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AbstrACt
Objectives Characteristics of muscle activity, represented 
by surface electromyography (EMG), have revealed 
differences between patients with low back pain (LBP) and 
healthy adults; how they relate to functional and clinical 
parameters remains unclear. The purpose of the current 
study was to examine the correlation between frequency 
characteristics of EMG (analysed using continuous wavelet 
transform (CWT) analysis) and patients’ self-rated score of 
disability.
Design and setting This is a case-control study with 15 
patients with mechanical LBP without radicular symptoms. 
Patients were recruited from the orthopaedic clinic at 
Charing Cross Hospital. Ten healthy adults were recruited 
from the staff working in the hospital and associated 
university. Patients completed the Roland-Morris Disability 
Questionnaire (RMDQ) and bilateral EMG activity was 
obtained from erector spinae at vertebral levels L4 and 
T12. Subjects performed three brief maximal voluntary 
isometric contractions (MVICs) of the back extensors and 
the torque was measured using a dynamometer. CWT was 
applied to the EMG signals of each muscle in a 200 ms 
window centred around the peak torque obtained during 
the MVICs. The ratio (low/high frequencies) of the energy, 
the peak power and the frequency of the peak power were 
calculated for each recording site, averaged and correlated 
with the individual’s RMDQ score.
results Patients had lower peak power (T12 and L4) 
and lower frequency of the peak power (at T12) than the 
healthy adults. Additionally, RMDQ positively correlated to 
the average ratio of energy at T12 (r=0.63; p=0.012), that 
is, greater self-rated disability corresponded to a dominant 
distribution of energy in the lower frequencies.
Conclusion The current findings reveal alterations in 
EMG profile and its association with self-related back pain 
disability, suggesting that spectral characteristics of EMG 
reflect muscle function.

IntrODuCtIOn
Low back pain (LBP) is a common health 
condition with 60%–80% of people in the UK 
reporting it at some point in their lives.1 2 The 
costs of back pain alone account for 20% of 
the total UK’s health expenditure,3 and LBP 
is also an important cause of work absence. 

It has wide ranging impact on both biolog-
ical and psychosocial aspects such as phys-
ical impairments, mental health and loss of 
employment.2 4 Evidence has shown that 
subjects with chronic LBP have changes in 
trunk muscle control by the central nervous 
system,5 6 including reduced corticospinal 
excitability7 and neural drive8 in addition to 
anatomical changes such as in trunk muscle 
size and muscle fibre type which may account 
for observed altered activity patterns during 
functional tasks9 10 and reductions in muscle 
strength and endurance.11 12 Electromyo-
graphic (EMG) activity, including its temporal 
and spectral characteristics, has been 
commonly used to investigate muscle func-
tion. Changes in EMG signal are commonly 
used to reflect overall muscle activity and 
muscle contraction force;13 14 however, the 
precise nature of the relationship between 
EMG amplitude and force output has not 
been established.15 16 The frequency distri-
bution of the EMG signals has been reported 
to be associated with the underlying muscle 
fibre type characteristics.17 18 For example, 
fatigability of back muscles has shown to 

strengths and limitations of this study

 ► This study uses a computational approach to 
decompose the signals of surface electromyography 
obtained from paraspinal muscles in patients with 
low back pain with a view to revealing information 
that may not be detected from a conventional 
amplitude analysis.

 ► The methodology of combining maximal voluntary 
isometric contraction of paraspinal muscles and 
wavelet transform analysis offers the opportunity for 
a simple and quick assessment of function of the 
back muscles.

 ► A difference in body mass between patients and 
controls indicates that careful interpretation of the 
findings are required.
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be related to the muscle fibre type area distribution in 
healthy subjects.18 These observations indicate complex 
alterations in temporal (eg, EMG signal amplitude) 
and spectral (eg, median frequency) characteristics of 
muscle activity. Therefore, a concurrent assessment of 
changes across time and frequency domains may provide 
more information on neuromuscular alterations of back 
muscles in patients with LBP.

Wavelet transform is a time–frequency method of signal 
analysis, which has been proposed to be more suitable for 
analysis of surface EMG, since these are non-stationary19 
spikey20 signals, than short-time Fourier transform (STFT). 
Wavelet transform projects a signal into time-dimensional 
and frequency-dimensional function from a single basic 
wavelet, a mother wavelet. By mapping the signal on to 
shifted and scaled versions of the mother wavelet, the 
characteristics of the surface EMG in different frequency 
bands and at different time points can be revealed.21 22

Studies have shown associations between wavelet trans-
form and muscle function. In healthy adults, changes in 
EMG spectral power and frequency have been observed 
in limb and trunk muscles during fatiguing exercise.23 24 
Previous work has demonstrated that energy distribution 
between low and high frequency bands from leg muscles 
was different in individuals with diabetic neuropathy 
and in postoperative total knee arthroplasty patients 
compared with controls.25–27 This may be due to changes 
in motor unit recruitment or muscle fibre type distribu-
tion in patients.28 29 In patients with LBP, the total power 
in the trunk muscles was lower and could be used to 
discriminate patients from controls.30 However, whether 
there are changes in energy distribution between low and 
high frequency bands from trunk muscles and whether 
these changes correlate with any clinical or functional 
scores (ie, pain, disability) remains unclear.

