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Toxic substances and microbial or food-derived antigens continuously challenge the 
liver, which is tasked with their safe neutralization. This vital organ is also important for 
the removal of apoptotic immune cells during inflammation and has been previously 
described as a “graveyard” for dying lymphocytes. The clearance of apoptotic and 
necrotic cells is known as efferocytosis and is a critical liver function to maintain tissue 
homeostasis. Much of the research into this form of immunological control has focused 
on Kupffer cells, the liver-resident macrophages. However, hepatocytes (and other liver 
resident cells) are competent efferocytes and comprise 80% of the liver mass. Little is 
known regarding the mechanisms of apoptotic and necrotic cell capture by epithelia, 
which lack key receptors that mediate phagocytosis in macrophages. Herein, we dis-
cuss recent developments that increased our understanding of efferocytosis in tissues, 
with a special focus on the liver parenchyma. We discuss the impact of efferocytosis in 
health and in inflammation, highlighting the role of phagocytic epithelia.
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KEY POINTS

•	 Efferocytosis is a vital process in tissues that can be carried out by multiple cell types, including 
blood derived and tissue resident phagocytes.

•	 Hepatocytes are competent efferocytes and play an important role in the clearance of dead cells in 
health and in inflammation.

•	 Epithelial cell efferocytosis is understudied and involves distinct mechanisms to professional 
phagocytes.

•	 Defects in efferocytosis have been linked to diseases such as autoimmunity, failure to prevent 
metastasis, failure to limit infection.

•	 Understanding molecular mechanisms of efferocytosis may reveal new pathways for therapeutic 
intervention to alleviate inflammation.

EFFEROCYTOSIS IN THE LIVER

Efferocytosis, the clearance of dead and dying cells, is important to prevent tissue damage and 
promote the resolution of inflammation (1). The liver has evolved into an expert in defusing 
biochemical threats emanating from food or microbial antigens, which reach the organ along with 
75% of its blood supply that arrives through venous blood from the gut. Hepatocytes comprise 
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Figure 1 | Organization of liver-resident and recirculating efferocytes.  
(A) Hepatocytes are spread over three zones, exposed to different levels  
of oxygen and nutrients. Hepatocytes in zone 1 proximal to the portal triad 
(portal vein, hepatic artery, bile duct) have access to arterial and venous 
blood entering the liver through the circulation. Hepatocytes in zone 3 have 
less access to oxygen and nutrients and are exposed to blood draining into 
the central vein. Hematoxylin-eosin stain, scale bar represents 50 µm. (B) A 
plethora of liver resident and recirculating cells are able to engulf apoptotic 
and necrotic cells and clear them to maintain tissue homeostasis. Kupffer 
cells, monocytes and macrophages (mϕ) are the best-characterized 
efferocytes in the liver.

2

Davies et al. Efferocytosis by Liver Epithelia

Frontiers in Immunology  |  www.frontiersin.org January 2018  |  Volume 9  |  Article 44

80% of liver cells and constitute the biochemical powerhouses 
of the liver parenchyma, and as a result they often perish in 
their duties to absorb toxic substances. To cope with loss of 
hepatic epithelia, the liver has evolved the remarkable ability 
to regenerate.

To perform their detoxification roles, hepatocytes are stra-
tegically organized roughly into two hepatocyte-thick cords, 
flanked by a thin layer of fenestrated endothelia (Figure  1). 
Nutrient-rich blood enters the liver via the portal vein and 
oxygen-rich blood via the hepatic artery, which, together with 
a bile duct, form the liver portal triad (Figure 1A). Blood from 
both sources mixes in the specialized hepatic capillaries termed 
sinusoids, and drains toward the central vein. Hepatocytes 
near the portal triads (designated zone 1) can be damaged by 
the inflammatory infiltrate during interface hepatitis, when 
immune cells cross the sinusoidal endothelia and reach the 
parenchyma. Zone 2 is found mid-distance from a portal triad 
and the draining central vein (zone 3). Periportal hepatocytes 

near zone 1 have access to oxygenated blood from the hepatic 
artery, and nutrients from the portal blood supply that arrives 
from the gut. Oxygen and nutrient levels reduce toward the 
central vein and hepatocytes in zone 3 are found in hypoxic 
conditions. Fenestrations in the sinusoids allow hepatocytes 
access to solutes and immune cells reaching through the fen-
estrations from the circulation (2, 3), but prevent unregulated 
migration of immune cells to the parenchyma (4).

Cells that perish in the sinusoidal spaces are cleared by cir-
culating phagocytes (monocytes, dendritic cells, neutrophils), 
liver-resident macrophages termed Kupffer cells, and by sinu-
soidal endothelia (Figure  1B). The best-characterized liver 
efferocytes are macrophages, both those derived from mono-
cytes infiltrating from the circulation, and the self-renewing 
populations of Kupffer cells. It is understood that professional 
phagocytes are activated during injury and adapt their pheno-
type following the encounter of cellular debris, danger signals, 
and soluble mediators of the inflammatory milieu. The critical 
role of liver macrophages including Kupffer cells in the ebb 
and flow of inflammation was recently reviewed by Tacke’s 
group (5, 6).

Activated hepatic stellate cells can also engulf apoptotic 
hepatocytes, which in turn lead to increases in tumor growth 
factor-β (TGF-β) secretion (7). Biliary epithelial cells (BECs) 
also take part in efferocytosis of neighboring apoptotic cells; 
an important adaptation for diseases associated with increased 
BEC apoptosis such as primary biliary cholangitis (8). The 
phagocytic activity of hepatocytes was noted in 1992 (9). 
Hepatocyte efferocytosis assists in parenchymal housekeep-
ing to rapidly dispose of cell remnants and prevent excessive 
inflammation.

