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Abstract 12 

One of the key faunal transitions in Earth history occurred after the Permo-Triassic mass 13 

extinction (ca. 252.2 Ma), when the previously obscure archosauromorphs (which include 14 

crocodylians, dinosaurs, and birds) become the dominant terrestrial vertebrates. Here, we 15 

place all known middle Permian–early Late Triassic archosauromorph species into an explicit 16 

phylogenetic context, and quantify biodiversity change through this interval. Our results 17 

indicate the following sequence of diversification: a morphologically conservative and 18 

globally distributed post-extinction ‘disaster fauna’; a major but cryptic and poorly sampled 19 

phylogenetic diversification with significantly elevated evolutionary rates; and a marked 20 

increase in species counts, abundance, and disparity contemporaneous with global ecosystem 21 

stabilisation some 5 million years after the extinction. This multiphase event transformed 22 

global ecosystems, with far-reaching consequences for Mesozoic and modern faunas.  23 

Keywords: adaptive radiation; biotic crisis; morphological disparity; evolutionary rates; 24 

Diapsida; Archosauromorpha 25 
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1. Introduction 26 

The devastating Permo-Triassic (PT) mass extinction (ca. 252.2 Ma) dramatically impacted 27 

and remodelled global ecosystems [1−3]. On land, one of the key faunal transitions in Earth 28 

history took place during and following this extinction. The Palaeozoic amniote fauna, 29 

including synapsid groups such as anomodonts and gorgonopsians and parareptiles such as 30 

pareiasaurs, were decimated and largely displaced during the earliest Mesozoic by the 31 

previously obscure archosauromorphs [4,5]. Archosauromorphs, which include the ‘ruling 32 

reptiles’ or archosaurs (crocodylians, pterosaurs, dinosaurs, and their descendants, birds) and 33 

their close relatives, dominated terrestrial ecosystems for most of the Mesozoic and remain 34 

highly abundant and diverse in the modern biota [6−8].  35 

Archosauromorphs originated during the middle–late Permian [9] and underwent a 36 

major radiation during the Triassic [6,10]. In the 20 million years following the PT mass 37 

extinction, species counts for archosauromorphs increased (>100 valid species currently 38 

known) and the group achieved high morphological diversity, including highly specialised 39 

herbivores, large apex predators, marine predators, armoured crocodile-like forms, and 40 

gracile dinosaur precursors [6,10]. Despite this high diversity, scientific attention has mainly 41 

focused on the diversification of crown archosaurs (particularly bird-line archosaurs 42 

[6−8,10−13]), and the early diversification of archosauromorphs around the PT boundary has 43 

often been overlooked and little discussed (e.g. [14]). Thus, the patterns and processes of the 44 

ascendance of archosauromorphs to dominance by the Late Triassic are incompletely 45 

explored and poorly understood. Comprehensive macroevolutionary analysis of the dawn of 46 

the archosauromorph radiation has been hampered by the absence of a comprehensive, 47 

explicit phylogenetic framework for these early species.  48 

Here, we quantitatively document major patterns of early archosauromorph 49 

biodiversity change, using a new phylogenetic dataset that includes for the first time all 108 50 
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currently valid middle Permian–early Late Triassic species (electronic supplementary 51 

material). Our analyses of morphological disparity, observed species counts, phylogenetic 52 

diversity, and rates of phenotypic evolution are focused on the first 35 million years of 53 

archosauromorph evolution (ca. 269−233 Ma) (figure 1a). These analyses aim to 54 

quantitatively explore one of the most important evolutionary radiations of vertebrates in the 55 

fossil record and the evolutionary patterns resulting from the reshaping and recovery of 56 

ecosystems in the aftermath of the deadliest mass extinction in Earth history. 57 

 58 

2. Materials and methods 59 

(a) Taxon-character data matrix 60 

The quantitative macroevolutionary analyses conducted here are based on the most 61 

comprehensive species-level phylogenetic dataset currently available for early 62 

archosauromorphs [10] and its subsequent modifications (electronic supplementary material). 63 