The purpose of the current study was to investigate 
whether time and frequency domain EMG characteristics, 
obtained using continuous wavelet transform (CWT), of 
erector spinae (ES) muscles in people with LBP are associ-
ated with levels of back pain disability and pain. We hypoth-
esised that the EMG characteristics would be different 
between people with LBP and controls and that the energy 
distribution between low and high frequency bands would 
be associated with the level of disability and/or pain.

MAterIAls AnD MethODs
Participants
With ethical approval (07/Q0410/5—NHS NRES 
Committee London—Harrow) and written informed 
consent, 15 patients with mechanical, non-specific (LBP 
group) were recruited from the orthopaedic clinic at 
Charing Cross Hospital and 10 healthy controls were 
recruited from the staff working in the hospital and asso-
ciated university. Only subjects with mechanical LBP 
without radicular symptoms were included; those with 
back pain related to rheumatological disease, spondylolis-
thesis or spinal trauma or with constant severe pain were 

excluded. All of the subjects were asked to complete the 
Edinburgh Handedness Inventory, a 10-item question-
naire with a score between −100 (left handed) and 100 
(right handed)31 and a Visual Analogue Scale for pain 
(VAS; 0—no pain to 10—maximum pain); patients addi-
tionally completed a 24-item Roland-Morris Disability 
Questionnaire (RMDQ), a disease specific functional 
measure;32 the scores range from 0, no disability to 24, 
maximum disability.

recordings
Torque
Back extensor isometric torque was measured using a 
Cybex Norm Isokinetic Testing System (CSM, Stoughton, 
Massachusetts, USA) with an extendable input lever arm. 
The output from the Cybex was sampled at 500 Hz by a 
data acquisition system (Power 1401 plus and Spike2 v5; 
Cambridge Electronic Design , Cambridge, UK) connected 
to a personal laptop for subsequent offline analysis.

Electromyography
Bilateral EMG recordings were obtained from the ES 
muscles at vertebral levels T12 and L4. Pairs of Ag/AgCl 
electrodes (self-adhesive, 2 cm diameter; CareFusion, 
Chatham, UK) were positioned 3 cm either side of the 
spinous processes, parallel to the fibre orientation of ES 
muscles, with an interelectrode distance of 2 cm. A ground 
electrode was placed over the left anterior superior iliac 
spine. The EMG signals were filtered (10 Hz–1 kHz), and 
amplified (1000×; Iso-DAM, World Precision Instruments, 
UK) before being sampled at 4 kHz by the data acquisi-
tion system; both torque and EMG data were collected 
simultaneously.

experimental procedure
The experimental set-up has been used previously.8 33 
Briefly, subjects were positioned prone on the dynamom-
eter bench, with the arms by the sides and the iliac 
crests aligned with the pivot of the dynamometer lever 
arm. To isolate back muscle movements as well as limit 
the contributions of hip extensors, subjects’ ankles and 
hips were strapped securely to the bench. The lever arm 
was positioned over the lower borders of the scapulae 
(see figure 1); this was confirmed by a physiotherapist 
(SYC) who identified the inferior angle of the scapula 
for each subject by palpation. Subjects had a gentle 
warm-up consisting of several repetitions of back exten-
sion. Following this, three brief (~3 s) maximal voluntary 
isometric contractions (MVICs) of the trunk extensors 
were performed with at least 10 s interval between each 
contraction; consistent verbal encouragement was 
given throughout. Following each contraction, subjects 
reported effort used on a modified Borg scale (from 0, 
no effort to 10, maximal effort).34

