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Abstract  19 

 The Carboniferous Ceshui formation and Permian Longtan and Dalong formations 20 

were deposited in transitional settings preserved in what is now central Hunan Province, 21 

South China, as they are potential natural gas plays. In this study, we analysed the total 22 

organic carbon (TOC), vitrinite reflectance (Ro), kerogen type, mineralogy, porosity, 23 

permeability, and methane adsorption of representative shale samples from these rock units. 24 

Our results indicate that TOC content can be as high as 9.2%, with a mean (x̄ ) of 3.5%. The 25 

Permian shale formations were deposited in more strongly reducing environments than the 26 
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Carboniferous Ceshui shale. The kerogen composition of the Carboniferous Ceshui shale is 27 

dominated by Type III, while both of the Permian shales contain primarily Type II kerogens; 28 

Ro values range from 1.1% to 2.4% (x̄ =1.6%). The organic matter in all the studied shales is 29 

in the wet gas window of thermal maturity and is relatively less mature than Lower 30 

Palaeozoic marine shales in south China. Mineral compositions are dominated by quartz 31 

(x̄=53.8%) and clay (x̄ =35.6%), suggesting a high brittleness index. Porosity ranges from 32 

0.5% to 14% (x̄ =6.4%), while permeability varies from 0.0026 micro Darcy (mD) to 0.0640 33 

mD (x̄=0.0130 mD). The gas adsorption capacity varies from 1.24 to 4.53 cm3/g (x̄=2.40 34 

cm3/g). Relatively less mature shale samples (Ro<1.5%) have low methane adsorption 35 

capacities, regardless of their TOC values. However, the methane adsorption capacity of 36 

more mature (Ro>1.5%) shales samples exhibit a positive correlation with TOC content. 37 

Keywords: Lower Carboniferous; Upper Permian; Natural gas; Transitional shale; 38 

Unconventional reservoir; Hunan Province. 39 

 40 

1. Introduction 41 

The remarkable success of shale gas development in North America has triggered a 42 

flourishing of shale gas exploration and increased the number of investigations into the gas 43 

potential of shales worldwide (e.g., Bowker, 2007; Jarvie et al., 2007; Tang et al., 2014; Tan 44 

et al., 2015). To enhance domestic energy supply via shale gas exploitation, the Chinese 45 

government has already set ambitious plans. Geological surveys and exploration activities are 46 

underway across the country (Tan et al., 2013). To date, China has begun developing several 47 

shale gas fields in the Sichuan Basin (e.g., the Fuling, Weiyuan, and Changning shale gas 48 

blocks).  49 

 In China, three types of organic rich shale are widely distributed in sedimentary 50 

basins, comprising marine shales, marine-lacustrine transitional shales (hereafter referred to 51 
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as “transitional shales”), and lacustrine shales (Bu et al., 2015; Tan et al., 2015). Marine 52 

shales in the Cambrian and Silurian starta and transitional shales in the Carboniferous and 53 

Permian strata are widely distributed cross South China (e.g. Tan et al., 2015; Zou et al., 54 

2010). Although natural gas has been successfully produced from the marine shales, 55 

transitional shales have not been yet successfully developed (Dong et al., 2016). In the central 56 

part of Hunan, Carboniferous and Permian transitional shales occur in thick and laterally 57 

extensive beds (Bao et al., 2016; Gu et al., 2015; Jing et al., 2013; Xu et al., 2015). Previous 58 

studies have shown that Carboniferous and Permian paralic coal-bearing strata constitute 59 

source rocks for conventional petroleum fields in this region (Wang et al., 2010; Zhan et al., 60 

2006; Zhou et., 2014; Zhu et al., 2012). These transitional shales have been more recently 61 

identified as promising targets of shale gas exploration (Bao et al., 2016; Gu et al., 2015; 62 

Liang et al., 2014; Luo et al., 2012). National petroleum companies, including Sinopec, have 63 

already shown strong interest in developing natural gas resources from transitional shale 64 

intervals. Therefore, there is an urgent need to characterise these shale intervals and evaluate 65 

their reservoir potential. 66 

 It has been recognized that no two shale gas systems are exactly alike, and thus 67 

exploitation strategies differ from one system to the next (Tan, et al., 2015). However, 68 

prolific shale plays are commonly distinguished using certain minimal technical thresholds. 69 

These include, but are not limited to: shale lateral extent and effective thickness, organic 70 

matter richness, thermal maturity, mineralogy, porosity, permeability, adsorptive capacity, 71 

and gas-in-place (GIP) ( Bowker, 2007;  Jarvie et al., 2007;  Tan, et al., 2013; 2015).  These 72 

indices have been widely applied to evaluate the reservoir potential of marine shales in South 73 

China. However, for transitional shales, numerous issues remain concerning the composition 74 

and source(s) of organic material, depositional environment, thermal maturity, petrophysical 75 

properties, and methane adsorption capacity. Additionally, the correlations among organic 76 
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materials, mineralogy, and depositional conditions, as well as the influences of porosity and 77 

permeability, and the relative effects of total organic carbon (TOC) and thermal maturity on 78 

methane adsorption have not been clarified. This study aims to investigate these problems 79 

through a systematic characterization of transitional shales from the Carboniferous Ceshui 80 

formation and the Permian Longtan and Dalong formations in the central region of Hunan. 81 

We comprehensively analysed the TOC content, organic matter type, thermal maturity, 82 

mineral composition, reservoir physical properties, and gas adsorption capacity of the shales. 83 

We then compared our results with those reported for prolific shale plays in China and the 84 

United States. Lastly, we discuss the correlations among the selected reservoir 85 

characterisation parameters.  86 

 87 

2. Materials and Methods 88 

2.1 Geological setting and shale deposition in central Hunan 89 

 The study area is located in the Middle Yangtze Region and in the north of the South 90 

China fold system (Fig. 1a). It lies east of the Hengshan Uplift, and west of the Xuefeng 91 

