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Potential influence of nutrient availability along a hillslope: Peatland 

gradient on aspen recovery following fire 

M. Depante,  R.M. Petrone, K.J. Devito, N. Kettridge, M.L. Macrae1, C. Mendoza, J.M. 

Waddington 

 

The Boreal Plains (BP) of Western Canada have been exposed to increasing disturbance by wild-

fire and host a mixture of upland‐wetland‐pond complexes with substantial quantities of trembling 

aspen (Populus tremuloides Michx.) throughout the terrestrial areas. The ability of these tree 

species to regenerate within both upland and wetland areas of the BP following wildfire is unclear. 

The purpose of this study was to investigate the influence of fire on nutrient dynamics in soil and 

water in peatlands and forested landscapes in the BP and relate this to aspen regeneration. Nutrient 

concentrations, nutrient supply rates, and net nutrient mineralization rates were determined in 

burned and unburned sections of a peatland and forest and compared with the regeneration of 

aspen. NO3
−
, NH4

+
, and P varied spatially throughout the landscape, and differences were 

observed between peatland and upland areas. In general, differences in nutrient dynamics were not 

observed between burned and unburned areas, with the exception of P. Nutrient and growth data 

suggest that aspen do not require nutrient‐rich conditions for regeneration and instead relied on 

forest litter to satisfy nutrient demands. Although the peatlands contained high nutrients, aspen did 

not flourish in the combination of anoxic and aerobic organic‐rich soils present in this area. 

Although aspen may use peat water and nutrients through their rooting zones, peatlands are 

unsuitable for aspen re‐establishment in the long‐term. However, the combination of abundant 

nutrients in surface mineral soils in peat margins may indicate the vulnerability of margins to 

upland transformations in later successional stages. 



1 IN T RO D U CT I O N 

The Boreal Plains (BP) region of Western Canada covers approximately 650,000 km
2
 and contains 

a mixture of forested land and pond‐ peatland complexes. The BP have been highly subjected to 

natural and anthropogenic disturbances, including mining, harvesting, oil exploration, and fire 

(Rooney, Bayley, & Schindler, 2012). Subhumid conditions, where potential evapotranspiration 

often exceeds precipi-tation (P) in the BP (Brown, Petrone, Mendoza, & Devito, 2010; Devito, 

Creed, Gan, et al., 2005), make this ecozone susceptible to wildfires (Fauria & Johnson, 2008; 

Flannigan, Logan, Amiro, Skinner, Stocks, 2005; Weber & Stocks, 1998). Although fires are 

needed to maintain system heterogeneity through the destruction of current stands, the periodic 

occurrence of fires has other ecological consequences (Weber & Stocks, 1998). Trembling aspen 

(Populus Temuloides Michx.), the dominant upland species in the BP, often rapidly regenerate 

following disturbance due to resource reserves in the expansive rooting systems of the tree (Calder, 

Horn, & St. Clair, 2011; DesRochers & Lieffers, 2001; Schier & Campbell, 1978; Schier, Jones, 

Winokur, 1985). During disturbances, such as cutting, harvesting, and fire, the hormone auxin can 

be destroyed where its release can be inhibited from the main stem (Fraser, Lieffers, & 

Landhäusser, 2004; Schier et al., 1985; Schier & Campbell, 1978), which acts to not limit sucker 

growth. Further, in the event of fire, increased temper-atures allow for the production of cytokinins 

in root meristems, thus enhancing root and sucker growth (Bartos & Meuggler, 1981; Romme et al., 

1997; Schier et al., 1985). Although this is well‐observed in forested sites, aspen regeneration is 

nearly absent in peatlands (Beckingham & Archibald, 1996). The controls on aspen regeneration 

may be hydrological and/or biogeochemical in nature (Buck & St. Clair, 2012; Hemming & 

Lindroth, 1999) and have implications for when and where the aspen may successfully regenerate. 

With the subhumid climate of the BP and increased projected drying trends due to climate, this 

ecozone may be vulnerable to increased fires (Flannigan et al., 2005). Due to the hydrological 



synergistic relationship between uplands and peatlands in this region (Petrone et al., 2015), 

regeneration following fire can have large implications for the water balance of both upland and 

peatland ecosystems. Thus, an improved under-standing of ecosystem dynamics following fires is 

needed. 

 

Fire affects many aspects of the landscape, such as vegetation cover, soil characteristics, and 

nutrient availability, which subsequently affect the regeneration of new trees (Buck & St. Clair, 

2012). Fire removes canopy cover and surface organic matter (OM) allowing for increased sunlight 

penetration and increased soil temperatures (Weber Stocks, 1998). Fire also impacts the availability 

of nutrients in the landscape through the immediate breakdown and mineralization of organic 

compounds, increasing the nutrient availability to regenerating plants (Dunn, DeBano, & Eberlein, 

1979; Galang, Markewitz, & Morris, 2010; Hobbs & Schimel, 1984). Increases in inorganic N and 

P, how-ever, are often short lived through system recovery, leaching, erosion, wind, adsorption onto 

soil particles, and/or microbial and plant immobilization (Dunn et al., 1979; Hobbs & Schimel, 

1984; Kishchuk et al., 2014; Wilbur & Christensen, 1983). Changes to the landscape follow-ing fire 

favour the regeneration of species suppressed under predisturbance conditions (Weber & Stocks, 

1998). Indeed, fires often initiate the immediate succession of species that thrive in resource rich 

environments, such as trembling aspen (Populus tremuloides Michx). Although this potential exists, 

it can be affected by burn severity, which can vary spatially in Boreal forests. Recent studies in the 

BP of Alberta have linked burn severity to prefire conditions such as OM content, vegetation cover 

type and age, soil moisture, and hydrologic connectivity (Hokanson et al., 2015; Lukenbach, 

Devito, Kettridge, Petrone, & Waddington, 2015). However, such properties have yet to be linked 

to the recovery and migration of upland tree species. 