We expanded this discrete morphological character matrix with the addition of 27 64 

independent terminals (see supplementary table 1), which resulted in a new dataset composed 65 

of 149 terminals and 688 characters. However, the full dimensions of this dataset are 689 66 

characters and 151 terminals because character 119 was deactivated a priori and there are two 67 

additional taxonomic units representing the scorings of the complete hypodigms of 68 

Archosaurus rossicus (electronic supplementary material) and Osmolskina czatkoviensis 69 

(supplementary table 1). These two terminals are not completely independent from the 70 

terminals representing the holotypes of these two species. In addition, some scorings were 71 

modified from previous versions of this data set (electronic supplementary material). 72 

 73 

(b) Phylogenetic analysis 74 
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Phylogenetic diversity and evolutionary rates calculations require explicit phylogenetic 75 

hypotheses [15,16]. As a result, the complete data matrix including all 149 sampled terminals 76 

(including the complete hypodigm of Osmolskina czatkoviensis; supplementary table 1) was 77 

analysed under equally weighted maximum parsimony using TNT 1.5 [17] in order to recover 78 

the required phylogenetic trees. The search strategy used a combination of the tree search 79 

algorithms Wagner trees, TBR branch swapping, sectorial searches, Ratchet (perturbation 80 

phase stopped after 20 substitutions), and Tree Fusing (5 rounds), and continued until the 81 

same minimum tree length was hit 100 times. The best trees obtained using this strategy were 82 

subjected to a final round of TBR branch swapping. Zero length branches in any of the 83 

recovered most parsimonious trees (MPTs) were collapsed and several characters were 84 

considered additive (electronic supplementary material).  85 

 86 

(c) Time bins  87 

The aim of our analyses is to explore the first 35 million years of the evolutionary history of 88 

Archosauromorpha, spanning the Permian origins of the group through to the appearance of 89 

archosauromorph-dominated ecosystems in the late Middle Triassic and earliest Late 90 

Triassic. We used five time bins in order to examine macroevolutionary patterns during this 91 

time span: middle–late Permian (~17.1 myr), Induan (1.0 myr), Olenekian (4.0 myr), Anisian 92 

(5.2 myr), and Ladinian–early Carnian (~9.0 myr) [18]. Despite the very short length of the 93 

Induan, this stage was maintained as a separate time bin in order to capture diversity changes 94 

that occurred in the immediate aftermath of the PT mass extinction. 95 

 96 

(d) Temporal calibration of trees 97 

The evolutionary rates analyses require time-calibrated trees. The trees were calibrated with 98 

the timePaleoPhy() function of the package paleotree for R [19] using the “mbl” calibration 99 
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[11,20], a minimum branch length of 0.1 myr, and a root age of 269.3 Ma based on the 100 

maximum bound estimated for the origin of Archosauromorpha [9] (figure 1a; supplementary 101 

figure 4). Sensitivity analyses to explore the effect that different temporal calibrations may 102 

have on the results of the evolutionary rate analyses were conducted using “mbl” calibrations 103 

with minimum branch lengths of 0.5 and 1.0 myr, and also using the “cal3” method [21] 104 

(electronic supplementary material). 105 

 106 

(e) Morphological disparity analyses 107 

Changes in morphological diversity (disparity) were quantified using the R package Claddis 108 

[16]. All non-archosauromorph species and archosauromorphs that occur in late Carnian or 109 

younger stratigraphic horizons were pruned before the disparity analyses, resulting in a final 110 

dataset of 112 terminals. Some terminals occur across two time bins because of uncertainty in 111 

the dating of the stratigraphic unit from which their fossils have been collected. These taxa 112 

were counted in both time bins in the disparity analyses (supplementary tables 2, 3). A 113 

sensitivity analysis pruning these terminals with stratigraphic uncertainty was conducted to 114 

evaluate the effect on the results (electronic supplementary material). Disparity curves were 115 

reconstructed using both Generalized Euclidean Distance (GED) and Maximum Observable 116 