Uplift. This region is tectonically composed of five subunits. From north to south they are the 92 

Lianyuan Depression, Longshan Uplift, Shaoyang Depression, Guandimiao Uplift, and the 93 

Lingling Depression (Fig. 1b). Regional faults extend primarily in the NE-NNE direction, 94 

and include the Chengbu-Xinhua fault, Qiyang Arc fault, Miluo-Shaoyang fault, Xinshao-95 

Xinning fault, and Zhuzhou-Shuangpai fault (Fig. 2). Additionally, thrust nappe and gravity 96 

gliding structures have been formed by multiple tectonic events. The Lianyuan and Shaoyang 97 

depression began forming during the Ordovician at the onset of the Caledonian orogeny.  The 98 

Qiyang arc was dominantly formed through structural deformation caused by the Triassic 99 

Indosinian orogeny (Li, et al., 2013; Wang et al., 2010).   100 
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 Shales are well developed in certain formations of the study area. Sedimentary strata 101 

are characterized by carbonates interbedded with clastics deposited in the Late Palaeozoic to 102 

Middle Triassic. The region has experienced four primary sedimentary cycles from the 103 

Devonian to the Permian (Jing et al., 2013; Xu et al., 2015). The first sedimentary cycle 104 

occurred between the Tiaomajian and Qiziqiao periods during the Devonian when a 105 

transgression initiated during a large-scale geological extension and was followed by a 106 

regression generated by the Liujiang orogeny. This cycle resulted in the deposition of the 107 

Shetianqiao and Qiziqiao marine shales. The second transgression started in the Mississippian 108 

(early Carboniferous), but ended as a full-scale regression in the mid-Mississippian with the 109 

deposition of the Ceshui formation as transitional beds formed under the 110 

alternating influences of shallow marine and shoreline environments (Fig. 1c) (Shao et al., 111 

1992). The third cycle was primarily controlled by the Dongwu tectonic movement and is the 112 

largest transgression that occurred during the development of the mid- to late Carboniferous 113 

paraplatform. However, this transgression was terminated by a full-scale regression during 114 

the early Lopingian (late Permian) (Fig. 1c), and coastal marsh shales were subsequently 115 

deposited (Gu et al., 2015; Ji et al., 2011). The fourth cycle persisted for a shorter time (i.e., 116 

only during the Lopingian), and resulted in the deposition of the Dalong formation (Fig. 1c). 117 

During this time, siliciclastic rocks, siliceous limestone, and shales were deposited in littoral-118 

bathyal-abyssal facies (Fig. 1c) (Feng et al., 1993).  119 

2.2 Samples 120 

 Fresh transitional shale samples are exposed in some outcrops of the study area. A 121 

total of 96 representative samples were collected from the Shimingqiao (SMQ), Qixingjie 122 

(QXJ), Duanpoqiao (DPQ), Tantou (TT), Doulishan (DLS), Nantang (NT), Jilong (JL), 123 

Jingzhushan (JZS), Zhaoyang (ZY), Liangshuijing (LSJ), Xiandong (XD), Lumaojiang 124 
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(LMJ), and Douling (DL) sections (Fig. 1b). Generally, shale samples were collected from at 125 

least 1 m deep, and every 10 m from the bottom to top of the exposed sections.  126 

2.3 Methods 127 

 The selected samples were analysed for TOC, vitrinite reflectance (Ro), kerogen type, 128 

mineralogy, porosity, permeability, and methane adsorption. 129 

 TOC contents were measured using a Leco carbon-sulphur analyser and reported as 130 

the weight percentage (wt%) of the total rock material. Samples were crushed into a powder 131 

<200 mesh, and 1-2 g samples were pyrolysed to 600°C. Thin-sections of 42 samples were 132 

prepared for investigation mineral components and structural fabrics. The samples were 133 

examined using a Zeiss Axiophot Electronic Microscope equipped with a Carl Zeiss Axiocam 134 

digital camera and Axiovision 2.0 software. This system was capable of taking high-135 

resolution photomicrographs under magnification of 10x, 20x, 30x, 40x, and 50x. Kerogen 136 

type was analysed by transmitted light microscopy. Thermal maturity, represented by Ro, 137 

was determined using a MVP-3 microscope photomultiplier. 138 

 A total of 25 samples were analysed with a D/max-2600 X-ray diffractometer (XRD) 139 

to quantify the principal mineralogical constituents. The diffraction data were recorded from 140 

4°to 75°2θ with a step width of 0.02°, and a counting time of 4 s per step. Experimental 141 

conditions were set to 40 kV and 30 mA. The measured data were analysed qualitatively 142 

using EVA (Bruker) software, and quantitatively using AutoQuant software. 143 

 High-resolution scanning electron microscopy (SEM) analysis was performed on 144 

representative samples with different TOC contents and lithological types. Small subsamples 145 

0.3-0.5 cm thick, 0.5-1.0 cm wide, and >2 cm long were cut and prepared. The subsamples 146 

were dried in an oven at 40°C for 24 h to remove moisture. Analysis was conducted using a 147 

TESCAN VEGA scanning probe microscope, and images were obtained under high vacuum 148 

at 20 kV acceleration voltage. 149 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

7 

 

  Porosity was measured with an ULTRAPORE-200A helium porosimetre. 150 

Permeability was tested using an ULTRA-PERMTM200 permeametre. Measurements were 151 

performed at room temperature and normal pressure (~23°C, 102 kPa) and 50% humidity. 152 