 



Much of the current understanding of biogeochemical processes following fire in Boreal forests has 

been developed in upland forest soils, and fewer studies have been undertaken in peatland systems, 

which are found adjacent to forests in the BP. Fire has been shown to increase both N and P supply 

in temperate marsh systems and ombrotrophic bogs, although the magnitude of heightened 

availability is dependent on the time of burn and its severity (Wang et al., 2015; Wilbur & 

Christensen, 1983; Wu et al., 2012). Consistently, mineralization has been linked to zones having 

high organic N and P (Wang et al., 2015; Wilbur & Christensen, 1983; Wu et al., 2012), which 

suggests that if inorganic N and P supplies are greater in wetlands and riparian areas than in forests, 

these low‐lying areas may be a significant source of nutrients postfire. 

 

Indeed, some studies have observed increased export of TN, Mg
2+

, SO4
3−

, NO3
−
, and TP into lakes 

following and are mobilized from sur-rounding wetlands and riparian areas rather than uplands 

(Burke, Prepas, & Pinder, 2005; Devito, Creed, & Fraser, 2005; Devito, Creed, Rothwell, & Prepas, 

2000; Lamontagne, Carignan, D'Arcy, Prairie, & Paré, 2000; McEachern, Prepas, Gibson, & 

Dinsmore, 2000). Thus, due to the low occurrence of precipitation events with high enough 

intensity to generate preferential flow (along rooting channels) in upper soil layers, combined with 

deep water table depths and high storage capacity of forested soils, limits the generation of run‐off 

from uplands into peatlands (Ferone & Devito, 2004; Redding & Devito, 2008; Redding & Devito, 

2010). Because the storage capacities of wet-lands are less than in uplands, they are able to generate 

flow towards uplands and may therefore potentially transfer N and P between adja-cent land units 

(Devito, Creed, & Fraser, 2005; Devito, Creed, Gan, et al., 2005; Devito, Mendoza, & Qualizza, 

2012; Ferone & Devito, 2004; Macrae, Devito, Creed, & Macdonald, 2006; Macrae, Redding, 

Creed, Bell, & Devito, 2005). Water transport, and possibly nutrient transport, can also occur 

through hydraulic redistribution. In moisture‐limited areas, deep tree roots can tap into water 



sources, such as groundwater and the water table and redistribute to drier soil depths (e.g., Dawson, 

1993; Hultine et al., 2006). In other studies with resource‐limited systems, broadleaf trees have 

been shown to extract nutrients and water from adjacent areas (e.g., Dawson, 1993). Thus, 

enhanced nutrients in wetlands postfire may result in enhanced nutrient supply to upland trees. 

 

Although aspen seedlings have been recorded in drained riparian zones (Roy, Ruel, & Plamondon, 

2000), it is uncertain if the presence of P. tremuloides in peatlands and peatland margins indicate 

areas where they may regenerate. Conversely, it is unknown if this observation can be linked to pre‐

existing roots in these areas that exploit resources, such as water and nutrients. The Utikuma 

Complex Wildfire of 2011 (SWF‐060, ~90,000 ha, May 2011) can be used to understand if the lack 

of nutrient availability drove upland aspen regeneration into adjacent peatland margins, or further 

into peatlands, which has yet to be recorded in the literature. 

 

The goal of this study was to determine if, and how aspen regeneration and succession in uplands, 

peat margins, and peatlands following fire correlates with physical conditions and nutrient 

availability across the landscape. This is done by addressing the following specific objectives: (a) to 

compare burned and unburned transects across peatland‐upland gradients to characterize the 

individual and combined influences of fire and land unit position on soil and water nitrate (NO3
−
), 

ammonium (NH4
+
), and phosphorus (P) availability and potential aspen recovery postfire and (b) to 

relate aspen growth patterns with differences in soil conditions and nutrient availability across 

burned hillslopes, peatland margins, and peatlands. It is hypothesized that the presence and growth 

of aspen in peatlands are related to elevated N and P concentrations. It is also hypothesized that 

NO3
−
, NH4

+
, and P availability are greatest in burned peatlands and reduced in aspen uplands, 

which may cause the migration of trees into peatland margins during recovery. 



2 M E T H O D S 

2.1  Study area 

The Utikuma Research Study Area (URSA) is located in north central Alberta within the BP of 

Western Canada (56°6′N, 116°32′W; Depante, 2016; Devito et al., 2012). In May 2011, 

approximately 90,000 ha of URSA was affected by the Utikuma complex fire (SWF‐060). The 

catchment area selected for this study was located on a coarse‐textured outwash plain that contained 

a 39 ha pond char-acterized with a regional groundwater flow‐through system (Lukenbach, 

Kettridge, Devito, Petrone, & Waddington, 2015; Smerdon, Devito, & Mendoza, 2005; Figure 1). 

The southwest portion of the lake was affected by the fire, which consumed upland canopies and 

adjacent peatlands that further experienced smouldering in hollows and margins (Hokanson et al., 

2015; Lukenbach, Devito, et al., 2015). The nature of the crown fire sustained some peatlands and 

forested areas within the burned portion of the catchment. Trembling aspen (Populus tremulodies 

Michx.) dominated the overstory of burned and unburned uplands whereas spruce (Picea spp.) 

dominated peatland margins. Sampling locations within the peatland margins in the burned and 

unburned areas were selected based on their location along the peatland‐forest gradient, and 

similarities in water table depth, ground water flow direction, and soil properties (Hokanson et al., 

2015; Lukenbach et al., 2017). The depth of peat in peatland margins generally exceeded 0.15 m in 

unburned and burned areas; however, some margins in the disturbed areas were burned to the 

mineral soil layer (Hokanson et al., 2015; Lukenbach et al., 2017). Similarities in prefire vegetation 

communities also contributed to sample location selection; however, aspen seedlings and clones 

were observed in burned peatlands and peatland margin. Unburned peatlands and peatland mar-gins 

did not contain aspen (Depante, 2016). 