Data analysis
The peak torque achieved during the 3 MVICs was identified 
and the EMG signals obtained during the MIVC from each 
back muscle in a 200 ms window centred on the peak torque 
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were calculated as root-mean-square amplitude (rms EMG). 
They were then resolved into their respective intensities in 
time–frequency space using a CWT, processed in MATLAB 
R2014a (MathWorks, Natick, Massachusetts, USA). Specif-
ically, the Daubechies family of wavelet (in particular the 
db4 wavelet) was selected for CWT decomposition due to 
the similarity between the wavelet and the waveforms of 
motor unit action potentials.22 35 Performing a CWT on a 
time waveform results in a matrix of normalised coefficients 
calculated over scale and time. Scales were tested from 5 to 
300 (corresponding to 595.29 Hz–9.92 Hz) with regards to 
the common signal bandwidth of surface EMG;22 36 37 the 
sum of the energy of the wavelet coefficient for the 200 ms 
window was obtained for each scale (figure 1). The scales 
were then converted into their corresponding frequencies 
for further analyses. Parameters including peak power and 
its corresponding frequency were obtained. Furthermore, 
since the ratio of muscle fibre type I to type II in the ES 
has been reported to be approximately 1.8,38 the scale split-
ting the energy matrix into the ratio 1.8 of lower to higher 
energy (low:high frequencies) for each muscle was identi-
fied from the controls. The scale was then used to split the 
energy matrix obtained from the LBP group into two parts 
representing lower to higher energy. The ratio of these two 
parts from the energy matrix was then calculated for each 
muscle for individuals in the LBP group.

statistical analysis
Data were analysed with SPSS V.22. Demographic data and 
modified Borg scale scores were compared between the 

control group and the LBP group using independent t tests 
and χ2 tests for scale data and for nominal data (gender), 
respectively. Normal distribution was tested by the Shap-
iro-Wilk test for spectral parameters and rms EMG; since 
the variables of frequency at the peak power and the ratio 
were not normally distributed (p<0.05) and our sample sizes 
of two groups were not equal, non-parametric tests were 
applied. Wilcoxon signed-rank tests and Mann-Whitney 
U tests were used to examine within-group and between-
group differences, respectively. Within-group comparisons 
were made between left and right sides for rms EMG at T12 
and L4; between-group comparisons were made between 
rms EMG, peak power and its corresponding frequency 
and the ratio of energy. Given that this ratio was based on 
the presumed ratio of muscle fibre type I to type II in the 
ES,38 Spearman correlation coefficients were performed 
between the scores of questionnaires (RMDQ and VAS) and 
the ratio of energy in the LBP group. Statistical significance 
was set at p<0.05 and Bonferroni correction was applied to 
allow for multiple comparisons.

results
Group characteristics
Demographic data of the groups are shown in table 1. 
The median (IQR) duration of back pain episode was 
20 (22) months in patients with LBP. Of 15 patients with 
LBP, 6 had pain on the right side and 9 had bilateral pain. 
Patients had a lower MVIC torque (normalised to body 

Figure 1 Experimental set-up (top left) and peak torque and electromyography (EMG) activity recorded from left and right 
erector spinae (ES) at T12 (L ES and R ES) from a representative subject during one maximal voluntary isometric contraction 
(top right). A representative three-dimensional matrix of power, scale (frequency) and time calculated from a continuous wavelet 
transform analysis of the EMG data centred around the peak torque (bottom right). The bottom left figure represents the sum 
of the power collapsed across the time window. The area under the curve has been split according to the ratio 1.8 (see Data 
analysis) and the corresponding scale was used to split the curve derived from each patient dataset.
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mass) than the controls (mean±SD: LBP: 2.88±1.03 Nm/
kg; control: 4.11±1.42 Nm/kg; Z=−2.16; p=0.03). Further, 
the VAS reported by patients was 5.2±2.84; as anticipated, 
controls reported no pain (ie, 0). Both patients and 
controls completed all aspects of the protocol; no data 
were excluded from analyses. During the MVICs, the 
modified Borg scale scores reported by the patients were 
not different from those reported by the controls (LBP: 
8.80±1.04; control: 9.42±0.60; p=0.07).

root-mean-square (rms) eMG
There was no side difference in rms EMG in the LBP 
group (T12: Z=−1.36; p=0.18; L4: Z=−1.07; p=0.29) or in 
the controls (T12: Z=−0.30; p=0.77; L4: Z=−0.15; p=0.88; 
table 2). The mean rms EMG, averaged from left and right 
ES, at T12 and L4 vertebral levels was significantly lower 
in the LBP group than in the controls (T12: Z=−2.69; 
p=0.007; L4: Z=−2.33; p=0.02; table 2).

spectral parameters
The peak power (figure 2A) and its corresponding 
frequency (figure 2B) of the transformed EMG were 
different between the two groups. For the ES T12, the 
peak power and its corresponding frequency were lower 
in the LBP group (peak power: 0.84±0.22; frequency: 
40.94±8.21 Hz) than in the controls (peak power: 
1.17±0.25; frequency: 49.56±10.56 Hz; peak power: 
Z=−2.88; p=0.004; frequency: Z=−2.16; p=0.030; figure 2). 
For the ES L4, the peak power was lower in the LBP 
group (peak power: 0.75±0.18) than in the controls (peak 
power: 1.13±0.29; Z=−2.99; p=0.003; figure 2A), whereas 

its corresponding frequency (LBP group: 40.64±14.81 Hz; 
control group: 47.97±6.16 Hz) was not different between 
two groups (Z=−1.66; p=0.096; figure 2B).