 Methane adsorption isotherms were measured for selected moisture-equilibrated 153 

samples at 40°C. The experimental procedure was: 1) de-gas the sample, 2) conduct leak 154 

tests, 3) determine the void volume as well as the sample volume using helium expansion, 4) 155 

evacuate for 60 min at 1 MPa to remove helium, and 5) perform the methane adsorption 156 

measurement (Tan, et al., 2014a). The Langmuir isotherm was applied to model gas 157 

adsorption capacity. The equation used is: V=VLP/(PL+P) (Pan, et al., 2015, and references 158 

therein), where V is the volume of absorbed gas, VL is the Langmuir volume (on the basis of 159 

monolayer adsorption), which is the maximum adsorption capacity of the absorbent, P is the 160 

gas pressure, and PL is the Langmuir pressure, at which the absorbed gas content (V) is equal 161 

to half of the Langmuir volume (i.e., 0.5 VL).  162 

 163 

3. Results 164 

3.1 Organic geochemical characterization 165 

 The TOC content of the 96 shale samples ranges from 0.4% to 9.2% (Table 1), with a 166 

mean value of 3.5%. Most of sections exhibit mean TOC contents >2%, indicating that these 167 

Carboniferous-Permian transitional shales are typically organic-rich. As shown in Tables 1 168 

and 2, the TOC content of samples from different sections varies significantly. In general, the 169 

TOC content decreases from the Longtan shale to the Dalong shale, and again in the Ceshui 170 

shale. 171 

 Organics of the shales from the Carboniferous Ceshui formation are principally 172 

composed of vitrinite (i.e., euvitrinite and vitrodetrinite). This suggests that the organic 173 

matter is more derived from higher plants, and the organic matter constituents are 174 
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characteristic of type III kerogen (Definition can be seen in Appendix 1).  In contrast, the 175 

kerogen type of the shales from the Permian Longtan and Dalong formations are dominated 176 

by exinite (i.e., abundant humic amorphous bodies and a small number of sporopollen bodies). 177 

The vitrinite (i.e. euvitrinite and vitrodetrinite) content is less than 30%. This implies that the 178 

organics of the Upper Permian shales are primarily type II kerogen (Definition can be seen in 179 

Appendix 2). 180 

 Ro values range from 1.1% to 2.4% (x̄ =1.6%) (Tables 1 and 2). This suggests that the 181 

Carboniferous-Permian transitional shales have entered into a stage of high maturation. 182 

Organic matter is located in the late wet gas and dry gas window of thermal maturity. 183 

Comparatively, Ro values are high in the Ceshui shale, and gradually reduce from these 184 

samples to the Longtan shale, and finally the Dalong shale, reflecting a burial depth control 185 

on thermal maturity. 186 

3.2 Mineralogy and lithology 187 

3.2.1 Mineralogy 188 

 The XRD mineralogical data are shown in Table 2. Major constituents are quartz and 189 

clay minerals. Minor mineral components include calcite, feldspar, and pyrite. The quartz 190 

content ranges between 39.0% and 86.2% (x̄ =53.8%) and clay minerals range from 11.0% to 191 

69.1% (x̄ =35.6%). Interestingly, the total amount of brittle minerals (i.e., quartz, feldspar, 192 

calcite, and dolomite) is >60% (Table 2), indicating that the condition of the shale is likely 193 

favourable for the application of hydraulic fracturing. 194 

 As shown in Fig. 3 and Table 2, mineralogical composition varies among shale 195 

intervals. Some of the Permian Dalong shale samples are characterized by higher contents of 196 

quartz and calcite and have lower clay mineral contents than average. The pyrite content of 197 

most of the samples is generally below the detection level of XRD technology. Nevertheless, 198 
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some of the Longtan shale samples and others from the Dalong formation exhibit much 199 

higher pyrite concentrations that can exceed 10%. Additionally, the clay mineral content of 200 

the Ceshui shale samples is generally higher than that from the other two shale intervals.  201 

3.2.2 Lithology 202 

 Based on XRD analysis (Table 2) as well as the structural fabrics identified by thin-203 

section examination (Fig. 4), five primary lithological facies can be distinguished for the 204 

shale samples investigated: 1) non-laminated shale, 2) carbonaceous shale, 3) calcareous 205 

shale, 4) silty shale, and 5) siliceous shale. 206 

 Non-laminated shale (Figs. 4b and c) is the most common lithofacies type. Quartz and 207 

clay minerals are predominant components, while feldspar and pyrite are relatively rare. The 208 

TOC content of non-laminated shale is highly variable, ranging from <1% to >6%. 209 

 Carbonaceous shale (Figs. 4d and e) is less common than non-laminated shale but is 210 

the second most abundant lithofacies type except in the Dalong formation. This lithofacies is 211 

dark-coloured and has a high TOC content that is generally >6% (Table 2). The sediments are 212 

poorly laminated, and the primary constituents are quartz, clay, pyrite, and organic matter. 213 

 Calcareous shale is one of the more common lithofacies in shales from the Dalong 214 

and Ceshui formations, but it is relatively rare in the Longtan formation (Table 2 and Fig. 4a). 215 

The sediments of this lithofacies are typically faintly- to well-laminated depending upon the 216 

orientation of the interbedded quartz and organic matter (Fig. 4a). The calcite content in 217 

calcareous shale samples accounts for about 30-50%, while TOC content is highly variable, 218 

and ranges from <1% to >4% (Table 2). 219 

 The silty shale is greyish black. It is mainly composed of clay minerals, and a small 220 

amount of quartz and feldspar. The TOC content is generally <1%. 221 
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 The siliceous shale is dark-coloured and very hard, and primarily occurs in the Dalong 222 

formation. Siliceous shale is characterized by a high quartz content (>85%, Table 2), and the 223 

TOC content is commonly higher than that of silty and calcareous shales (Table 2). 224 

3.3 Petrophysical properties 225 

3.3.1 Reservoir storage space 226 

 SEM analysis was performed on the selected samples to characterize pores and 227 

fractures. Organic matter pores, interparticle pores (between grains), intraparticle pores 228 

(within mineral grains), and microfractures are all present in the samples (Fig. 5). Organic 229 

matter pores (Fig. 5a and b) are well-developed in most of the samples, particularly in high 230 