 



Primary successional species in peat margins included Polytrichum mosses, common horsetail 

(Equisetum arvense), fire moss (Ceratodon purpureus), and willow (Salix spp.). Unburned sites and 

recovering peatlands contained Sphagnum fuscum and feathermoss in hummocks and hollows with 

Black spruce (Picea mariana) over-stories (Lukenbach, Devito, et al., 2015). We divided the 

landscape into four topography‐based land units: (a) hilltops (top of aspen forests), (b) midslopes 

(middle of aspen hills), (c) peatland margins/ riparian zones, and (d) peatlands (including 

hummocks and hollow microtopography). Riparian zones/peat margins are classified as transition 

areas between uplands and forests that contain varying OM depths where the ground surface does 

not follow hummock‐hollow microtopography (Dimitrov, Bhatti, & Grant, 2014; Hokanson et al., 

2015). Six transects were sampled in this study, where three transects were located in the burned 

area and three in the unburned portion (Figure 1). 

 

2.2  Soil physical properties and hydrology 

Carbon to nitrogen ratios (C:N) for the July 2014 mineralization soils were prepared based on Land, 

Lang, and Barnes (1977) and Irwin, Curtis, and Coleman (1977), where dried samples were 

combusted by an elemental analyser (4010 Elemental Analyzer, Costech Instruments, Italy) coupled 

to a continuous flow isotope mass spectrometer (Delta Plus XL, Thermo‐Finnigan, Germany) and 

yielded percent composition of carbon and nitrogen (University of Waterloo, Environmental 

Isotope Laboratory). Soil samples were also dried to calculate gravimetric water content, bulk 

density, and organic carbon content through loss on ignition (after Dean, 1974). The pH of 

remaining soil samples from the dis-tilled water extract (5:1 wet soil ratio) mineralization 

experiment was taken with a pH electrode. 

 



To characterize the hydrological interaction between the peatland, margins, and hillslope, a 

monitoring network of wells was installed using 0.05 m diameter polyvinyl chloride following the 

method of Smerdon et al. (2005) adjacent to each study plot (Figure 1). Water levels and electrical 

conductivities in wells were measured weekly during the study periods using a temperature‐level‐

conductivity meter (Solinst, Georgetown, Ontario, Canada). Weekly volumetric soil moisture 

content (m
3
/m

3
) was quantified with an ML2x Theta Probe (Delta‐T, Cambridge) within the top 3 

and 6 cm from the surface for every plant root simulator (PRS) probe location and recalculated to 

yield percent saturation. 

 

2.3 Plant available nutrients and net mineralization rates 

At each land unit, PRS
™

 probes (Western Ag. Innovations, Saskatoon) were deployed in both 

growing seasons to capture supply rates of anions and cations (μg·10 cm
2
·month). The probes were 

placed diagonally in the Litter Fall Horizon (LFH) layer in forested areas (0–3 cm burned; 0–10 cm 

unburned), and the top layer of peat in margins and peatlands (0–10 cm burned; and 0–10 cm 

unburned), which will be referred to as the “surface soil layer”. Second sets of PRS probes were 

placed in the mineral soils of the forested area, along with riparian zone and peatland probes, 

approximately 10–20 cm from the surface. In some peat margins burnt close to mineral soil, the 

subsurface PRS probe was placed into mineral soil. The probes at depth will be referred to as the 

“subsurface soils,” though it is important to note that they only capture approximately 20 cm of the 

rooting depth of recovering vegetation in the peatland and riparian zone. PRS probes were 

randomly placed in each hilltop, midslope, riparian zone, peatland hum-mock, and peatland hollow 

at the burned and unburned near surface (per land unit: n = 18 burned, n = 9 unburned all transects 

combined) and at the subsurface (per land unit: n = 18 burned, n = 9 unburned all transects 

combined; Figure 1). After 1 month of incubation, the probes were triple rinsed with distilled water 



within 24 hr of collection (Western Ag Innovations Inc, 2010). Probes were then shipped to 

Western Ag. Innovations (Saskatoon, Saskatchewan), where they were washed with HCl and 

analysed colormetrically with a Technicon Autoanalyzer (Hangs, Greer, & Sulewski, 2004). 

Additional parameters were also quantified at each site during the removal and installation of PRS 

probes: Approximation of redox status (oxic, anoxic) was deter-mined using iron rods inserted to a 

depth of approximately 45 cm; depth to water table and ice, if present, were recorded manually, and 

the depth of the LFH or organics layer was recorded. 

 

Net mineralization rates of N and P were measured along the same transects and locations as the 

PRS probes in 2014 (n = 9 surface, n = 9 subsurface per topographic position, Figure 1) using the 

buried bag technique (Eno, 1960; Hill & Devito, 1997). For each soil sample, a set of paired cores 

were taken, divided by minimum and maximum rooting zone depths, and placed in polyethylene 

bags. In the case of the peatland and riparian areas with greater than 20 cm of organics, minimum 

rooting zone cores were 0–10 cm and were taken from 10 to 20 cm depth. One core was placed into 

the soil layer from where it was retrieved, incubated, and removed after 4 weeks for extraction 

(Eno, 1960; Hill & Devito, 1997). The other bag was immediately extracted to determine NO3
−
, 

NH4
+
, and Soluble Reactive Phosphorus (SRP) availability at the time of the collection (Eno, 1960). 

Approximately 5 g of organic soil or 10 g of mineral soil were weighed into sterile cups, where 0.5 

L of 2 M KCl was added to the sample to extract NH4
+
 and NO3

−
, and 0.5 L of distilled water was 

used for the determi-nation of water‐extractable P (Hill & Devito, 1997). The samples were shaken 

for 2 hr, filtered with 0.45 μm Whatman filter paper, and kept cold (4 °C) until analysis. Soil 

extracts were run on a Bran‐Luebbe Autoanalyzer III, (Seal Analytical) in the Biogeochemistry Lab 

at the University of Waterloo using standard colorimetric methods (Bran Luebbe AA3, Seal 

Analytical, Seattle, U.S.A., Methods G‐102‐93 [NH4
+
], G‐109‐94 [NO3

−
 + NO2

−
], G‐103‐93 



[SRP]). To calculate net nitrification, net ammonification, and net P mineralization rates, the 

difference in concentration between the incubated soil sample and the initial soil sample were taken. 