In the controls, the mean (±SD) scales splitting 
the energy matrix into the ratio to ~1.8 of low to high 
energy for T12 (the mean ratio was 1.72±0.05) and L4 
(1.74±0.04) were 36.8±10.52 and 34.25±9.60, respectively; 
the corresponding frequencies were 87 Hz for T12 and 
96 Hz for L4. The splitting scales used in the LBP group 
were therefore 37 for T12 and 34 for L4; the mean ratios 
(low/high) at these two scales were 3.56±2.36 for T12 
(Z=−2.11; p=0.035, compared with the control group) 
and 4.32±3.19 for L4 (Z=−1.94; p=0.052) scales in the LBP 
group. Spearman correlation analysis showed a correla-
tion between the ratios from ES T12 and the RMDQ 
scores (r=0.63; p=0.012; figure 3); however, the ratios 
from ES L4 did not significantly correlate with the RMDQ 
scores (r=0.47; p=0.075). The ratios did not correlate with 
the VAS scores (ES T12: r=0.09; p=0.76. ES L4: r=0.01; 
p=0.96 p>0.05).

DIsCussIOn
The current study used CWT to decompose the surface 
EMG signals recorded from the ES during maximal 
isometric back extensions performed by patients with 
LBP and controls. In patients with LBP, there was a lower 
peak power in ES T12 and L4 and the overall energy 
distribution in ES T12 was shifted towards lower frequen-
cies than in the controls. Moreover, the ratios of energy 

Table 1 Demographic data

Characteristics Controls (n=10) LBP (n=15) p Value

Age (years) 44.6±7.9 43.5±6.3 0.72

Gender 5 male; 5 female 6 male; 9 female 0.70

Body stature (m) 1.70±0.09 1.70±0.07 0.95

Body mass (kg) 72.37±10.32 87.67±24.39 0.04

Edinburgh Handedness Inventory 64.44±54.34 79.00±33.21 0.51

Roland-Morris Disability Questionnaire (0–24) 0.0±0.0 10.27±6.45 <0.001

VAS (0–10) 0.0±0.0 5.20±2.84 <0.001

Data are presented as mean±SD.
For the Edinburgh Handedness Inventory, −100 indicates left handed whereas 100 indicates right handed; for the VAS, 0 means no pain 
at all and 10 means maximum pain imaginable; for the Roland-Morris Disability Questionnaire, the scores range from 0, no disability to 24, 
maximum disability.
LBP, low back pain; VAS, Visual Analogue Scale for pain.

Table 2 Root-mean-square electromyography (millivolt) during maximal isometric back extension

ES T12 ES L4

Left Right Average Left Right Average

Control 0.21±0.08 0.20±0.07 0.21±0.07 0.22±0.10 0.22±0.10 0.22±0.09
LBP 0.13±0.07 0.12±0.08 0.12±0.07* 0.12±0.12 0.14±0.07 0.13±0.12*

*Data are presented as mean±SD. *p<0.05 between the LBP group and the control group.
 ES, erector spinae; LBP, low back pain.
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between low and high frequencies, calculated from 
ES T12, correlated with patients’ self-rated back pain 
disability which may highlight the potential clinical appli-
cation of wavelet analysis in monitoring the progression 
of, or response to treatment, for back pain.

Frequency analysis has been widely applied to analyse 
EMG signals recorded from paraspinal muscles in patients 
with chronic LBP and STFT has been used in the majority 
of studies. Mean and median frequencies were lower in 
patients with chronic LBP than in controls;30 39 however, 
controversial results are still reported.40 41 Although there 
is evidence that analysis of back muscle EMG activity 
using STFT and wavelet transform provides similar infor-
mation,24 42 43 some studies suggest that wavelet transform 
could detect changes in muscle fatigue earlier and be 
more sensitive than the STFT.44–46 A recent study used 
discrete wavelet transform on surface EMG of trunk 
muscles during the contraction in subjects with chronic 
LBP and in controls. Patients with chronic LBP had lower 
spectral power in the trunk muscles compared with the 
healthy subjects;30 however, their study did not include 