TOC shales. Interparticle pores (Fig. 5b, d and f) can be seen around and between crystals of 231 

quartz and feldspar or located within the clay crystals. Intraparticle pores (Figs. 5b‒d) 232 

primarily occur inside pyrite framboids, and in carbonate- and feldspar-rich samples. Strip-233 

like microfractures often can be seen between clay crystal, or between clay laminae and silty 234 

laminae (Figs. 5a, d‒e). 235 

3.3.2 Porosity and Permeability 236 

 The results of porosity and permeability analyses are listed in Table 3. Porosity ranges 237 

from 0.5% to 14.0% (x̄ =6.4%) and permeability ranges from 0.0026 micro Darcy (mD) to 238 

0.0640 mD (x̄ =0.0130 mD). Shales from the Longtan formation generally have a higher 239 

porosity and permeability than samples from the Dalong and Ceshui formations. 240 

3.4 Gas Adsorption Capacity 241 

 The high-pressure methane adsorption capacities (i.e., the maximum adsorbed gas 242 

amount) for the moisture-equilibrated shale samples vary from 1.24 cm3/g to 4.53 cm3/g 243 

(x̄=2.40 cm3/g) (Fig. 6), indicating a strong methane adsorptive potential. 244 
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 245 

4. Discussion 246 

4.1 Organic matter in the shale 247 

 TOC represents the richness of organic matter in source rocks. Promising 248 

conventional or unconventional source rocks generally have high TOC concentrations (Jarvie 249 

et al., 2007). Previous studies have suggested that high pyrite content in shales represents 250 

strongly reducing environmental conditions that are favourable for the enrichment and 251 

preservation of organic matter (Liang et al., 2014; Tan et al., 2014b, 2015; Wu et al., 2014). 252 

As shown in Table 2, shales with high pyrite contents tend to have high TOC contents as well.  253 

Given the relatively high TOC contents of the shale samples studied here, this suggests that 254 

the analysed transitional shales were most likely deposited in strongly reducing conditions. In 255 

fact, transitional sedimentary environments in the study area were dominated by stable and 256 

anoxic conditions through the depositional period of the shales (Dang et al., 2016; Liang et al., 257 

2014; Tang et al., 2016). Because the Longtan shale normally exhibits higher TOC and pyrite 258 

contents, this formation may have been deposited in more strongly reducing environments 259 

compared to shales from the Dalong and Ceshui formations. However, the higher TOC 260 

concentration may also indicate a better and/or stronger organic input. According to the 261 

results of kerogen typing, the organic matter of the Ceshui shale is dominated by type III 262 

kerogen, whereas >70% of the macerals from the Permian shale are type II organics. This 263 

suggests that most of the organics found in the Permian shales are derived from marine 264 

plankton (i.e., marine microflora and microfauna). However, it has previously been 265 

documented that more derived, terrestrial plants were extensively distributed in and near the 266 

littoral swamps in this part of China during both the Mississippian and Lopingian (e.g., Ji et 267 

al., 2011; Shao et al., 1992). While this suggests that the organic input from terrestrial plants 268 

for both the Carboniferous and Permian shales should generally be similar, the observed 269 
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organic matter in the Permian shale includes much more marine plankton than the 270 

Carboniferous shale. 271 

4.2 Favourable geological conditions for natural gas accumulation in shales 272 

4.2.1 Organic geochemistry 273 

 High TOC content generally suggests that conventional and unconventional 274 

petroleum resources are promising for exploration and exploitation (Dang et al., 2016; Jarvie 275 

et al., 2007; Tan et al., 2015). TOC values significantly vary among shale reservoirs, but the 276 

productive shale gas plays normally exhibit TOC contents >2% (Tan, et al., 2015). Li et al. 277 

(2015) reported that the TOC content of the Longtan shale in South China ranges from 0.4% 278 

to 14.6%, with a mean of 4.5%. Gu et al. (2015) and Bao et al. (2016) also documented that 279 

more than half of analysed Permian shale samples exhibit TOC contents >2%. Compared to 280 

productive shale gas plays in the United States, such as the Barnett shale (Dong et al., 2016), 281 

and the transitional shales in the Bohai Bay basin and Southern North China basin (Dang et 282 

al., 2016; He et al., 2016;), TOC contents of the transitional shales in the study area are even 283 

higher. This indicates that the transitional shales in central Hunan have excellent initial 284 

potential for petroleum generation. 285 

 The organic matter type of current exploration targets for shale gas is primarily 286 

dominated by type II kerogen (e.g., the Barnett, Marcellus, and Haynesville shale plays in the 287 

United States; the shale gas formations in the Western Canadian basin; and the Longmaxi 288 

shale in South China) (Dong et al., 2016) (Table 4). Nevertheless, thick, widespread, gas-289 

saturated, fine-grained, organic rich units containing other types of organic matter, which 290 

were subjected to extensive biogenic degradation in the thermally immature stage or 291 

significant thermal decomposition in the thermally mature or over mature stages, can also 292 

serve as excellent exploration targets (Hamblin, 2006; Martini et al., 2003; Tan et al., 2015). 293 

The organic matter of the Carboniferous shales in South China have typically been regarded 294 
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as a type III kerogen (Luo, et al., 2012; Zhang et al. 2014) derived from terrestrial plants. In 295 

the Mississippian, organic material in paralic shale and coal seams were both derived from 296 

terrestrial plants, including Lycopsids and Equisetopsids (Gu et al., 2015; Zhang et al. 2014). 297 

However, the coal seams in the Longtan formation are locally distributed across central 298 

Hunan, and the shale with high TOC content does not tend to occur within coal seams (Ji et 299 

al., 2011). This might be the reason why the organic matter type of the Permian shale differs 300 

from that of the Carboniferous shale. Bao et al. (2016) reported that the kerogen δ
13C values 301 

in the Longtan and Dalong shales range from -23‰ to -27‰, further confirming that the 302 

organic matter is dominated by type II kerogen, with a minor component of type III kerogen. 303 

