigated Fisher memory
normalized per state space dimension.

The first subclass has a dynamical coupling formed by Wigner random
matrices. Such systems can be viewed as Echo State Networks with Wigner
reservoir coupling. Several interesting findings were derived, in particular:

12
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1. as the system size grows, the contribution of self-coupling of the states
(self-loops on reservoir units in ESN) to the normalized Fisher memory
is negligible;

2. the maximal normalized Fisher memory is achieved when the input-to-
state coupling is collinear with the dominant eigenvector of the state
space coupling matrix; and

3. when the input-to-state coupling is collinear with the sum of eigen-
vectors of the state space coupling, the expected normalized memory
is four time smaller than the maximal memory value achieved when
collinearity with the dominant eigenvector only is employed.

Dynamical coupling of the second subclass of randomized symmetric
reservoirs constructs positive semi-definite dynamical couplings as products
of unconstrained random matrices. Interestingly enough, while in the case of
Wigner reservoirs, when changing the input weight vector from the optimal
setting of the leading eigenvector of dynamic coupling to the sum of its eigen-
vectors, the Fisher memory drops by a factor of 4, in the case of symmetric
positive semi-definite couplings obtained as a product of random matrices,
the drop in the Fisher memory is twice as large.

Note that in the case of positive semi-definite dynamical couplings, we
no longer have the possibility of setting variances of self-loop weights inde-
pendently of the variances of the inter-neuron connections. Hence, direct in-
vestigation of the influence of self-loops on Fisher memory in the asymptotic
regime is not possible. However, one suspects that, as in the case of Wigner
reservoirs, the main contributions to memory come from the inter-neuron
couplings and for large reservoirs, memories with, or without self-loops will
not differ significantly. Nevertheless, showing this rigorously will require
considering more complex reservoir weight generation mechanisms that are
beyond the scope of this study.

One can legitimately ask whether the restriction to linear and symmet-
ric reservoirs does not severely limit the scope of this study with respect
to reservoirs used in practice. First, in general, memory quantifications of
dynamical systems, such as memory capacity or Fisher memory, quantify
capabilities of dynamical systems that are not necessarily directly related to
their usuabilty as universal dynamical filters when performing general pre-
dictive tasks. Second, of course, as in many other areas of science, deeper
theory with closed-form expressions for quantities of interests are possible
(at least initially) only for sufficiently constrained cases. This is the case

13
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here - the first study of asymptotic behavior of Fisher memory. The linearity
and symmetry allowed us to use theory of random matrices and rotate the
co-ordinate axis to the natural diagonalised eigen-system.

This study can nevertheless bring some substance to the debate on the
”optimal” reservoir construction. While reservoir architecture should reflect
the task to be tackled, it is surprising how universal randomized reservoirs
can be for a wide variety of tasks. What aspects of dynamic reservoirs are
contributing to this universality? If one believes that memory properties can
play a role in making dynamical systems good general-purpose dynamical
filters, then this study suggests that independent generation of individual
reservoir coupling weights can be preferable to (perhaps more sophisticated)
dependencies between the weights. It also suggests that, especially for larger
reservoirs, self-couplings are much less important than cross-neuron commu-
nications. A systematic empirical and theoretical investigations along those
lines, possibly making connections to neuroscience is a matter for future re-
search.
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