any subjective measurements (eg, pain scores, disability 
scores) or compare energy distribution between low and 
high frequency bands, which may reflect alterations in 
motor unit recruitment or muscle fibre type distributions. 
Our results show patients with LBP presented different 
EMG characteristics from healthy subjects, including 
lower peak power (both ES T12 and L4) and its corre-
sponding frequency (ES T12), and higher ratio of energy 
between low and high frequencies (ES T12), in line with 
previous findings that patients with chronic LBP have an 
overall shift of energy distribution toward lower frequen-
cies in the back muscles.47 We further demonstrate a 
correlation between the energy distribution calculated 
from the EST12 and the RMDQ, indicating an associa-
tion between muscle function and self-rated disability. 
However, the reduced volume muscle at the lumbar level38 
might explain the differences in the findings between ES 
T12 and L4 levels. Together with previous work showing 
that EMG variables recorded from ES may identify people 
at increased risk of developing LBP in 2 years,48 we suggest 
that the EMG characteristics could be useful in clinics to 
monitor progression of back pain as well as the effective-
ness of therapeutic interventions.

Changes in spectral energy from leg and thigh muscles 
have been found in individuals with diabetic neuropathy 
and are suggested to be related to alterations in muscle 
recruitment strategies due to the loss of type I fibres in 
this population.26 Studies have shown that instantaneous 
spectra derived from wavelet decomposition of EMG 
signals are associated with activity from different muscle 
fibre types using a range of approaches including elec-
trical nerve stimulation29 and voluntary contractions.49 In 
addition, previous findings using conventional Fourier 
transformation demonstrated a correlation between the 
change in median frequency in ES during fatiguing exer-
cise and the relative area of the muscle occupied by type 
I fibres in healthy subjects.18 Anatomical evidence from 
biopsy studies is equivocal, with some studies demon-
strating differences in muscle fibre-type proportions in 
paraspinal muscles between patients with LBP and healthy 

Figure 2 Group mean (±SEM) data showing (A) peak power and (B) its corresponding frequency from erector spinae (ES) 
muscles at vertebral levels T12 (ES T12) and L4 (ES L4) in the controls and in patients with low back pain. *p<0.05, between-
group comparison.  CLP, chronic lower back pain.

Figure 3 Correlation between the ratio of energy at low 
to high (low:high) frequencies and Roland-Morris Disability 
Questionnaire (RMDQ) in subjects with low back pain.
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subjects,50 51 while others show no differences.52 53 Never-
theless, studies using twitch interpolation to assess central 
neural drive to muscles suggest that decreases in time-to-
peak amplitude of superimposed twitches at increasing 
levels of voluntary contraction reflect the recruitment 
of different types of motor units.33 54–56 Further, given 
patients with chronic LBP have been shown to exhibit 
longer time-to-peak amplitudes of twitches during MVICs, 
this supports the view that these patients have alterations 
in muscle fibre-type composition. In the current study, the 
spectra obtained from the patients with LBP had a shift in 
the peak power towards the lower frequencies; this might 
reflect alterations in motor control or in muscle fibre-type 
proportions. Further, the correlation between the EMG 
spectral characteristics and back pain-related disability 
scores suggests that altered motor control or fibre-type 
proportions of paraspinal muscles may be reflected in self-
rated disability scores. This highlights the importance of 
rehabilitation to restore motor control and muscle func-
tion in patients with LBP, which may reduce the levels of 
disability reported in these patients.

The approach used in the current study may provide 
a valuable tool for clinical assessment. Surface EMG 
recordings are easy to use in clinics and the task is feasible 
for people with chronic LBP as all of our patients were 
able to perform the three maximal isometric back exten-
sions. While factors such as fear avoidance or pain inhi-
bition likely affect the values of maximal muscle activity, 
our subjects were given adequate warm-up time as well 
as asked to repeat the contractions three times, with 
the highest value taken. They were also asked to report 
pain levels during the MVICs and to give an indication 
(on a modified Borg scale) of the degree of effort used 
to perform the MVICs. Patients reported no increase 
in pain, and levels of effort comparable to the controls. 
Wavelet transform is a robust approach for the surface 
EMG signal and could reveal extra features which may 
be useful to monitor subtle changes in muscle function 
during rehabilitation. A further study to test whether the 
wavelet approach is able to detect the therapeutic effect 
on muscle function is therefore warranted.

In conclusion, the patients with LBP recruited in the 
current study had lower maximal force of the back exten-
sors and smaller ES muscle activity during the MVICs. 
The wavelet transform further revealed alterations in 
EMG profile and its association with the self-related back 
pain disability, indicating that spectral characteristics of 
EMG reflect muscle function.
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