Values greater than zero indicate net mineralization, and differences less than zero indicated net 

immo-bilization expressed as kg N or P/m
3
 of dry soil (Hart, Nason, Myrold, & Perry, 1994). 

 

2.4  Aspen growth patterns 

A pair of aspen growth plots for each of the four land unit positions (total eight plots, 8 m
2
 for each 

transects) were designated, and aspen were classified as small, medium, or large relative to the 

overall size distribution of P. tremuloides at the site. In both years, a subsample of aspen that 

represented those in each plot were taken where average stem height (m) and leaf area index (LAI) 

expressed in m
2
/m

2
 per plot area was calculated. LAI was measured destructively with a leaf area 

scanner (LI 3600, Li‐Cor, Nebraska) at the end of both growing seasons (July through August in 

2013 and 2014). The average LAI per size class (small, medium, large) per plot, was multiplied by 

the number of aspen per size class and summed for each plot. Aspen in plots located in for-ested 

areas were of sucker origin, seedlings dominated peatlands, and mixtures of seedlings and clones 

occupied peatland margins (Depante, 2016). Regenerating aspen were identified as clones if 

connections to surrounding and parent roots were observed, whereas seedlings contained individual 

rooting systems (Depante, 2016; DesRochers & Lieffers, 2001). 

 

2.5  Statistical analysis 

Tests showed that PRS probes, net N and P mineralization, and water chemistry data were non‐

normally distributed. As such, the Scheirer– Ray–Hare test, a non‐parametric equivalent to the two‐

way analysis of variance (Dytham, 2011), was used to determine if there were effects of land unit 

position and fire on nutrient supply and mineralization rates. The Mann–Whitney U test was used to 



further examine whether differences existed between soil layers and between years, whereas the 

Kruskal–Wallis test demonstrated the influence of topographic position on LAI and stem height. 

Further, average Spearman's rank‐order correlations (rs) illustrated the linkage between growth 

parameters and soil chemical and physical properties. All statistical analysis was performed on IBM 

SPSS Statistics version 20 (IBM Corporation). 

 

3 R E S U L T S 

3.1 Differences in soil physical properties with land unit position and disturbance 

Soil/peat quality and biogeochemical conditions differed in the land-scape. Soil OM depths varied 

spatially and were dependent on both land unit position and disturbance (p < .05) (Table 1). 

Although OM depths were >0.15 m in both and did not differ between burned and unburned 

peatlands, the LFH layers were thinner in burned (0–0.03 m) than unburned upland forests (0–0.18 

m). Undisturbed margins contained deep OM, whereas two of the three disturbed were burned to 

the mineral layer (see Lukenbach, Devito, et al., 2015, Hokanson et al., 2015, for more detail). 

 

pH was greatest in forests and lowest in peatlands (Table 1). Fire senerally increased pH across all 

land units (p < .05); however, such increases were more prevalent in the margins and peatland than 

upslope and midslope areas (Table 1). Depths to anoxic conditions were greater in the forested 

areas and decreased into the peatlands areas in both years, and did not differ between burned and 

unburned areas (Table 1). Little temporal variability was observed in the depth of the oxic layer in 

forests over the study period, whereas the depth of the oxic layer in margins and peatlands became 

shallower over the incubation periods (data not shown). C:N ratios were greatest in peatlands and 

decreased into forests (p < .05 both depths), although there were no effects of fire (p > .05). 

 



3.2 Differences in water table dynamics and soil moisture with land unit position and 

disturbance 

Water table positions were lowest in burned and unburned forests, which exceeded 0.20 m from the 

surface and decreased with distance in peatlands (Table 1). Water table depths in burned and 

unburned hummocks did not significantly vary (p > .05), hollows fluctuated from 0.15–0.06 m 

(burned) and 0.15–0 m (unburned). Burned margins experienced the largest variability where the 

water table ranged 0.15 m below the surface to 0.07 m above. Unburned margins also experienced 

fluctuations with the WT initially at 0 m and decreasing to 0.15 m below the ground surface. 

 

Soil saturation was lowest in forested areas and increased into riparian areas and peatlands in 2014, 

in burned and unburned sites (p < .05). With the exception of hummocks and hollows (p < .05), 

moisture content increased postfire (p < .05) across land units where upland soils showed the 

highest amount of saturation (Figure 2). This is likely due to the loss of surface OM, resulting in the 

lowering of the ground surface and proximity to the water table. Weak positive correlations also 

existed with rust measurements (rs = 0.34, p = .10), where deeper water table depth yielded rust 

formation further from the surface. 

 

3.3 Differences in nutrient supply and net mineralization rates with land unit position 

and disturbance 

Nitrate‐N supply rates were highly variable in margins and peatland hummocks compared with 

uplands (Figure 3a,b,d,e; Table 2). No effects of fire were observed (p = .94 and p = .49, in 2013 

and 2014, respectively, all land units pooled). In general, supply rates did not vary between years 

and depths (p > .05). Net nitrification rates were positive and were greater and more variable in the 

margins and peatland areas at the surface, coinciding with the greater NO3
-
 supply rates (Figure 



3b,c,e,f; Table 2). Rates, however, did not statistically vary- across land units where p > .05 (Figure 

3c,f). Similar spatial trends in net nitrification and the lack of the effect of fire (p > .05) were also 

observed at depth. 

 

Similar to what was observed for NO3
−
, NH4

+
 supply rates were generally greatest in peatlands and 

lowest in forests, and a significant difference across land units was found (p < .05). As was also 

found for NO3
−
, the impact of fire was not significant (p > .05) (Figure 4a,b, d,e; Table 2). Similar 

trends were observed at both depths. Spatial distributions and the lack of fire influence did not 

differ in 2014, although the ranges of NH4
+
 supply rates increased in unburned hollows with ranges 

of 0–60 μg N·10 cm
2
·month. Similar to net nitrification rates, net ammonification rates did not 

change as a result of fire but were dependent on land unit position (Figure 4, Table 2). Furthermore 

NH4
+
 supply rates did not vary between individual burned and unburned land units (p > .05, Figure 

4). The spatial patterns in net ammonification differed from net nitrification rates. In surface layers, 

net ammonification rates and extractable NH4
+
 pools (data not presented) were greatest in upland 

areas and lower in peatlands and mar-gins. These spatial patterns did not coincide with observed 

NH4
+
 supply rates (Figure 4a,b). In subsurface layers, net ammonification rates were low 

(approximately zero) across all land units and the effect of fire was negligible (p > .05). 