Hepatocyte death from biochemical toxicity (necrosis) 
occurs in health as part of normal homeostasis, however, 
liver damage is exacerbated in infection or in alcoholic, drug 
or ischemia-induced liver injury where large areas of necrotic 
lesions are evident (Figure  2). Acute-on-chronic liver failure 
is a syndrome associated with exacerbation of hepatitis B 
infection (HBV) and characterized by broad areas of hepatic 
necrosis in cirrhotic patients (Figure 2A). Lymphocyte infiltra-
tion is often seen in the parenchyma in chronic liver diseases. 
Crispe and others have elegantly put forward the “graveyard 
theory” where the liver is primary site for the disposal of 
spent immune cells (10). Figure  2B shows hepatic epithelia 
in the process of engulfing immune cells that have perished 
in the parenchyma, and this is seen predominantly near the 
portal regions. Conversely, in cases of acute liver injury such 
as paracetamol overdose (POD), hepatocyte necrosis due to 
loss of ATP is noted around the centrilobular regions (zone 3, 	
Figure 2C). Histological features of necrotic hepatocytes include 
eosinophilic degradation and pyknotic nuclei, which are readily 
detectable by hematoxylin-eosin staining (inset, Figure 2C).

Hepatocytes also clear away cells that have triggered the mole
cular cascade of events of programmed cell death (apoptosis) 
(Figures 2B,D), but can actively destroy live autoreactive immune 
cells by direct engulfment as noted for CD8+ T cells undergoing 
suicidal emperipolesis (11). Immune cell death and liver dam-
age are exacerbated in chronic liver inflammation of multiple 
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Figure 2 | Hepatocytes engulf necrotic and apoptotic cells in acute-on-chronic liver injury caused by hepatitis B infection (HBV) and in paracetamol injury (POD). 
(A) Hematoxylin–eosin staining of acute-on-chronic liver injury in a patient with HBV infection. Large areas of hepatocyte necrosis are evident. Inset image shows 
dark stained hepatocyte nuclei in live hepatocytes (L) and pyknotic or karyolytic nuclei in necrotic hepatocytes (N). (B) Healthy hepatocytes with clearly marked 
nuclei are seen phagocytosing small apoptotic cells (arrows). Note hepatocyte invaginations which have formed to enable capture of apoptotic cells.  
(C) Hematoxylin-eosin staining of liver with paracetamol-induced injury, which causes centrilobular necrosis. Inset shows pink cytoplasm in necrotic hepatocytes  
(N) compared to surviving non-discolored hepatocytes with clearly defined nuclei (L). (D) In situ end labeling (ISEL) of apoptotic cell nuclei is seen here in pink, in  
a liver with ischemia-reperfusion injury. The marked hepatocyte has a non-apoptotic nucleus seen in blue, and has engulfed an apoptotic cell with a pink nucleus. 
Neighboring apoptotic hepatocytes can be seen with pink nuclei, and non-apoptotic cells with blue nuclei. The bars show 20 µm.
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etiologies, including autoimmune, metabolic, viral, and genetic 
diseases (12, 13). The rapid processing of dead and dying cells is 
vital to moderate inflammation (12, 14, 15).

It is remarkable how little we know about the molecular 
mechanisms that govern the ability of the largest internal organ 
in the body to mediate the clearance of damaged or dying cells, 
given that this is one of the liver’s major functions. Herein, we 
bring together research on hepatocyte efferocytosis and place it 
into context with current molecular knowledge on the clearance 
of dead cells by immune phagocytes.

CLEARANCE OF APOPTOTIC AND 
NECROTIC CELLS

Cells die through a wide array of processes, each situational and 
requiring their own dedicated cascade of signaling events. The 
most frequent forms of cell death are attributed to apoptosis or 
necrosis. Apoptosis, an active form of programmed cell death, 
is characterized by the initiation of specific inducible pathways 
(16, 17). This includes the extrinsic pathway; the engagement of 
extracellular signals, including Fas ligand (FasL) (18) and tumor 
necrosis factor family cytokines (TNF) (19), amongst others, 
to their respective death receptors which initiates intracellular 
death signaling. Apoptosis can also be triggered intrinsically; 
certain signals, such as a lack of growth factors, endoplasmic 
reticulum stress or DNA damage, can induce a shift in expression 
of Bcl-2 family mitochondrial proteins (20). Increased activity of 
proapoptotic proteins lead to cytochrome C release and caspase 
9 activation. Apoptosis pathways result in the activation of effec-
tor caspases (3, 6, and 7), which in turn begin to proteolytically 
degrade the cell’s components. Apoptotic cells are generally 

smaller than live cells and can be identified by the formation of 
surface blebs (16).

Necrosis is considered a passive, unprogrammed type of 
cell death and is often incurred accidentally, although active 
mechanisms of necrosis have also been reported (21). While 
multiple mechanisms can induce necrosis, the major causes 
are attributed to compromising of the plasma membrane, or 
depletion of energy (22). Furthermore, apoptotic cells can be 
converted to necrotic cells (also known as secondary necrosis) 
if ATP levels fall below the quantity required to complete the 
active apoptotic process (23). The appearance of necrotic cells is 
often swollen with disrupted organelle and plasma membranes 
(24). The nucleus is often broken down and will be unstained 
by hematoxylin (Figure 2). As necrosis often occurs in areas of 
tissues, rather than the single cell death hallmark of apoptosis, 
often multiple necrotic cells can be identified in one area. Due 
to their lack of integrity, necrotic cells will often form cell debris, 
which can induce liver damage if not cleared swiftly, as we dis-
cuss in later sections.