 Most shale gas that is currently produced is primarily a thermogenic gas that was 304 

formed by the thermal degradation of organic matter (Tan, et al., 2014c). For example, the 305 

highly productive Barnett shale gas play normally has a Ro >1%, while the Lower Silurian 306 

Longmaxi shale in South China has a Ro generally >2% (Chen et al., 2011; Tan, et al., 2015; 307 

Zhang et al., 2015). Although a minor fraction of shale gas might be of biogenic origin in the 308 

thermally immature stage (Martini et al., 2003; Martini et al., 2008), such quantities are 309 

significantly less than those of thermogenic shale gas (Tan, et al., 2014c). In addition to the 310 

current study, other studies have reported that Ro values of the Longtan and Dalong shales 311 

range from 1.1% to 2.4%, with a mean value of 1.6% (Bao et al., 2016; Gu et al., 2015). 312 

Zhang et al. (2014) have also documented that the Ro values of the Longtan shale range from 313 

1.7% to 2.0%, with a mean value of 1.8%. Compared to the lower Cambrian and Lower 314 

Silurian marine shales in or adjacent to the Sichuan basin, which generally exhibit an equal 315 

Ro value >2.0%, the transitional shales studied here are less thermally mature. Interestingly, 316 

as shown in Tables 1 and 2, Ro values of the transitional shales increase gradually in strata 317 

that are stratigraphically older, indicating a burial depth control on thermal maturity. 318 

4.2.2 Mineralogical composition 319 
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 To produce shale gas economically, horizontal drilling and hydraulic fracturing are 320 

the most popular choices for completing shale gas wells. The mineralogical composition of 321 

shale plays affects both the reservoir quality and well completion quality. Detailed 322 

characterization of the mineral constituents is thus critical to the identification of exploration 323 

targets, and essential for determining how the shale reservoir should be completed (Tan, et 324 

al., 2014b).  325 

 Mineral compositions are closely related to rock mechanics, and directly determine 326 

the brittleness of the rock. The brittleness of shale rocks reflects the capability to fail under 327 

pressure, and for cracks to remain open once the rock fractures (Rickman et al., 2008). Brittle 328 

shales thus generally respond well to well completion treatments. However, ductile shales, 329 

which might be fractured during hydraulic fracturing, can also be easily healed after 330 

stimulation. It has been recognized that quartz-rich and clay-low zones are commonly the 331 

most brittle intervals within a shale formation (Johnston, 2004). Hydraulic fracturing 332 

strategies used in the more brittle zones are reported to enhance the overall gas production of 333 

the well (Boyer et al., 2006). More specifically, Bowker (2002) has suggested that the brittle 334 

Barnett shale intervals are generally composed of 45% quartz, 27% illite, 8% carbonate, 7% 335 

feldspar, 5% pyrite, and 3% siderite.  336 

 One of the most common methods to determine the brittleness of a shale play is based 337 

on relative mineral compositions. Jarvie et al. (2007) and Rickman et al. (2008) documented 338 

the correlations between mineral composition and brittleness of the Barnett shales. They 339 

reported that the most brittle Barnett shales have high quartz contents, and low clay mineral 340 

contents. Conversely, the least brittle shales are rich in clay minerals, with relatively minor 341 

amounts of quartz. The shales with abundant carbonate are moderately brittle. However, from 342 

a stimulation perspective, not all quartz responses equally during well completion. The most 343 

effective quartz component for enhancing brittleness appears to be the recrystallized biogenic 344 
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opaline silica. Detrital quartz, on the contrary, appears to be less effective (Jarvie et al., 345 

2007). The Brittleness Index was proposed based upon the relative proportions of quart group 346 

minerals (primarily quartz, feldspar, and pyrite), carbonates, and clay minerals, as: Brittleness 347 

Index=quartz/(quartz+carbonates+clays) (Jarvie et al., 2007). Selecting zones in a shale 348 

interval that are relatively more brittle is of importance for developing fractures that are large 349 

enough to connect the largest rock volume to the wellbore during the well completion 350 

process. The geometry of fractures created in brittle shales is different from that of ductile 351 

shales. The stimulation treatments carried out on brittle shales can create large, complex 352 

fracture networks that expose a large amount of shale surface area, and thus enable 353 

commercial gas production (Grieser and Bray, 2007). 354 

 Mineral compositions are also important for fluid selection during well completion. 355 

The determination of mineralogy and fluid sensitivity is essential for optimizing completion 356 

and stimulation strategies (Britt and Schoeffler, 2009). In most cases, acid is commonly used 357 

to dissolve soluble minerals, increase porosity, and improve the fracturing process. Because 358 

carbonate minerals can be easily dissolved even in weak acid solutions, the contents of 359 

carbonates evidently correlate with the acid solubility of shale samples (Rickman, et al., 360 

2008). If samples have low carbonate concentrations, they generally show low to moderate 361 

acid solubility. In that scenario, mixed fluids of weak acids and surfactants are recommended 362 

to roughen the fracture surfaces, increase surface areas, and prevent significant generation of 363 

fines that could cause plugging of the fractures created, and damage to perforations 364 

(Rickman, et al., 2008). On the other hand, clay swelling is a significant problem for the 365 

stability of boreholes and created fractures, and finally on the gas recovery from shale 366 

reservoirs. If more smectite or illite/smectite mixed layers are present, the swelling potential 367 

of the shale might be substantial. In this case, development then requires more protective 368 

strategies, and more rigorous evaluation before the initiation of hydraulic fracturing.  369 
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 The average quartz and clay mineral contents of Permian shales in South China are 370 

commonly >50%, and <25%, respectively (Zhang et al., 2016). Meanwhile, Carboniferous 371 

shales in the same region exhibit quartz and clay mineral contents of ~60.8% and ~23.3%, 372 

respectively (Miao et al. 2016). The highly productive lower Palaeozoic marine shales in 373 