 

Unlike NO3
−
 and NH4

+
, P supply rates were dependent on both land unit and fire (Figure 5a,b,d,e; 

Table 2). The patterns also differed between surface and subsurface soils. This was apparent in 

surface soils in 2013 (Figure 4a) where in burned margins and peatlands, P supply rate medians and 

ranges were significantly greater (p < .05) in hummocks (4.0–36.9 μg P·10 cm2·month) and 

hollows (2.2–171.1 μg P·10 cm2·month) and low in forests. In contrast, P supply rates were low in 

unburned areas and did not vary spatially (p > .05). P supply rates across land unit position in 



surface soils during 2014 were consistent with those in 2013. In the subsurface, P supply rates in 

2013 were similar between burned and unburned sections within the hillslopes and at riparian areas 

but were much lower at unburned sites in the peatland (Figure 5d). In 2014, P supply rates in the 

subsurface were similar to what was observed in the surface in 2014 and 2013. 

 

Spatial patterns in net P mineralization rates in the surface were similar to what was observed for 

NH4
+
 trends, with elevated rates in upland areas relative to riparian areas and peatland (Figure 5c). 

Extract-able SRP pools followed mineralization rates in both layers. As was also observed for 

NH4
+
, the elevated net P mineralization rates were not reflected in elevated P supply rates in upland 

areas. Likewise, the elevated supply rates in the riparian and peatland areas did not reflect elevated 

net P mineralization rates. In the subsurface, net P mineralization rates were less spatially variable 

(Figure 5f). 

 

3.4  Aspen regeneration in burned areas 

Three seasons following the fire (August 2013), average aspen stem heights were greatest on 

recovering aspen hilltops and decreased into the margin and peatlands unit positions (p < .05; Table 

3). However, during the fourth growing season following the fire (2014), stem heights in midslope 

and margins increased considerably, and there was no significant difference between stem heights 

in forests and mar-gins (p = .40). When all data were pooled, average aspen heights in 2014 

exceeded 2013 (p < .05); however, post hoc analyses revealed that changes were statistically 

insignificant in most topographic positions with the exception of riparian zones (p = .001). The 

range of stem heights of aspen was greatest in peatlands although growth was the least (0.03 m) 

between years; conversely, average height of aspen in the margins increased by approximately 50% 



(0.83 vs. 1.47 m) and contained suckers that grew up to 2.72 m. Likewise, an individual aspen in a 

peatland reached a height of 2.57 m. 

 

Similar to stem heights, the leaf area of individual aspen was greatest in the forested areas (hilltops 

and midslope, p = .13) followed by low‐lying areas (margins and peatlands, p = .14) in 2013 (Table 

3). In 2014, aspen leaf area was smallest in the peatland, and there were no significant differences 

between recovering hilltops, midslopes, and margins (p > .05; Table 3), as was observed for stem 

heights. 

 

With a few exceptions, nutrient supply rates were not related to aspen stem heights or leaf area (p > 

.05). Generally, growth parameters were significantly related to substrate quality (OM content; p < 

.05) where rs = −0.75 and r
2
 = 0.57 (stem height) and rs = −0.77 and r

2
 = 0.59 (leaf area). 

Significant negative correlations (p < .05) were observed with LFH depths when linked to LAI (rs = 

−0.39, r
2
 = 0.15) and growth (rs = −0.37, r

2
 = 0.11). Positive correlations were also observed 

between LAI and net ammonification rates (rs = 0.65) and percent saturation (rs = 0.59, r
2
 = 0.28). 

Water table depth and stem heights were also significantly related where rs = 0.48, r
2
 = 0.11. 

Significant relationships (p < .05) existed between C:N ratios and net ammonification (rs = −0.69 in 

both surface soils and at depth rs = −0.09) and between C:N ratios and net nitrification (rs = −0.37, 

in surface soils, rs = −0.05 at depth). 

 

4 D I S C U S S I O N 

4.1 Aspen growth patterns and relationships with nutrient dynamics 

In general, net ammonification rates were positively correlated with aspen growth suggesting that 

the high quality of aspen litter (Lègarè, Paré, & Bergeron, 2015) enhances nutrient availability. 



Although N transformations were greatest in recovering hilltops and midslopes, likely due to aspen 

litterfall, limited supply rates indicated immediate uptake further explaining high leaf area. 

Although C:N:P ratios of foliage were not measured in this study, Hemming and Lindroth (1999) 

and Desrochers, van den Driessche, and Thomas (2003) showed that fertilizers containing N did not 

greatly increase P. tremuloides growth further supporting that upland foliar N is sufficient to satisfy 

demand. This also shows that while NH4
+
 and P supply rates were high in peatlands, they were 

neither required nor beneficial for aspen regeneration. Therefore, growth in peatlands could be 

attributed to soil properties such as OM content and moisture. 

 

4.2  Ecohydrology of aspen regeneration 

The results in this study show that aspen stem height and LAI vary across topographic positions 

with the largest leaf area and tallest aspen in forests in 2013, but less variability across topographic 

positions in 2014. This is not surprising as aspen sucker growth rates exceed those of seedlings 

during the first few years after disturbance (Peterson & Peterson, 1992). In this study, suckers were 

the dominant form of regrowth in hilltops and midslopes (Depante, 2016). Further differences 

across the gradient can be linked to aspen suckers and their rooting zones in each land unit. Rooting 

systems are able to store energy for clone regeneration (Calder et al., 2011; DesRochers & Lieffers, 

2001; Landhäusser, Silins, Lieffers, & Liu, 2003). Through wind dispersal postfire (Kay, 1993; 

Romme et al., 1997; Turner, Romme, Reed, & Tuskan, 2003), there was an increase in aspen 

seedlings in margins and peatlands indicating that seedlings do not have the connectivity and 

resource stores for large leaf areas (Landhäusser et al., 2003) unlike aspen in forested areas. 