Upon the death of a cell, its corpse must be cleared through 
efferocytosis. This is a specialist form of phagocytosis, whereby 
fragments of the dying cells are engulfed by other cells, which 
in turn degrade and recycle their components. Although both 
apoptotic and necrotic cells are often captured by the same 
efferocytes, each are recognized through different means and 
yield differing response in the predatory cell (25). Apoptotic 
cells are most commonly recognized through the display of the 
phospholipid phosphatidylserine (PtdSer) on the outer leaf of 
the plasma membrane that can be recognized by many recep-
tors [phosphatidylserine receptors (PSRs)] directly (26) or via 
association with low-density lipoprotein (27, 28). Of note, in a rat 
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Figure 3 | Visualizing efferocytosis by confocal microscopy. Hepatic epithelia were cocultured with violet-labeled staurosporin-treated apoptotic Jurkat T cells in 
the presence of pHrodo red, which only fluoresces in conditions of low pH (Thermo Fisher Scientific). CellMask Plasma Membrane stain was added to the culture 
media to label all exposed cell membranes before imaging. (A) Non-internalized apoptotic cells (blue) attached to hepatocytes were labeled by CellMask Plasma 
Membrane in white, and they were not labeled by pHrodo red dye (white arrow). (B) Internalized dead cells were not accessible to the membrane dye, confirming 
internalization (yellow arrow). Complete internalization into an acidic compartment was confirmed by pHrodo red, which detected efferosome acidification as early  
as 3 hours following engulfment. The scale bar indicates 5 µm.
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liver model, it was shown that recognition of apoptotic cells from 
mice or humans was reduced compared to rat cells; it is therefore 
possible that species-specific recognition molecules can mediate 
efferocytosis (29).

A phenotypic aspect of apoptotic cells is that, although 
shriveled, the cell remains intact as a singular body. This allows 
for a clean removal of the dying cells by efferocytes, usually 
without provoking an inflammatory response. How intact 
a necrotic cell remains is reflected through the manner in 
which cell death was induced. As such, multiple modalities for 
necrotic cell recognition are necessary to guarantee their clear-
ance. Some reports have suggested that necrotic cells can also be 
recognized by PSRs (30). However, due to the lack of integrity 
of most necrotic cells, they are often recognized through mol-
ecules exposed by necrotic death (25). The same mechanisms 
are also used to detect pathogens. For example, complement 
receptors and Fc receptors detect opsonized necrotic cells, and 
this recognition can trigger signaling events that activate the 
phagocyte (31–35). As such, necrotic cells are engulfed through 
the detection of autoantigens, which often increases the risk 
for autoimmune disease. Necrotic cells can also be indirectly 
recognized through opsonin engagement of other cellular com-
ponents. For example, ficolin-2 and -3 have been shown to bind 
DNA, facilitating the clearance of late-apoptotic/necrotic cells 
through interactions with calreticulin (33, 36). A ubiquitous 
mechanism for clearance of necrotic cells remains uncertain.

The differences between recognition, and thus further down
stream signaling of apoptotic and necrotic cells, result in conversing 	
consequences for the efferocyte (37). Apoptotic cell clear-
ance generally leads to the production of anti-inflammatory 
stimuli and pro-resolution signals for inflammation such as 
interleukin 10 (IL-10) and TGF-β (38). Conversely, necrotic 
clearance generally results in pro-inflammatory signaling, as 

many of the recognition receptors are also required for pathogen 
recognition. In the liver, the signals associated with hepatocyte 
death were recently reviewed by Brenner and colleagues (39). 
In this work the importance of the extent and duration of dead 
cell accumulation was highlighted, as mild and localized cell 
death can aid regeneration and exert hepatoprotective effects. 
Equally, prolonged and wide-spread cell death can exacerbate 
liver injury.

EXPERIMENTAL SYSTEMS TO STUDY 
EFFEROCYTOSIS

Multiple techniques have been described for both in  vivo 
and in  vitro studies of efferocytosis. Fluorescent dye-labeled 
efferocytes can be “fed” alternatively labeled dead cells under 
varying conditions and time courses. Early apoptosis can be 
confirmed by Annexin V labeling of the cell surface as it binds 
directly to PtdSer, although care must be taken when studying 
certain activated cell types or using calcium-sensitive protocols 
(40). Later stages of apoptosis or necrosis are often confirmed 
with cell impermeable DNA dyes such as 7AAD or TOPRO-3 
iodide, which can enter cells once the membrane is compro-
mised. Combined labeling with Annexin V and a membrane-
impermeable DNA label was developed to identify the stages 
of apoptotic cells in more detail (41). Cells can then be assessed 
by flow cytometry, or imaged by fluorescent microscopy. 
Complete internalization of dead cells can be confirmed by lack 
of access to membrane dyes added to the culture media (such as 
CellMask Plasma Membrane Stains, Thermo Fisher Scientific) 
or demonstration of efferosome acidification using pH indicator 
dyes (Figure  3). Quantitative analyses by confocal and time-
lapse microscopy can be useful to determine the frequency and 
kinetic of efferocytosis in vitro.
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Fluorescent labeling of dead cells and efferocytes may also 
be adapted for flow cytometry-based studies, whereby double-
positive cells represent efferocytes containing cargo. This form of 
analysis has been used to study the clearance of neuraminidase-
treated red blood cells in mice (42). Other studies opt to analyze 
efferocytosis using downstream secreted molecules as proxy to 
utilize alternative techniques such as reporter assays. The capacity 
of Scavenger Receptor Class F Member 1 (SCARF1) to act as a 
dead-cell receptor on transfected HEK293T cells, for example, was 
confirmed using IL-8 mRNA production as a marker of NF-κB 
activation following apoptotic and necrotic cell efferocytosis (43).