South China and the transitional shales in Palaeozoic basins in North China generally contain 374 

highly brittle mineral contents (> 60% on average), and low clay mineral contents (< 40% on 375 

average) (Chen et al., 2011; Ding et al., 2013; Tan et al., 2014b; Tang et al., 2014; Zhang et 376 

al., 2015). Our study also indicates mineral compositions in transitional Carboniferous and 377 

Permian shales in South China that are dominated by brittle minerals. These findings could 378 

provide valuable insights for reservoir evaluation and stimulation treatments in the future. 379 

4.2.3 Petrophysics 380 

 Intercrystallite pores in pyrite framboids commonly exist in shale samples, and 381 

contribute to gas storage (Loucks et al., 2009, 2012). For the analysed transitional shale 382 

intervals, pyrite was relatively abundant in shales from the Longtan formation, thus 383 

intraparticle pores occur more frequently (Fig. 5b). Intraparticle pores occur in shale samples 384 

with relatively high carbonate and/or feldspar contents (Figs. 5b‒d). This can be ascribed to 385 

the partial dissolution of soluble carbonate and feldspar minerals (Heath, et al., 2011; Loucks 386 

et al., 2012). Microfractures (Figs. 5e), which can be formed during catagenesis, are well 387 

developed in shale samples with high clay mineral contents (i.e., illitisation could result in 388 

microfractures in shale with lengths up to tens of micrometres) (Liang et al., 2014). 389 

 Previous studies have shown that the average porosity and permeability of the 390 

Permian shales in the study area are <2% and ~0.007 mD, respectively (Gu et al., 2015; Bao 391 

et al., 2016), whereas the porosity of the Carboniferous Ceshui shale ranges from 1% to 6.2 392 

%, with a mean value of 3.5% (Miao, et al., 2016). Compared with these results, porosity and 393 

permeability values obtained for the shale samples in our investigation are generally higher 394 
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(Table 3). One of the primary reasons might be that some of the shale samples in the current 395 

study have higher TOC contents, and well-developed micro-fractures. As our samples were 396 

freshly collected, weathering impact on petrophysical properties should be low. However, our 397 

findings suggest that these shale intervals are all characterized by low porosity and ultra-low 398 

permeability, which may result in an even tighter reservoir than the Barnett shale (Dong, et 399 

al., 2016). 400 

 To analyse the primary drivers of porosity formation, we examined the correlation 401 

between porosity and TOC content (Fig. 7a). There is a positive correlation between TOC 402 

content and porosity for most of the selected samples. This suggests that organic matter 403 

probably dominates the porosity of the shale. This might also be the reason why the porosity 404 

of the Longtan shale is comparatively higher than the less organic-rich shales from the 405 

Dalong and Ceshui formations (Table 3). Additionally, there is a negative relationship 406 

between the porosity and density (Fig. 7b). This phenomenon might be related to organic 407 

matter content because the density of shale tends to decrease as TOC contents increase (Fig. 408 

7c). However, a few of the selected samples have higher porosity and permeability, even 409 

though they have relatively low TOC (e.g., sample LSJ05; Tables 2 and 3). Through SEM 410 

analysis, we found that these samples generally have well developed microfractures (e.g. 411 

LSJ05; see Fig. 5e). This could suggest that microfractures can be an important contributor to 412 

porosity. For the Barnett shale, microfractures provide migration pathways, and reservoir 413 

space for the accumulation of shale gas (Liang et al., 2014; Loucks et al., 2012). However, in 414 

this study, correlations between porosity and mineral constituents (e.g. quartz and clay 415 

minerals) of the shale remain unclear, and this is likely due to the heterogeneity of the shales.  416 

 In general, shales exhibit significant anisotropic properties from the nanometre scale 417 

to the reservoir scale (e.g., organic and inorganic constituents, mineral types, and structures). 418 

For low TOC samples, mineral-associated pores should be dominant. Nevertheless, the 419 
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contribution of organic matter host pores becomes significant if TOC content rises and 420 

thermal maturity increases to the gas window. According to research performed on the highly 421 

mature (dry gas window) Longmaxi shale in South China, most of the pores in that unit are 422 

mineral pores when TOC is less than 0.9%. The contribution of mineral pores is similar to 423 

that of organic pores when TOC is in the range of 0.9-1.7%, and organic pores are more 424 

significant than mineral pores when TOC is higher than 1.7% (Tang et al., 2016). However, 425 

the Barnett shale samples that span a maturity range from a later wet gas window to a dry gas 426 

window indicate a positive correlation between TOC and porosity for samples with TOC 427 

<5.5%, and little or no correlations for samples with TOC >5.5% (Milliken, et al., 2013). 428 

Since quartz, carbonates, and clay minerals are the principal mineral constituents of shales, 429 

their relative concentrations can significantly influence porosity because clay minerals are 430 

porous, while carbonates can be easily dissolved by geofluids (Ross and Bustin, 2009). In 431 

some shales, the pyrite content can be greater than 10%, and pyrite framboids are commonly 432 

present. In that context, pyrite-associated pores may also be important.  433 

 Shales are slowly deposited through suspension in calm waters, and this long 434 

deposition period can result in strong vertical heterogeneity in both composition and 435 

structure. Lamina, thin sand layers, and bioclasts all vary over time in the investigated shale 436 

intervals. As revealed by Pan et al. (2015b), in addition to organic and inorganic constituents, 437 

the heterogeneous layering structures in different directions in shales strongly impact porosity 438 

and permeability, resulting in anisotropic petrophysical properties. However, porosity and 439 

permeability measurements are generally performed on small sample pieces or plugs, and the 440 

obtained results are very sensitive to experimental conditions. Therefore, accounting for the 441 

petrophysical properties of shales at a large scale requires a very large sample size from 442 

across the vertical and spatial extents of the unit. Additional studies with larger sample sizes 443 

are needed in the future.  444 
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4.2.4 Methane adsorption capacity 445 