 

Multiple studies have shown that aspen re‐establish better on mineral soils (Johnstone & Chapin III, 

2006; Kay, 1993; Lafleur, Cazal, Leduc, Bergeron, 2015), whereas the burned peatlands in this 



study had OM content exceeding 85% at the surface (data not presented). This corroborates the 

additional correlations where growth was greatest when the water table was furthest away from the 

surface as evidenced by rust measurements. Likewise, seedling germination has been found to be 

best when in moist mineral soil (Wolken, Landhäusser, Lieffers, & Dyck, 2010), such as forests in 

this study that were ~75% saturated. This dem-onstrates that while the water table was metres from 

the surface in uplands (Hokanson et al., 2015), hydraulic redistribution likely occurred to meet 

water, moisture, and oxygen demands (Brown et al., 2010; Depante, 2016; Lazerjan, 2014; Petrone 

et al., 2015). Conversely, anoxic soils with high OM such as peat have been found to reduce plant 

turgor and initiate wilting as a result of oxygen deficiencies in roots (Bradford & Hsiao, 1982; 

Landhäusser et al., 2003). Aspen growth and LAI were greatest when the depth to the water table 

and rust were furthest away from the surface indicating that despite the BP's subhumid climate, soil 

moisture in forests is sufficient to sustain aspen regeneration. 

 

Notably, high mineral content and lowered depth to water table and moisture between years at 

margins relative to peatlands suggests that margins could be more favourable for regeneration and 

growth as indicated by increased stem heights and LAI. Water table fluctuations in peat margins 

may have increased the amount of oxygen available to rooting zones (Landhäusser et al., 2003), 

lowering anoxia and resulting in heightened growth in 2014. Thus, additional soil physical 

properties, such as OM, litter quality, and moisture may have a larger influence on aspen growth 

and regeneration postfire. Although nutrients were abundant in peatlands, especially hollows where 

most aspen were found (Depante, 2016), excess nutrients may not be the largest and only factor that 

drove aspen recovery in adjacent uplands. Instead, roots found in margins and peatlands originating 

in forests may have a large role in transporting water across land units. 

 



4.3 The role of fire and land units on soil nutrients 

Results here are similar to the findings of Macrae et al. (2006) where NO3
−
 and NH4

+
 

concentrations were greatest in low‐lying areas, and nutrient availability varied spatially across a 

landscape irrespective of disturbance. Thus, the findings in this study reject the hypothesis that soil 

NO3
−
 and NH4

+
 availability are governed largely by site scale properties and processes (soil 

moisture, anoxia, organics) and less by fire. 

 

Nitrate may have returned to a state of limited availability as seen in prefire conditions and may be 

attributed to changes in resource availability during early succession. Along with OM in margins 

and peatlands (Macrae et al., 2006; Wilbur & Christensen, 1983), elevated NO3
−
 supply rates in 

burned and unburned margins were observed during both incubation periods. This may suggest the 

presence of nitrate hotspots in the BP where evidence is reflected in changes of rust depths 

suggesting that water table fluctuations lead to soil aeration, and the lower NH4
+
 suggest subsequent 

oxidation to NO3
−
 and nitrification (Hill, 1996; Vidon et al., 2010). Along with precipitation 

approaching evapotranspiration in 2013 and 2014, the loss of OM in burned margins resulted in the 

lowering of the ground surface and water table distance, thus reducing nitrate supply rates and 

nitrification relative to unburned sites. Furthermore, the translocation of NH4
+
 into burned mineral 

soils and elevated pH could support nitrification and NO3
−
 transformations (Prieto‐Fernández, 

Acea, & Carballas, 2012; Ste‐Marie & Paré, 1999; Simard, Fyles, Paré, & Nguyen, 2001; Shenoy, 

Kielland, & Johnstone, 2013). Conversely, a reduction of nitrate in forested stands can be attributed 

to its uptake kinetics in aspen as NO3
−
 is the preferred form of inorganic N for root suckers 

(DesRochers & Lieffers, 2001; Min, Siddiqi, Guy, Glass, & Kronzucker, 1998), which explains the 

rapid regeneration in uplands dominated by aspen clones. Therefore, while soil NO3
−
 likely returned 

to its limited availability similar to prefire conditions in forests, margins might be favourable areas 



for aspen regeneration and nitrate production should declining water table levels and soil moisture 

continue. 

 

Similar to nitrate, the lack of an effect of fire could indicate the return of ammonium to 

predisturbance levels. The spatial variability could be attributed to the vegetation composition of 

each land unit whereby NH4
+
 demand of recovering forests may have exceeded those of low‐lying 

areas (Fritz, Lamers, Riaz, van den Berg, & Elzenga, 2014; Macrae et al., 2006). Furthermore, the 

incomplete burning of OM likely resulted in high N mineralization (Certini, 2005; Wilbur & 

Christensen, 1983), and this is the first study to observe this in BP peatlands. Continuously, 

waterlogged and anoxic soils may have fur-ther allowed NH4
+
 build‐up in peatlands and the 

inhibition of ammonium oxidation (Macrae et al., 2006), which is corroborated by small changes in 

rust depth as the water table in peatlands remained close to the surface. Further, acidic hummocks 

and hollows as seen in this study and others in Western Canada (Bayley, Thormann, & 

Szumigalski, 2005) often inhibit nitrification and not ammonification (Dancer, Peterson, & 

Chesters, 1973). Net ammonification rates were also dependent on land unit, though NH4
+
 turnover 

was instead highest in forests and may be attributed to N‐rich aspen litter and low C:N ratios 

favouring decomposition (Lègarè et al., 2015). Thus, differences across land units may be attributed 

to the substrate quality but may not have been detected in the supply rates because of regeneration 

in aspen uplands. Importantly, recovering vegetation may be dependent on their own litter to satisfy 

NH4
+
 demands and may not need additional ammonium from peatlands or margins that may other-

wise be transported by rooting zones. 