Efferocytosis is not often as straightforward to detect in vivo. 
Fluorescent labeling can enable temporal measurements in 
mouse models by intravital imaging of the liver (44), but the 
technique remains to be adapted successfully for use in human 
tissues ex vivo. Molecular markers of cell death for use with fixed 
tissue are often important for the confirmation of efferocytosis. 
Caspase 3/7 activation or their effects can be measured to 
delineate apoptotic bodies by immunohistochemistry (IHC) or 
immunofluorescence (IF) (45). DNA end-labeling is frequently 
used to confirm the death of cells in tissues. End-labeling 
involves the addition of labeled nucleotides to DNA breaks 
induced throughout multiple modalities of death, using a DNA 
polymerase. This was historically used for in  situ end labeling 
(ISEL) of fixed tissue sections as part of IHC chromagen stain-
ing (Figure 2D) (46). This was then adapted for the creation of 
terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End 
Labeling (TUNEL) (47) which substitutes a polymerase for TdT. 
This adaptation allows for the use of many different modified 
forms of labeled nucleotides (often dUTP), such as non-reactive 
protein tags or fluorophores. TUNEL staining has been altered 
to specifically identify cells in late-stage apoptosis.

Further stains for cell membrane proteins or specific nucleic 
proteins can be used to determine complete engulfment of dead 
cells. Many of these techniques were exemplified in a recent study 
of macrophage/monocyte efferocytosis in models of acute liver 
injury (48). In this work, Antoniades and colleagues studied the 
mechanism of resolution of liver inflammation through apoptotic 
cell clearance by macrophages/monocytes via Mer tyrosine kinase 
receptor (MerTK). Staining for myeloperoxidase (activated neu-
trophils) combined with TUNEL allowed for the identification 
of apoptotic neutrophils in human liver, both through IHC and 
IF staining. Additionally, fluorescent monocytes were cocultured 
in  vitro with alternatively fluorescent apoptotic hepatic cells or 
neutrophils. The ability of these monocytes to clear apoptotic 
cells was then assessed through fluorescent microscopy and flow 
cytometry. Both techniques were used to show the increased 
capacity of monocytes for dead cell clearance following stimula-
tion with secretory leukocyte protease inhibitor.

THE MECHANISM OF DEAD CELL 
CAPTURE BY PROFESSIONAL AND  
NON-PROFESSIONAL EFFEROCYTES

Phagocytes express several receptors to recognize and sub-
sequently clear dying cells from the tissues (49–51). In the 

case of professional phagocytes (e.g., macrophages) multiple 
apoptotic and necrotic cell receptors have been character-
ized and these remain relevant in the liver (37, 52) (Table  1). 	
First described in 1992, it is now widely accepted that apoptotic 
cells are recognized through their expression of PtdSer on the 
outer leaf of the plasma membrane (53, 54). Several receptors 
directly recognize PtdSer, many of which are expressed by profes-
sional phagocytes (55). These include stabilin-1, stabilin-2, brain-
specific angiogenesis inhibitor 1 (BAI1), and RAGE, as well as the 
TIM family of transmembrane glycoproteins, including TIM-1, 
-3, and -4 (56–61). Mammary, alveolar and mesangial epithelia 
recognize apoptotic cells via the PSR, CD36, the vitronectin 
receptor αvβ3, and CD91 (62–64). Of note, molecules that bind 
PtdSer such as high-mobility group box 1 (HMGB1) can also 
downregulate apoptotic cell clearance (65, 66).

It is common for PtdSer to be recognized in complex with 
certain bridging molecules. Some of the most well-studied PtdSer 
receptors, the TAM tyrosine kinases (Tyro3, Axl, and MerTK) 
work in this manner (102); notably, hepatocytes express Axl but 
not Tyro3 or MerTK (103). The earliest known examples of these 
are Gas6 and Protein S (104, 105). Gas6 is universally recognized 
by TAM receptors, whereas Protein S, which is expressed in 
hepatocytes, is not recognized by Axl. Similarly, integrins αvβ3 
and αvβ5 have been shown to promote efferocytosis through the 
recognition of PtdSer in complex with lactadherin, also known as 
milk fat globule EGF factor 8 (MFG-E8) (67, 68, 106).

The entirety of apoptotic cell recognition does not lie with the 
detection of PtdSer expression. It was shown that Tubby protein 
and its relative Tubby-like protein 1 (TuLP1), which do not 
bind PtdSer, specifically localize at the surface of apoptotic cells 
and could act as TAM receptor bridging molecules in a similar 
manner to Gas6, which in turn promoted apoptotic cell clear-
ance (89). All TAM tyrosine kinases recognized TuLP1, whereas 
Tubby was exclusively recognized by MerTK on macrophages 
and retinal pigment cells. Mechanisms of immune surveillance 
and signaling have also been shown to contribute to apoptotic 
cell clearance. Components of the complement pathway have 
been shown to induce phagocytosis in macrophages and DCs by 
opsonizing apoptotic cells, including C1q and C3 (34, 78, 107). 
Furthermore, SIGN-R1, a mouse analog of human mannose 
receptor DC-SIGN, was shown to bind apoptotic cells and induce 
their labeling with C3 and subsequent clearance by marginal zone 
macrophages (92).

Recognition of apoptotic cells, although important, is not 	
sufficient for macrophages to engulf and clear them. Downstream 
intracellular signaling is necessary for load-processing follow-
ing capture. An important, highly-conserved signaling pathway 
has been described downstream from most common PtdSer-
receptors, involving GTPase Rac1 and ELMO1-DOCK180 inter-
actions (50). TAM-family molecules, αvβ5 integrins and BAI1 act 
as docks for apoptotic cells, leading to intracellular signaling via 
this pathway (108, 109). Upon engagement of an apoptotic cell 
by these receptors, DOCK180 is recruited by ELMO1 (110, 111). 	
In complex, these proteins act as guanine exchange factors, 
allowing for Rac1 activation, which induces necessary cytoskel-
etal arrangements required for complete engulfment of the 
prey cell. Stabilin 1 and 2 have also been shown to activate this 
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Table 1 | Efferocytosis receptors in professional phagocytes and tissue epithelia.