Rescaled Distance (MORD) dissimilarity matrices (the two distance matrices recommended 117 

by Lloyd
 
[16] for conducting disparity analyses based on discrete characters) generated from 118 

the taxon-character data matrix after the a priori pruning of non-archosauromorphs and those 119 

archosauromorph taxa stratigraphically younger than early Carnian (electronic supplementary 120 

material). These dissimilarity matrices were used to calculate weighted mean pairwise 121 

dissimilarity (WMPD) as a disparity metric. Statistical significance between the disparity 122 

metrics for each time bin was assessed through 95% confidence intervals calculated from 123 

1,000 bootstrap replicates of the original taxon-character data matrix and a recalculation of 124 
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the dissimilarity matrices and disparity metrics. Morphospace bivariate plots were generated 125 

for the entire data set and each time bin based on the results of a Principal Coordinate 126 

Analysis performed on the GED dissimilarity matrix. An additional disparity analysis using 127 

the same archosauromorph sampling as Foth et al. [14] was conducted using the same 128 

protocol. 129 

 130 

(f) Phenotypic evolutionary rates analyses 131 

Ancestral character-states were reconstructed with the package Claddis [16] using maximum 132 

likelihood in order to infer significant departures from equal rates of character evolution [22]. 133 

The phylogenetic analysis of the dataset compiled here recovered more than 10,000 MPTs. 134 

Therefore, in order to reduce computational time we used a random sample of 100 of these 135 

trees for the main evolutionary rate analyses (figure 2a). Non-archosauromorph terminals 136 

were pruned, but archosauromorph terminals stratigraphically younger than the early Carnian 137 

were retained because of the effects that the ghost lineages that they generate may have on 138 

older time bins (electronic supplementary material). All 100 subsampled trees were 139 

temporally calibrated using the protocol described above. The evolutionary rate analysis was 140 

conducted using the function DiscreteCharacterRate() {Claddis}, setting an alpha of 141 

0.01 (supplementary figure 8). An alpha of 0.01 was preferred because, as stated by Lloyd 142 

[16], there is generally a high heterogeneity of rates within data sets. A reduction in the alpha 143 

value therefore represents a conservative approach to reduce the number of significant values. 144 

Confidence intervals for each time bin were calculated using the function 145 

plotMeanTimeseries(), written by Close et al. [23], in order to test for the presence of 146 

significant rate differences in the early evolutionary history of Archosauromorpha (table 1). 147 

Sensitivity analyses using alternative tree calibrations were conducted using 10 trees for each 148 
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“mbl” calibration and the 60 trees generated by the “cal3” method (electronic supplementary 149 

material).
 

150 

 151 

(g) Time series comparisons 152 

Some of the macroevolutionary metrics calculated here may be correlated with one another 153 

and should not be considered as independent. To test this, we made statistical comparisons 154 

between observed species counts, phylogenetic diversity, specimen-level abundance data (i.e. 155 

number of individuals), and number of archosauromorph-bearing formations (as a metric of 156 

fossil record sampling). To compare these time series we used generalized least-squares 157 

regression (GLS) with a first order autoregressive model (corARMA) fitted to the data using 158 

the function gls() in the R package nlme v. 3.1–137 [24]. GLS reduces the chance of 159 

overestimating statistical significance of regression lines due to serial correlation. Time series 160 

were not log-transformed prior to analysis, as none were non-normally distributed (Shapiro-161 

Wilk tests p>0.1). We calculated likelihood-ratio based pseudo-R
2
 values using the function 162 

r.squaredLR() of the R package MuMIn [25]..  163 

 164 

3. Results  165 

Our results show a significant decrease in morphological disparity (using a Maximum 166 

Observable Rescaled Distance dissimilarity matrix, MORDdm) or a non-significant change 167 

(using a Generalized Euclidean Distance dissimilarity matrix, GEDdm) from the middle–late 168 