 

Landscape position and the effect of fire appeared to have an effect on soil P. In the surface layer 

and maximum root zone depth in 2013, P supply rates in the unburned sites did not vary spatially, 



whereas the burned site showed increases into the peatland. Losses of the LFH layer may have 

destroyed plant available P in forests, whereas the mineralization of high organic P may explain 

peatlands trends. Wang et al. (2015) showed that differences in P fractions varied with temperature 

as increased temperatures led to increased P mobility. Therefore, the fire in peatlands likely 

mineralized high amounts of P, where temperatures may have been below those required for P 

volatilization. Different microforms may also explain differences in plant available P. A recent 

study by Lukenbach, Hokanson, et al. (2015) at URSA found that water repellency varies with burn 

severity, vegetation type, and microform. For example, wettability was lowered in S. fuscum 

hummocks when burn severity was high, with similar findings in feathermoss hollows that 

experienced low severity burns (Kettridge et al., 2015; Lukenbach, Hokanson, et al., 2015). 

Because most of the microforms in this study were severely burned, increased wettability, lowered 

distance to the WT, and anoxia in hydrophobic hollows may explain high P supply rates compared 

with hummocks. 

 

P supply rates during recovery can also be attributed to differences in vegetation demand and 

uptake requirements across land units. Prolonged P in peatlands postfire may be explained through 

high mineralization of large P bound in OM, thus exceeding required amounts of orthophosphates 

for regenerating bog species (Hauer & Spencer, 1998). Similarly, P only becomes the limiting 

nutrient in Sphagnum when in excess N, which is supported by colimitations of N on P in 

Sphagnum (Aerts, Wallen, & Malme, 1992; Kellogg & Bridgham, 2003; Kielland, 2001; Phuyal, 

Artz, Sheppard, Leith, & Johnson, 2007), though Sphagnum demand for phosphorus has yet to be 

investigated in the literature. Relationships between iron (Fe) and manganese (Mn) may also play a 

role in the high amounts of P in peatlands. Furthermore, the redox conditions of the waterlogged 

soils may have allowed the release of P bound to Fe through the transformation of Fe
3+

 to soluble 



Fe
2+

 along with the reduction of Mn
5+

 to Mn
4+

 (Chambers & Pederson, 2006). Increases of Fe and 

Mn in peatlands (data not presented) may have indicated that anaerobic soils released plant 

available P (Maynard, O'Geen, & Dahlgren, 2011; Venterink, Davidsson, Kiehl, & Leonardson, 

2002). Similar to NH4
+
, P supply rates in forests may have been limited by binding to Fe, Mn, and 

Ca in mineral soils, along with regenerating aspen uptake (Macrae et al., 2005), despite high net 

SRP mineralization rates at the surface. Although P supply rates were limited in forests likely due to 

Ca, Mn, or Fe binding, net P mineralization rates showed high P turnover and likely immediate 

uptake by aspen (Macrae et al., 2005). Although the interaction between fire and land unit was 

observed in 2013, soils at depth in 2014 showed that only fire explained elevated P supply rates. 

Although foliar nutrients of aspen were not taken, Penna et al. (2012) found that PK and N 

additions correlated with increased foliar P in reclaimed soils, which may explain limited supply 

rates in forests. Therefore, because P medians did not vary across land units, P supply rates may be 

returning to prefire levels. 

 

Unlike NO3
−
 and NH4

+
 where supply rates and concentrations likely returned to prefire rates, the 

effect of fire disturbance and land unit was evident with P availability. Results in this study show 

that dif-ferences in soil characteristics after fire, such as OM content, moisture, water table position, 

anoxia, soil properties (e.g., hydrophobicity) and vegetation demand may explain varying trends 

across forests and peatlands (Kellogg & Bridgham, 2003). Importantly, these mineralization and 

supply rates show that nutrient‐rich aspen litter in uplands and hilltops act as their own sources for 

nutrients (Huang & Schoenau, 1998). Similar to N, aspen likely do not rely on additional areas or 

sources, such as peat, to satisfy P requirements. 

 

 



4.4 Water chemistry 

NO3
−
, NH4

+
, and SRP in subsurface water varied across land units within burned and unburned 

areas. Although it is possible that these nutrients were elevated immediately after disturbance 

(McEachern et al., 2000), they could have been flushed into adjacent hilltops and midslopes, though 

was also observed in unaffected areas (Macrae et al., 2005). Although forested areas generally 

contained higher NO3
−
 and NH4

+
 relative to lowlands, it is unlikely that aspen depended on deep‐

water sources for nutrients, further supporting that aspen litter act as a significant source for N and 

P. 

 

4.5 Implications for BP succession 

Although the detection of aspen in saturated areas has been observed postdisturbance (Kay, 1993; 

Roy et al., 2000), this is the first study to report aspen in peatlands postfire. Along with wind 

dispersion, the deposition of mineral material and access to water may have allowed favourable 

conditions for early aspen establishment (Latva‐Karjanmaa, Suvanto, Leinonen, & Rita, 2003). This 

was especially evident at peat margins where aspen growth exceeded those found in peatlands 

between years. 

 

Although aspen seedlings typically grow at a slower rate than suckers (Peterson & Peterson, 1992), 

excess P as a result of anoxia and fire suggests that aspen uptake was low and growth was limited as 

reflected in stem height and leaf area. Thus, although nutrients are limited in uplands, the recycling 

of their high quality litter is sufficient during regeneration, and additional sources from other areas 

such as peatlands are not needed. Aspen regeneration in peatlands cannot be attributed to nutrient 

availability alone, but additional controls such as soil moisture must also be considered together 

(Hemming & Lindroth, 1999). 