Name Cell type Target Reference

Professional phagocyte receptors (macrophages/dendritic cells)

αvβ3 integrins Macrophages Lactadherin (MFG-E8)—PtdSer, vitronectin (67–69)
αvβ5 integrins Macrophages Lactadherin (MFG-E8)—PtdSer, vitronectin (67, 69–72)

Dendritic cells
Axl Monocytes/macrophages Gas6-PtdSer, Tubby-like protein 1 (GULP),  

Protein S
(73–76)

BAI1 (brain-specific angiogenesis inhibitor 1) Macrophages PtdSer (77)
Calrecticulin/CD91 Monocytes, macrophages, neutrophils Complement component C1q (34)
CD11/b/c/CD18 Monocytes, macrophages, neutrophils,  

human DCs
Complement component C3bi (78, 79)

CD14 Macrophages Phospholipids (not PtdSer-dependent) (80, 81)
CD36 Macrophages Thrombospondin + PtdSer + oxLDLs (82–84)
Clec9a Dendritic cells Necrotic cells, exposed actin filaments (85, 86)
LOX1 Macrophages oxLDLs—PtdSer (28, 87)
MARCO Macrophages Uncertain (88)
MerTK Monocytes/macrophages Gas6-PtdSer, Tubby, Protein S, Tubby-like  

protein 1, Protein S
(75, 89, 90)

Phosphatidylserine receptor (PSR) Monocytes/macrophages PtdSer (91)
RAGE (receptor for advanced glycation end 
products)

Alveolar macrophages PtdSer (60)

SCARF1 Monocytes and dendritic cells Complement component C1q—PtdSer (43)
Scavenger receptor A (SR-A) Macrophages Uncertain (88)
SIGN-R1 (specific intercellular adhesion molecule- 
3-grabbing nonintegrin-related 1) (murine)

Mouse marginal zone macrophages Not confirmed for apoptotic cells (92)

Stabilin-1 (CLEVER-1) Tissue-specific, alternatively activated 
macrophages

PtdSer (61)

Stabilin-2 Macrophages PtdSer (57)
TIM-3 (T cell/transmembrane, immunoglobulin,  
and mucin 3)

Dendritic cells PtdSer (93)

TIM-4 Monocytes/macrophages PtdSer (94)
Tyro3 (sky) Monocytes/macrophages Gas6-PtdSer, Protein S, Tubby-like protein 1, 

Protein S
(73–76)

Non-professional phagocytes

αvβ5 integrins Retinal epithelial cells Lactadherin (MFG-E8)-PtdSer (95)
ASGPR (asialoglycoprotein receptor) Hepatocytes asialoglycoprotein (96, 97)
CD36 Retinal Pigment cells PtdSer (98)
KIM-1 (kidney injury molecule 1)/TIM1 T cell/
transmembrane, immunoglobulin, and mucin 1

Injured kidney endothelial cells PtdSer (99)

LOX1 Endothelial cells oxLDLs—PtdSer. Ca2+-dependent (28, 100)
MerTK Retinal pigment cells Gas6-PtdSer, Tubby, Protein S, Tubby-like protein (89, 90)
Phosphatidylserine receptor (PSR) Fibroblasts PtdSer (91)

Epithelial cells
T and B lymphocytes (ectopic expression)

SCARF-1 (SREC-1) Endothelial cells Complement component C1q—PtdSer (43)
Stabilin-1 (Clever-1) Human sinusoidal endothelial cells PtdSer (101)
Stabilin-2 Human sinusoidal endothelial cells PtdSer (101)
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pathway through the adaptor protein GULP (109, 112, 113). 	
Completion of apoptotic cell engulfment also commonly 
involves the activation of nuclear receptors. Loose nucleotides 
released from dying cells commonly act as “eat-me” signals, 
and can engage purigenic P2 receptors (P2X and P2Y), lead-
ing to an increased capacity for efferocytosis in macrophages 
(114, 115). It was recently shown that liver X receptor (LXR) 
was necessary for the capture and processing of apoptotic cells 
by macrophages and dendritic cells (116, 117). LXR responds 
to oxysterols found in engulfed apoptotic cells. Stimulation 
of LXR upregulated MerTK and anti-inflammatory cytokines 
IL-10 and TGF-β, while also leading to the downregulation of 
proinflammatory cytokines such as IL-1β, CCL2, and MARCO. 

A-Gonzalez and Hidalgo reviewed nuclear receptors and their 
role in macrophage efferocytosis recently (118). LXRα medi-
ates fatty acid regulation in hepatocytes (119), but its role in 
hepatocyte efferocytosis remains to be determined.

Non-professional phagocytes, such as epithelial cells express 
multifunctional scavenger receptors, or molecules that exert 
alternative functions in other cell types. For example, TIM-1, 
also known as kidney injury molecule 1 (KIM-1), is known to 
possess multiple immune functions, including CD4+ T-cell and 
mast cell activation (59). However, TIM-1 was also upregulated 
in kidney epithelia following injury, allowing for a temporary 
efferocytic capability (99). Certain cell-exclusive receptors and 
modulators associated with apoptotic cell clearance have also 
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been described. Apoptotic cell clearance in the liver has been 
shown to involve asialoglycoprotein receptor (ASGPR) on 
hepatocytes (96). This ASGPR1 and ASGPR2 complex is critical 
for receptor-mediated endocytosis of terminally desialylated gly-
coproteins and is restricted to the liver. Autoantibodies to ASGPR 
have been found in patients and models of autoimmune hepatitis 
(120–122). Resolvin D1 is also important in liver protection 
from ischemia/reperfusion injury, by enhancing efferocytosis by 
M2-polarizing macrophages (123). Furthermore, phagocytosis 
by retinal pigment cells, although mostly conducted through 
MerTK, was shown to be increased through recognition of 
ATP-binding cassette subfamily F member 1 (ABCF1) released 
from apoptotic photoreceptor outer segments (124). Overall, 
it appears that although the broad function of recognition and 
engulfment of apoptotic cells is conserved throughout many cell 
types, multiple mechanisms exist that conduct these processes 
across phagocytes, both homo- and heterotypically.