Permian to the earliest Triassic (Induan). Subsequently, a dramatic, significant increase 169 

occurs in the Olenekian (using MORDdm) or Anisian (using GEDdm) and high disparity 170 

levels are maintained in the Ladinian−early Carnian (figures 2b, 3; table 1). Evolutionary 171 

rates are significantly higher during the Olenekian—and in several topologies also during the 172 

Induan—than in other intervals (figure 2a and table 1), coincident with a peak in 173 
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phylogenetic diversity (figure 1b). This peak in phylogenetic diversity results from a number 174 

of phylogenetically deeply nested groups occurring in this interval, such as ctenosauriscids, 175 

which imply numerous ghost lineages [12] (figure 1a). Several of these lineages are identified 176 

as having significantly high evolutionary rates (e.g. supplementary figure 8). By contrast, 177 

significantly lower evolutionary rates are recovered for the Ladinian−early Carnian in all 178 

analyses (figure 2a) and also during the middle−late Permian using “mbl” calibrations 179 

(electronic supplementary material). 180 

The observed or ‘raw’ species count of Induan archosauromorphs is at least double 181 

that recorded for the middle–late Permian, and observed species count increases only slightly 182 

during the Olenekian, but shows substantial increases into the Middle Triassic (figure 1b). 183 

Observed abundance data shows a pattern consistent with that for observed species count, 184 

with only very slight increases through the middle–late Permian to Olenekian time span 185 

followed by a remarkable increase in the Anisian (figure 1b). However, the time series of 186 

observed species count, number of individuals, and geological sampling (numbers of rock 187 

units in which archosauromorphs occur) are not significantly different to each other (p<0.05; 188 

pseudo-R
2
>0.85), which might reflect either a sampling bias or an increase of 189 

archosauromorph abundance in their ecosystems. Conversely, estimated phylogenetic 190 

diversity is not correlated with sampling estimates or abundance (p>0.15; R
2
<0.35) 191 

(supplementary table 6). 192 

 193 

4. Discussion 194 

Our analyses support a multiphase model of early archosauromorph diversification, largely in 195 

response to the events of the PT mass extinction. Archosauromorphs most likely originated in 196 

the middle Permian, and underwent a substantial phylogenetic diversification and dispersed 197 

across Pangea [9,26]. However, disparity remained low, and low fossil abundance (figures 198 
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1b, 2b, 3b, 3c) suggests either that archosauromorphs remained very minor components of 199 

terrestrial ecosystems, or that this diversification took place in geographic regions or 200 

environments that remain poorly sampled. Many major lineages of archosauromorphs are 201 

inferred to have passed through the PT boundary and the group may have been comparatively 202 

little affected by the extinction event [10] (figure 1a). The Induan, immediately after the 203 

extinction, saw a substantial increase in archosauromorph abundance and a high observed 204 

species count relative to the length of the time bin, characterised by a low disparity (figure 205 

2b), globally distributed archosauromorph ‘disaster fauna’ dominated by proterosuchids and a 206 

number of morphologically similar lineages (e.g. Prolacerta) [27] (figure 3b). This disaster 207 

fauna was apparently short-lived: in South Africa, Proterosuchus occurs only between 5–14 208 

metres above the PT boundary [28]. Similar patterns have been documented for the synapsid 209 

Lystrosaurus following the PT extinction [29], and earliest Triassic tetrapod assemblages on 210 

land appear in general to have been highly uneven and dominated by a few highly abundant 211 

or diverse taxa [30,31].   212 

Major perturbations in the global carbon cycle, referred to as ‘chaotic carbon cycling’, 213 

have been documented through the Early Triassic (Induan and Olenekian) [32,33] (figure 1c). 214 

These perturbations have been suggested to reflect either successive short-term greenhouse 215 

crises and rapid environmental change or boom-bust cycles of ecosystem instability 216 