 

If seedlings continue to thrive, stand replacement of coniferous species, such as black spruce, to 

aspen can occur after severe fires (Johnstone & Kasischke, 2005), though it is uncertain if this could 

occur in peatlands given differences in OM content and nutrients. However, the suckering rooting 

system of aspen and its role in hydraulic redistribution (Lazerjan, 2014; Petrone et al., 2015) could 

aid in the potential shifts of succession patterns in peatlands and margins. A pos-sible mechanism 

for this may be through the uptake of peat and riparian zone water that is subsequently redistributed 

(Depante, 2016; Lazerjan, 2014) and transport into surrounding hillslopes. This may dry out peat 

margins in the already subhumid climate. Although net nitrification and NO3
−
 fluxes were not 

correlated with growth, abundant NO3
−
 in margins, as found in this study, may stimulate root suck-

ering there. The exposure of mineral soils at margins (or low OM content) and decreased distance to 

the water table could further favour aspen regeneration thus preventing peat formation. Therefore, 

the role of aspen in peatland margins must be further investigated to understand their potential 

influence on recovery and the conditions needed to transform areas where they are not usually 

found. 

 

5 CO NC LUSIO N 

This study has shown that nutrients and aspen distribution and growth vary across recovering 

topographic land units. With the exception of net ammonification, relationships between nutrient 

availability and P. tremulodies did not exist. Due to the immediate regeneration of primary 

succession species, such as aspen, NO3
−
, and NH4

+
 likely returned to prefire levels. Conversely, P. 

tremuloides existence in burned peatlands was not explained by elevated P supply rates. This 

suggests that additional sources N and P were not required for re‐ establishment and that forest litter 

was sufficient for regeneration. Although aspen seeds were likely blown into the surface layer of 



burned peat, this research showed that high OM, anoxia, and water-logged soil might have inhibited 

further growth into burned peatlands. Conversely, mineral soils (low OM) along with lowered water 

table positions favoured regeneration in peatland margins. When consider-ing the fate of land units 

and aspen in the BP, future studies must con-sider soil physical properties and nutrient status, along 

with the interactions between aspen roots and peat margins. Such long‐term ecohydrological 

monitoring would help in predicting the trajectories of forests and the potential losses of peat 

margins with increased disturbances. 
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TABLE 1 Median aspen stem heights (m) and aspen leaf area index for off eight study plots per land unit position in August 2013 and 

2014 (third and fourth growing season following the fire disturbance)  

 



TABLE 2 Median LFH depth (cm), depth to water table (cm), rust depth (cm), pH, C:N, and OM % values for 2014 surface and 

subsurface soil 

 

 

 

 

 

 

 

 



TABLE 3 The p values from Scheirer–Ray–Hare tests indicating if significant interactions exist between disturbance and land unit with 

N–NO3
−
 supply rates, net nitrification rate, N–NH4

+
 supply rates, net ammonification rate, P supply rates, and SRP mineralization 

 

Land unit Year Stem height (m) LAI (m
2
/m

2
) 

Hilltop 2013 1.23 (0.55–2.15)
a 

0.16 (0.13–0.19)
a 

Midslope 2013 1.20 (0.36–2.52)
a 

0.30 (0.20–0.57)
ab 

Margin 2013 0.83 (0.20–2.17)
bc 

0.14 (0.02–0.61)
ab 

Peatland 2013 0.74 (0.26–1.84)
bd 

0.04 (0.02–0.13)
c 

Hilltop 2014 1.28 (0.82–2.10)
a 

0.46 (0.23–0.46)
b 

Midslope 2014 1.40 (0.78–2.38)
a 

0.47 (0.13–0.99)
ab 

Margin 2014 1.47 (0.74–2.72)
bd 

0.14 (0.02–0.76)
ab 

Peatland 2014 0.77 (0.47–2.57)
d 

0.06 (0.04–0.15)
c 

 

Note. LAI = leaf area index. Supercript indicate data that are significantly correlated. 

*Data indicate significant interactions when p < .1. 

**Data indicate strong significant interactions when p < .05. 

***Data are very strong p < .01. 

 

 



 

 

 

FIGURE 1 Soil chemistry and monitoring well locations for the burned portion of the study 

catchment in each land unit position 

 

 

 

 

 

 

 



 

 

FIGURE 2 Soil moisture expressed as percent saturation of plant root simulator probe locations of 

aspen vegetation plots and reference transects across land unit positions in 2014. Letters annotate 

statistical differences (α = .05) 

 

 

 

 

 

 

 

 

 

 

 



 

 

FIGURE 3 N–NO3
−
 supply rates for surface soils (a,b) and subsurface soils (d,e) in aspen 

vegetation plots and reference transects of different land unit positions during 2013 and 2014, 

respectively; n = 18 burn and 9 for unburned (see Figure 1). Net nitrification rates for the surface (c) 

and at depth (d) are also displayed. Circles are values 1.5 times the interquartile range from the 

median, and asterisks are values 3.5 interquartile range from the median. Letters annotate statistical 

differences (α = .05) 

 

 

 

 

 

 



 

 

 

FIGURE 4 N–NH4
+
 supply rates for surface soils (a,b) and subsurface soils (d,e) in aspen 

vegetation plots and reference transects of different land unit positions during 2013 and 2014, 

respectively; n = 18 burn and 9 for unburned (see Figure 1). Net ammonification rates for the 

surface (c) and at depth (d) are also displayed. Circles are values 1.5 times the interquartile range 

from the median, and asterisks are values 3.5 interquartile range from the median. Letters annotate 

statistical differences (α = .05) 

 

 

 

 

 

 



 

 

FIGURE 5 P supply rates for surface soils (a,b) and subsurface soils (d,e) in aspen vegetation plots 

and reference transects of different land unit positions during 2013 and 2014, respectively; n = 18 

burn and 9 for unburned (see also Figure 1). Net ammonification rates for the surface (c) and at 

depth (d) are also displayed. Circles are values 1.5 times the interquartile range from the median, 

and asterisks are values 3.5 interquartile range from the median. Letters annotate statistical 

differences (α = .05) 

 

 

 

 

 

 

 