REGULATION OF EFFEROCYTOSIS

External stimuli are pertinent for regulation of dead cell clear-
ance by efferocytosis. As such, “find-me” signals released by 
apoptotic cells are often necessary for the guidance of efferocytes 
to their prey (53). The best-characterized examples of these are 
extracellular nucleotides (115). It was shown that upon caspase 
3/7 activation in apoptotic cells, ATP and UTP released from 
apoptotic cells could recruit monocytes/macrophages through 
recognition by P2Y2. Conversely, molecules with the opposite 
effect known as “don’t eat-me” signals have also been described. 
CD47 is the most notable, having been shown to provide resist-
ance to clearance by macrophages on malignant cells and more 
recently on atherosclerotic plaques (125, 126). Similar “find-
me” signals may be utilized by non-motile phagocytes, which 
extend protrusions to collect apoptotic cells for clearance but are 
restricted to targets within their tissue niche.

Due to the influence of dying cells on the immune response, 
cytokine and growth factor stimulation of both professional 	
and non-professional phagocytes can regulate their capacity to 
clear dead cells. Apoptotic T-cell lymphomas release sphingo-
sine-1-phosphate, a bioactive lipid often involved in immune 
cell recruitment, leading to the recruitment of macrophages and 
monocytes (127). Similarly, certain chemokines, tasked with 
immune cell recruitment have also been shown to increase phago-
cyte recruitment to areas of apoptotic cells. CX3CL1 (fractalkine) 
was shown to recruit macrophages to its source, apoptotic Burkitt 
lymphoma cells (128).

Multiple cytokines have varying effects on efferocytosis (129). 
Most notably, secretion of IL-3 and IL-14 increased efferocytosis 
in macrophages through activation of PPAR and increase in 
CD36 expression (130, 131). IL-4 has been reported to upregulate 
expression of other PtdSer-receptors such as stabilin 1and 2 (61). 
IL-10 and TGF-β can also increase efferocytes by macrophages 
(132, 133). In contrast, pro-inflammatory cytokines reduce 
the capacity for dead cell engulfment: TNF-α has been shown 
to inhibit efferocytosis in macrophages (134) and both IFN-γ 
secretion and receptiveness were reversely correlated with anti-
inflammatory cytokines and receptors including IL-4 and TIM 

receptors (59, 129, 135). However, this was not always the case 
for these cytokines. Both TNF-α and IFN-γ have been shown to 
increase LOX-1, which may recognize apoptotic cells by LDL-
labeled PtdSer. Furthermore, IFN-γ activation of macrophages, 
in the absence of other pro-inflammatory stimuli, was shown to 
increase apoptotic uptake (135).

The ability of phagocytes to clear dead cells is also subject 
to regulation. This is the result of alterations in gene expres-
sion, which can function as negative feedback following initial 
engulfment of dying cells. For example, it has been shown that 
macrophages, upon engulfing apoptotic cells can undergo a form 
of activation and reprograming (136). As well as skewing the 
macrophage to a more anti-inflammatory phenotype, which in 
turn promotes inflammatory resolution, both mouse and human 
macrophages can upregulate CXCR4 during efferocytosis, which 
in turn encourages their recruitment to draining lymph nodes 
(137). These macrophages were also shown to subsequently reduce 
their efferocytosis capacity. Thus, apoptotic cells can reduce local 
levels of efferocytosis as well as promote them.

More recently macrophages were shown to regulate effero
cytosis in surrounding non-circulating phagocytes, such as 
phagocytic airway epithelial cells (138). In response to IL-4 and 
IL-13, which are secreted by epithelia and stimulated Th2 cells, 
macrophages upregulated secretion of both insulin-like growth 
factor 1 (IGF-1) and microvesicles containing anti-inflammatory 
signals. Both microvesicles and IGF-1, in turn, fed back to epi-
thelia, causing a reduction of apoptotic cell clearance in favor of 
microvesicle uptake.

In the context of the liver, some of the mechanisms described 
for the regulation of efferocytosis apply to circulating and 
resident macrophages/monocytes. Further, the neuronal guid-
ance protein netrin-1 has been shown to promote resolution of 
ischemia/reperfusion injury, in part by increasing the capacity of 
Kupffer cells to engulf apoptotic cells (139). The same molecule 
was shown to promote liver regeneration (139). In a mouse 
model of colon carcinoma metastasis in the liver, intercellular 
cell adhesion molecule 1-deficient macrophages cocultured 
with tumor cells showed increased efferocytosis dependent on 
phosphatidylinositol 3 kinase (140).

Environmental factors can also affect phagocytosis, and 
this extends to the clearance of dead cells; studies in human 
skin have demonstrated that ethanol can reduce phagocytic 
function (141), and there have been reports on increased 
phagocytosis in ethanol-fed rats, which was modulated by 
diet (142). Hepatocyte phagocytosis of apoptotic cells was 
decreased in ethanol-fed rats compared to controls, therefore 
the effects of ethanol on efferocytosis may be cell type-
dependent (97). It is unclear whether professional phagocytes 
play a role in the regulation of efferocytosis by hepatocytes and 
liver endothelial cells.

THE IMPACT OF EFFEROCYTOSIS  
BY TISSUE EPITHELIA

Non-professional efferocytes are important throughout all devel-
opmental stages of an organism and can take over the clearance 
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of apoptotic cells in the absence of professional phagocytes 
(143). This was confirmed in PU.1 knockout mice that lack 
macrophages, and the removal of apoptotic cells required for 
foot-limb development was instead performed by mesenchymal 
cells (144). Non-professional phagocytes therefore contribute to 
efferocytosis, even at the earliest stages of development.