 Research by Bao et al. (2016) has previously shown that the average methane 446 

adsorption capacity of the Permian Longtan and Dalong shales are 2.7 and 3.5 cm3/g, 447 

respectively, exhibiting a relatively strong gas adsorptive potential. Nevertheless, the 448 

Carboniferous-Permian shale intervals have lower methane adsorption capacity compared to 449 

the lower Cambrian and lower Silurian marine shales in or adjacent to the Sichuan basin, 450 

South China (Tan et al., 2014a; Zhang et al., 2015). The gas adsorption capacity of over 451 

mature marine shales is positively correlated with TOC content (Chalmers et al., 2008; 452 

Gasparik et al., 2014; Han et al., 2013; Tan et al., 2014a; Wu et al., 2014). However, as 453 

shown in Fig. 7, the methane adsorption capacity of TOC-rich samples (i.e. DLS02 and 454 

DBQ09) is not always significantly higher than that of TOC-poor samples (i.e. NT02) for the 455 

high maturity shales of this study. This suggests that other factors may play more important 456 

roles in influencing methane adsorption. 457 

 Shale samples with Ro values less than 1.5% (i.e., samples DLS02 and DBQ09; Fig. 6) 458 

have low gas adsorption capacity irrespective of their TOC values. However, when Ro values 459 

of the shale samples are greater than 1.5% (i.e., samples NT02 and JZS09; Fig. 6), their gas 460 

adsorption capacity is much higher than that of the shale samples with Ro values <1.5%. This 461 

suggests that the gas adsorption capacity might be closely associated with thermal maturity 462 

for the high maturity shales. Compared with the two samples with Ro values above 1.5% (i.e., 463 

samples DLS02 and DBQ09; Fig. 6), even when there is little difference in thermal maturity, 464 

the gas adsorption capacity of the shale increases greatly with higher TOC content. This 465 

implies that the organic matter content might be largely responsible for adsorbing gas in the 466 

high maturity range.  467 

 Micropores hosted in organic matter are the primary factor that influences the 468 

adsorption capacity of organic-rich rocks (Loucks, et al., 2012; Tan, et al., 2014a; Tan, et al., 469 
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2014b; Zhang et al., 2015; Zhong et al., 2016). However, micropores are poorly developed 470 

during the low maturity to oil window range (Ro=0.5-1.0%) but increase dramatically as 471 

thermal maturity enters the gas window stage (Ro ≥1.5%) (Xiong et al., 2015). Additionally, 472 

organic matter type possibly influences the adsorption capacity of shale and coal samples 473 

(Gasparik et al., 2014; Tan et al., 2014a;). The transitional shales in the current study contain 474 

moderate amounts of type III organic matter, while the lower Cambrian and lower Silurian 475 

marine shales in South China lack type III kerogen. The relatively lower adsorption capacity 476 

of the analysed transitional shales can be partially ascribed to the different types of organic 477 

matter. 478 

 The Xiangye-1 well in the study area is the first and, presently, the only natural gas 479 

exploration well targeted toward the studied transitional shales (Bao et al., 2016; Gu et al., 480 

2015). During drilling, the Dalong formation shale exhibited very low desorption gas content 481 

that was attributed to poor preservation conditions, long periods of tectonic alteration, and 482 

extensive thermal evolution (Bao et al., 2016; Gu et al., 2015). Based on the above discussion, 483 

the low gas content might also result from the low thermal maturity given that shales with Ro 484 

<1.5% generally have less gas adsorption capacity. As shown in Tables 1 and 2, the Ro 485 

values for most of the Dalong formation shale samples are <1.5%. The intrinsic reason is that 486 

micropores might be relatively less developed in a low thermal maturity range. It should be 487 

noted that extrapolations from adsorption data obtained in the lab to in situ subsurface 488 

geological conditions requires a more comprehensive, multi-factor analysis.  489 

 In addition to the inherent properties of shales (e.g., organic matter content, mineral 490 

constituents, thermal maturity, and pore structure), in situ geological conditions of shale 491 

reservoirs are fraught with uncertainties. For example, gas adsorption measurements are 492 

generally performed in isothermal conditions, whereas the geological temperature varies in 493 

reservoirs at different depths. The simulated applied pressure is likely much lower than actual 494 
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reservoir pressures, given that the burial depth of some of the shale gas reservoirs in South 495 

China exceeds 5 km. The moisture content also varies markedly with diagenesis and thermal 496 

maturation of organic matter. Moreover, gas adsorption measurements are commonly 497 

performed on cuttings or powders that show higher pore surface accessibility than the intact 498 

shales underground. 499 

 Nevertheless, experimental adsorption data provide the basis for GIP estimation, 500 

particularly for regions where natural gas production has not yet been achieved, and 501 

desorption data are very rare (Gasparik, et al., 2014). The uncertainty of GIP estimation 502 

resulting from both inherent and exogenic factors can be controlled through adsorption 503 

experiments performed on a number of representative samples, and under a variety of lab 504 

conditions, and with enhanced knowledge of the in situ, underground geological conditions of 505 

shale reservoirs (Gasparik, et al., 2014).  506 

 507 

5. Conclusions 508 

 We conducted a variety of analyses on Carboniferous and Permian transitional shale 509 

samples from central Hunan to investigate their natural gas potential. Our primary findings 510 

are: 511 

1. These shale intervals are abundant in organic matter and were deposited in reducing 512 

sedimentary environments. The organic matter type of the Ceshui shale is dominated 513 

by type III kerogen, while that of the Permian shale is principally type II. The thermal 514 

maturities of the shales have entered into the late wet gas and dry gas window stages, 515 

respectively.  516 

2. Non-laminated and carbonaceous shale are the dominant lithological types, followed 517 

then by calcareous shale, silty shale, and siliceous shale. Quartz and clay minerals are 518 
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the principal constituents. Pyrite is highly concentrated in certain Permian shale 519 

samples, and generally coincides with higher TOC contents.  520 

3. Four types of pore structures were identified through SEM analysis (i.e., organic 521 

matter pores, interparticle pores, intraparticle pores, and microfractures). The mean 522 

porosity for all sample is 6.4%, and the mean permeability is 0.013 mD. TOC and 523 

well-developed microfractures can greatly affect the porosity and permeability of the 524 

shale.  525 

4. The gas adsorption capacity of the transitional shales was found to vary from 1.24 526 

cm3/g to 4.53 cm3/g, with a mean value of 2.40 cm3/g under the experimental 527 

conditions. Meanwhile, shales with high TOC content and Ro >1.5% exhibit high gas 528 

adsorption capacity. 529 
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Appendix 540 