[30,33,34]. This interval of instability coincides with generally elevated global temperatures 217 

that would have limited diversity in equatorial regions and a well-known gap in the coal 218 

record that reflects lowered plant productivity and diversity [34,35]. Our data suggest that 219 

archosauromorphs underwent a major phylogenetic diversification in the Olenekian (1−5 220 

million years [myr] after the extinction), characterised by significantly elevated evolutionary 221 

rates (figure 2a), with the origins or initial diversification of major clades such as 222 

rhynchosaurs, archosaurs, erythrosuchids, and tanystropheids (figure 1a). The fossil record 223 
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shows that mass extinctions promote adaptive radiations in surviving, often previously 224 

marginal, clades because of the disappearance of species or entire lineages opening new 225 

vacancies in ecological space [36,37]. Thus, this general pattern suggests that the 226 

diversification of archosauromorphs was a response to vacant ecological space following the 227 

PT extinction, and the subsequent disappearance of the short-lived post-PT disaster fauna. 228 

However, observed species count and abundance remained low in the Olenekian, and similar 229 

to those of the Induan (figures 1b, 2b, 3b, 3c). As such, this major phylogenetic and probable 230 

morphological diversification in the Olenekian is at present largely cryptic and very 231 

incompletely sampled, potentially reflecting the very low abundances of individual 232 

archosauromorph species in the highly uneven and unstable Early Triassic ecosystems (figure 233 

1b), as well as the limited geographical range over which known Olenekian tetrapod fossils 234 

occur [35]. 235 

The Anisian (5−10 myr after the extinction) is characterised by marked increases in 236 

observed species count, abundance, and disparity among archosauromorphs (figures 1b, 2b, 237 

3d), as well as substantial increases in maximum body size [38]. An increased 238 

ecomorphological disparity during the Anisian matches previous results based on geometric 239 

morphometrics of archosauromorph skulls [14] (electronic supplementary material) and is 240 

documented in the skeletal fossil record by the appearance of large hypercarnivores, bizarre 241 

and highly specialised herbivores, long-necked marine predators, and gracile and agile 242 

dinosauromorphs [6,10]. This coincides with the end of the interval of intense carbon 243 

perturbations, a global cooling event, and the return of conifer-dominated forests [34], 244 

suggesting the recovery and stabilization of global ecosystems [30]. This stabilisation may 245 

have acted as an extrinsic factor that promoted increases in abundance among 246 

archosauromorph lineages as community evenness recovered, with a previously largely 247 

cryptic diversification becoming better sampled in the fossil record as a result. Similar 248 
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patterns are observed among marine tetrapods, with the first sauropterygians and 249 

ichthyosauromorphs being documented close to the Olenekian-Anisian boundary [39], but 250 

likely reflecting a temporally somewhat deeper period of currently unsampled phylogenetic 251 

diversification [40]. 252 

Our analyses of archosauromorph biodiversity change around the PT boundary 253 

support a diversity-first model of evolution, in which a rapid speciation of similar disaster 254 

taxa filled ecospace, followed by more steady adaptive evolution into new sectors of 255 

morphospace as ecosystems and community interactions stabilized (figure 3) [3]. A similar 256 

evolutionary pattern has been reported among dicynodonts in terrestrial ecosystems in the 257 

aftermath of the PT mass extinction [41], and has also been documented in fossil marine 258 

animals [42], including graptoloids [43] and ammonoids [44] during the Ordovician and PT 259 

biotic crises, respectively. More detailed work on other taxonomic groups is needed to 260 

establish if this pattern characterises other terrestrial clades and extinction events.  261 

The establishment of high abundance, ecomorphological diversity, and observed 262 

species counts and phylogenetic diversity of archosauromorphs by the Middle Triassic paved 263 

the way for the ongoing diversification of the group (including the origins of dinosaurs, 264 

crocodylomorphs, and pterosaurs) in the Late Triassic, and their dominance of terrestrial 265 

ecosystems for the next 170 million years. Our results show the fundamental role of the PT 266 

mass extinction and its aftermath in reshaping terrestrial ecosystems, and its far-reaching 267 

impact on the faunas of the Mesozoic and modern world.    268 

 269 

Data accessibility. Species occurrence data, R scripts, data matrices, and tree files are 270 

available as online electronic supplementary material. 271 
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 392 