Some of the best-studied phagocytic epithelia are bronchial 
and alveolar epithelial cells (138, 145, 146). Epithelial cells 
lining the respiratory tract make first contact with airborne 
allergens such as house dust mite antigens. Subsequent inflam-
matory stimuli, including the recruitment of basophils, mast 
cells and lymphocytes, result in epithelial cell injury. Lung 
epithelia clear their dying neighbors through PtdSer and 
Rac1-dependent mechanisms, which can be modified experi-
mentally (146). As with macrophages, apoptotic cell clearance 
by lung epithelia induced anti-inflammatory cytokines such 
as IL-10 and TGF-β. Conditional Rac1 deletion in mouse lung 
epithelia resulted in an exacerbated immune response and 
greater epithelial damage. These studies demonstrated the 
efficiency and importance for lung epithelial cell efferocytosis 
in the regulation of lung inflammation (146, 147).

Retinal epithelial cell efferocytosis has also been well charac-
terized (148–151). Light-sensing cells of the retina are frequently 
turned over via programmed-cell death, often succumbing to 
autophagy-associated death, called autolysis (152, 153). Dys
regulation of autophagy in these cells has been frequently reported 
to increase retinal pigment cell death (152, 154). Although a 
normal part of age-related macular degeneration, failure to clear 
these dying cells can accelerate retinal damage. Together with 
professional phagocytes, retinal pigment cells are also charged 
with the removal of dead cells, in a manner dependent on MerTK.

Throughout the lifecycle of an organism, the removal of imma
ture cells or those with high turnover is necessary to maintain 
tissue homeostasis. Intravital microscopy has revealed how hair 
follicles in mice regress through programmed cell death of hair-
producing basal epithelial cells (155). Neighboring cells of the 
same type then clear apoptotic cells through mechanisms requir-
ing TGF-β signaling. In response to kidney damage, epithelial cells 
recognize and engulf PtdSer-positive apoptotic cells via KIM-1 
or TIM-1 (99). Colonic epithelial cells have also been shown to 
engulf their apoptotic neighbors, which aids in maintaining low 
levels of inflammation (156).

Studies in multiple progenitor types have recently identified 
their importance in efferocytosis. Skeletal muscle progenitors 
recognizing PtdSer on neighboring apoptotic cells, receive the 
signal to differentiate and fuse into multinuclear myofibers 
(157). Mesenchymal stem cells take their cues from bone mar-
row apoptotic cells via efferocytosis and undergo osteogenic 
differentiation (158). Chondrogenic progenitor cells display 
macrophage-like abilities in that they react to “find-me” signals 
from apoptotic cells (159), and non-motile chondrocytes also 
have a role in efferocytosis (160). As previously discussed, neu-
ronal progenitors which apoptose following failure to complete 
neural circuits throughout neurogenesis, were recognized and 
cleared by other progenitor cells via Rac1 activation following 
ELMO-1 signaling (161). Of note, neuronal and hepatic epithe-
lia can be derived from common progenitor cells.

Through its cardinal role in the neutralization of toxic sub-
stances, to its frequent influx and arresting of leukocytes, the 
liver has evolved to cope well with cell death (10, 162). Although 
hepatocytes are somewhat resistant to intrinsic apoptotic 
pathways (163–165), many death receptors are ubiquitously 
expressed throughout the liver, increasing their susceptibility to 
extrinsic apoptosis by exposure to pro-inflammatory cytokines 
such as TNF family molecules including TNF-related apoptosis-
inducing ligand (TRAIL) (166–170). Clearance of apoptotic 
cells by macrophages is a pro-resolution process, however, 
liver-infiltrating macrophages and Kupffer cells can upregulate 
death ligands in the liver, including FasL, TNF-α, and TRAIL, 
increasing the rate of local hepatocyte death and the risk of fur-
ther inflammation (171, 172). Acute injury such as ischemia and 
the resulting trauma from hypoxia/reoxygenation can also result 
in similar sudden increases in necrotic cell death (164, 165, 169). 
Furthermore, steatosis—accumulation of lipids associated with a 
multitude of fatty liver diseases—can cause wide hepatocyte cell 
death via lipoapoptosis induced by ER stress-mediated intrinsic 
pathways (173, 174). Ethanol-induced injury can also have an 
impact on receptor-mediated endocytosis by the ASGPR and 
efferocytosis (175–178).

Failure to clear dead cells from the parenchyma is accumula-
tively detrimental to the liver; clearance of necrotic cells—both 
primary and secondary, resulting from uncleared apoptotic 
cells—results in increase in pro-inflammatory cell influx and 
cytokine secretion, leading to further damage to the liver 
(14). HMGB1 is important in liver protection from ischemia/
reperfusion injury (179), yet in a sterile model it acted as a 
damage-associated molecular pattern that enhanced liver injury 
in both ischemia/reperfusion and POD models (180). Interac
tions between ASGPR on hepatocytes and B220 epitope of CD45 
assist in the capture and trapping of apoptotic cells in the liver 	
(96, 181, 182). The impact of hepatocyte efferocytosis on the 
inflammatory milieu remains to be established.

Beyond the capacity of hepatocytes for erythrocytosis (183), 
further evidence or insights into the mechanisms or anti-
inflammatory impact of hepatocyte efferocytosis have not been 
elucidated. Hepatocytes express an array of immunomodula-
tory cytokines, including TNF-α and IL-10 (184–186); it is not 
known whether these are modulated during efferocytosis as in 
lung epithelia and in professional phagocytes. Understanding 
the molecular mechanisms, purpose and regulation of dead cell 
clearance by hepatocytes is vital to estimate its impact on the 
onset and resolution of inflammation, as elevation in hepatocyte 
apoptosis is key to the pathogenesis and progression of most 
forms of liver disease (14). Outstanding questions on hepatocyte 
efferocytosis include:

	–	 What are the molecules that mediate recognition and engulfment 
of apoptotic and/or necrotic cells by hepatocytes? ASGPR is thus 
far the only receptor restricted to hepatocyte efferocytosis; 
despite its multiple roles in receptor-mediated efferocytosis, 
ASGPR-deficient mice develop normally yet have exacerbated 
pathology in liver injury models (177, 187).

	–	 Is efferocytosis by hepatocytes in portal and centrilobular 
regions mediated by the same molecular mechanisms? These 
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Table 2 | The role of efferocytosis in liver diseases.

Liver disease Efferocytosis relevance Reference

Autoimmune 
hepatitis

Hepatocyte stress and correlations to disease (39, 121, 
195)Autoantibodies targeting ASGPR

Primary biliary 
cholangitis

Phagocytes were shown to contain PDC-E2 
immunogen

(8, 196, 
199–201)

Biliary injury clearance is linked to autoimmunity

Biliary injury clearance alleviates liver fibrosis

Primary 
sclerosing 
cholangitis

Collection of genome-wide studies that show a 
role of apoptosis 

(202)

Alcohol injury Ethanol exacerbates injury in ASGPR-deficient 
model

(97, 177, 
178, 203, 

204)

Fatty liver 
diseases

The role of specialized proresolving mediators  
in obese individuals (enhance efferocytosis)

(205–207)

Other liver 
injuries

Alpha 1 antitrypsin rescues macrophage 
efferocytosis

(139, 196, 
208)

Netrin 1 rescues efferocytosis in murine I/R injury 
model

Efferocytosis and tissue remodeling in rat bile duct 
ligation model

Although efferocytosis is critical for liver homeostasis, there is limited information on 
specific efferocytosis pathways that contribute to liver disease pathogeneses. The 
importance of dead cell clearance is better established than the mechanisms that 
mediate efferocytosis in the inflamed or injured liver.
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regions have differential access to apoptotic and necrotic 
cells, respectively, as well as nutrient, inflammatory infiltrate 
and oxygenation levels that may all influence the capacity for 
efferocytosis.

	–	 How is hepatocyte efferocytosis regulated in health, infection, 
inflammation and cancer?

	–	 Can hepatocyte efferocytosis be modulated by pharmacological 
interventions?

	–	 Does efferocytosis affect the ability of hepatocytes to regenerate 
during injury?

CLINICAL IMPLICATIONS OF DEFECTS  
IN EFFEROCYTOSIS

Failure to remove dying cells, both apoptotic and necrotic, have 
been connected to disease exacerbation (49). Accumulation of 
dying cells increases the availability of proimmunogenic factors 
and can increase the risk of autoimmunity, especially as death-
recognition becomes skewed to proinflammatory recognition 
of secondary-necrotic cells. This topic was explored in a recent 
special issue in Frontiers in Immunology (188).

Defects in efferocytosis have also been shown to be beneficial 
for the longevity of tumors. Upregulation in the “don’t-eat me” 
signal CD47 was reported in myeloid leukemia (189, 190) which 
was associated with increased tumor survival and poorer prog-
nosis. Similar pathogenic consequences of aberrant efferocytosis 
have been exemplified through deficiencies in death receptors 
(1). Loss of axl, MerTK, and its associated ligand, Gas6, have all 
been shown to promote the growth of colon cancers (191, 192). 
Conversely, loss of stabilin-1 has shown to reduce growth of 
implanted tumors in knockout mice, due to reduced recruitment 
of tumor-associated lymphocytes and macrophages (193). As 
such, loss of death-receptor expression is not always beneficial 
for cancer vitality. However, loss of other receptors for dying 
cells has displayed varying phenotypes associated with the lack 
of apoptotic cell clearance. Loss of SCARF1 and axl has been 
reported to promote autoimmunity (43, 194).

Similar dangers to those mentioned above regarding deficien-
cies in dying cell clearance are apparent for many liver diseases. In 
the context of the liver, the effects of efferocytosis in autoimmune 
family disorders have not been established directly. Reports on 
efferocytosis in liver diseases are listed in Table 2. Clearance of 
dying cells in the liver is thought to reduce the risk of autoim-
mune hepatitis and promote reversal of fibrosis by macrophages 
(195, 196). In primary biliary cholangitis, efferocytosis by biliary 
epithelia may be important in defining the tissue specificity of 
the autoimmune response (8, 197). It is worth considering that 
standard of care treatments for autoimmune conditions include 
corticosteroid regimens, which have been shown to upregulate 
efferocytosis (49, 198). Prevention of efferocytosis may therefore 
exacerbate liver diseases.

As well as causing hepatocyte necrosis, chronic alcohol 
exposure was reported to reduce macrophage efferocytosis 
through diminishing MFG-E8 expression (209). Prevention of 
efferocytosis by macrophages in the liver could increase further 
inflammatory stimuli, although it is not clear how hepatocyte 

efferocytosis would be affected. Contrarily, reduced efferocytosis 
in certain disease models has been shown to be beneficial. Loss 
of the dead-cell receptor TIM4, for example, in a mouse model of 
ischemia/reperfusion injury reduced immune cell infiltration and 
hepatocyte damage (210). Understanding the protein-specific 
and situational benefits or detriments to reduced efferocytosis in 
diseases of the liver and other organs can give insights into possible 
therapeutics for tissue damage and autoimmunity.

CONCLUSION

Recent advances in epithelial cell efferocytosis have highlighted 
the importance of tissue epithelia in the everyday clearance of 
billions of apoptotic cells. Compared to professional efferocytes, 
there is little known regarding the receptors and molecular 
processes involved in the recognition of apoptotic and necrotic 
cells by non-professional phagocytes, including molecules that 
may confer tissue-specific function. Given the impact of effero-
cytosis on the pathogenesis of autoimmunity, tissue injury and 
tumor biology (211), molecules driving efficient clearance of 
dead cells are valid therapeutic targets. Hepatocyte efferocytosis, 
accomplished at least in part by the liver-restricted ASGPR, is an 
attractive target for therapeutic intervention for a multitude of 
liver diseases.
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