Figure captions 393 

Figure 1. Diversity and abundance of late Permian−early Carnian archosauromorphs. (a) 394 

Randomly selected, time-calibrated most parsimonious tree (MPT) showing the phylogenetic 395 

diversity of early archosauromorphs. (b) Observed species count (red), phylogenetic diversity 396 

(values from 10,000 randomly selected MPTs in grey; mean of those values in blue), and 397 

number of individuals (green) per time bin. Silhouette labels in supplementary figure 11. 398 

Avemet. = Avemetatarsalia. [two columns] 399 

 400 

Figure 2. Evolutionary rates and morphological disparity of late Permian−early Carnian 401 

archosauromorphs. (a) “Spaghetti” plot showing significantly fast (red) or slow (blue) rates 402 

of phenotypic evolution calculated from 100 randomly selected, time-calibrated MPTs. Grey 403 

points are non-significant values from the pooled average rate. Each thin line represents the 404 

analysis of one MPT. Pie charts show the ratio of significantly fast (red), slow (blue), and 405 

non-significant (white) rates at each time bin. (b) Morphological disparity of early 406 

archosauromorphs represented by weighted mean pairwise dissimilarity (WMPD) generated 407 

from GEDdm (green) and MORDdm (magenta), and its 95% confidence intervals generated 408 

using 1,000 bootstrap replicates of the original data matrix. (c) Carbon isotope record from 409 

the late Capitanian to the earliest Ladinian (taken from [30]). [two columns] 410 

 411 

Figure 3. Morphospace occupation of late Permian−early Carnian archosauromorphs. (a−e) 412 

Sequence of morphospaces from the oldest to the youngest sampled time bin and (f) 413 

morphospace of all time bins together. Each plot shows the first two principal coordinate 414 

axes, which account for a summed variance of 18.23%. The black dots represent the position 415 

in the morphospace of each terminal in that time bin and the grey dotted line represents the 416 
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convex hull of the morphospace of the previous time bin. The silhouettes show the 417 

approximate position of different main clades in the morphospace (silhouette labels in 418 

supplementary figure 11). Highly fragmentary taxa tend to occupy a position closer to (x=0, 419 

y=0) in the ordination of the GED dissimilarity matrix, and thus the high density of taxa in 420 

this area is a methodological artefact (electronic supplementary material). [two columns] 421 
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Figure 3. Morphospace occupation of late Permian−early Carnian archosauromorphs. (a−e) Sequence of 
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Table 1. Results of the morphological disparity and evolutionary rates analyses. The disparity 1 

metrics were calculated using GEDdm and MORDdm and their 95% confidence intervals 2 

were calculated based on 1,000 bootstrap replicates of the original data matrix. Reported 3 

phylogenetic diversity and evolutionary rates are mean values and their respective standard 4 

deviation. Evolutionary rate and weighted mean pairwise dissimilarity (WMPD) values that 5 

significantly differ from those of the previous time bin are shown in bold. Car. = Carnian; 6 

Evol. = Evolutionary; Lad. = Ladinian; ind. = individuals. 7 

Time bin Nº 

ind. 

Phylogenetic 

diversity 

WMPD (GED) WMPD (MORD) Evol. rates 

late Permian 29 63.42±5.79 6.74(±6.26-7.21) 0.489(±0.349−0.607) 8.76±1.06 

Induan 42 38.65±2.95 7.35(±6.89-7.79) 0.318(±0.288−0.346) 16.85±4.52 

Olenekian 65 150.91±3.07 8.00(±7.54-8.43) 0.445(±0.412−0.480) 20.97±1.27 

Anisian 383 119.52±2.10 9.38(±8.86-9.86) 0.505(±0.485−0.524) 11.97±0.46 

Lad.−early Car. 179 76.45±1.77 10.25(±9.70-10.74) 0.501(±0.482−0.519) 8.27±0.34 

 8 
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