1. Type III kerogen is derived from terrestrial plant debris, much of which remains 541 

taxonomically identifiable. Additionally, type III kerogens mostly contain condensed 542 
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polyaromatics and oxygenated functional groups, with minor aliphatic chains (Tissot and 543 

Welte, 1984). 544 

2. Type II kerogen is typically derived from a mixture of phytoplankton, zooplankton, 545 

and microorganisms (bacteria) that have been deposited in a reducing environment. Though 546 

type II kerogens may also include terrestrial debris (pollen spores, plant cuticle, etc.), they are 547 

most often found in marine sediments characterized by autochthonous organic matter (Tissot 548 

and Welte, 1984).  549 
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Fig. 1. (a) Outline map of China showing position of Hunan Province and study area. (b) 734 

Regional geological map of the study area and sampling locations. (c) Generalized 735 

stratigraphic column of Carboniferous-Permian strata of the study area with stars marking 736 

position of target shales (modified from Jing et al., 2013). 737 
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 738 

Fig. 2.  Structural geology map of central Hunan (Modified from Li et al. 2013) 739 

 740 

Fig. 3. Ternary diagram of mineralogical constituents. 741 

 742 

Fig. 4. Petrological images of Carboniferous-Permian transitional shale samples from the 743 

study area. (a) Calcareous shale (QXJ05) from the Lopingian aged Dalong formation at the 744 

Qixingjie section. Quartz and carbonate concentrate in white laminae, while clay and organic 745 

matter concentrate in black laminae. (b) Non-laminated shale (DPQ06) from the Lopingian 746 

aged Dalong formation at the Duanpoqiao section; dark area is mainly composed of organic 747 

matter and clay, while the light area primarily comprises quartz and feldspar. (c) Non-748 

laminated shale (NT02) from the Lopingian aged Longtan at the Nantang section; dark area 749 

consists of organic matter and clay, and the light is mainly quartz. (d) Carbonaceous shale 750 

(DLS05) from the Lopingian aged Longtan formation at the Doulishan section; dark area is 751 

mainly organic matter and clay, and the light is mainly quartz and feldspar. (e) Silty shale 752 

(LMJ06) from the Mississippian aged Ceshui formation at the Lumaojiang section; clay 753 

minerals occupy a large area in the texture, while organic matter and quartz are scattered 754 

amongst the matrix. (f) Carbonaceous shale (LSJ04) from the Mississippian aged Ceshui 755 

formation at the Liangshuijing section; dark area is mainly organic matter and light area is 756 

mainly quartz. Organic matter aggregates or particles are randomly distributed in the matrix. 757 

 758 

Fig. 5. SEM images of Carboniferous–Permian transitional shale samples from the study 759 

area. (a) Carbonaceous shale (LSJ04) from the Mississippian aged Ceshui formation at the 760 

Liangshuijing section; “honeycomb” organic pores and micro-fractures are well developed. 761 

(b) Carbonaceous shale (DLS05) from the Lopingian aged Longtan formation at the 762 
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Doulishan section; interparticle pores exist between pyrite framboids or between pyrite 763 

crystals and clay flakes. Intra–particle pores in the feldspar minerals and “honeycomb” 764 

organic–matter pores generated by hydrocarbon expulsion are well developed. (c) Calcareous 765 

shale (QXJ02) from the Lopingian aged Dalong formation at the Qixingjie section; 766 

intraparticle pores in the carbonate minerals are well developed. (d) Transitional shale 767 

(DPQ03) from the Lopingian aged Dalong formation at the Duanpoqiao section; inter–768 

particle pores occur between quartz minerals, intra–particle pores exist in the feldspar 769 

minerals and micro-fractures in clay minerals and at weak interfaces are well developed. (e) 770 

Carbonaceous shale (LSJ05) from the Mississippian aged Ceshui formation at the 771 

Liangshuijing section; micro-fractures between clay flakes or between clay laminae and silty 772 

laminae are well developed. (f) Silty shale (LMJ06) from the Mississippian aged Ceshui 773 

formation at the Lumaojiang section; micro-fractures between clay flakes are well developed. 774 

 775 

Fig. 6. Methane adsorption isotherms at 40 °C 776 

 777 

Fig. 7. Correlation plots for Carboniferous-Permian shale samples in Central Hunan Province 778 

plotting (a) porosity with TOC content, (b) porosity with density, and (c) TOC content with 779 

density. 780 

 781 

Table 1. TOC and Ro values from the Carboniferous–Permian transitional shale in central 782 

Hunan. 783 

 784 

Table 2.  Results of TOC, Ro and XRD mineralogy for some representative transitional shale 785 

samples from central Hunan. 786 

 787 
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Table 3. Rock density, porosity, and permeability for Carboniferous–Permian transitional 788 

shale in central Hunan. 789 

 790 

Table 4. Comparison of the shale gas reservoir rocks in central Hunan with other worldwide 791 

shale gas source rocks. Setting = depositional environment of source rocks; TOC – Total 792 

Organic Carbon; Kerogen = Kerogen Type; Ro = Vitrinite reflectance values; GAC = Gas 793 

adsorbtion capacity. Data for Ceshui, Dalong and Longtan shales from this paper; sources for 794 

other data from the study by Dong et al. (2016). 795 
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Tables 
 

 
Table 1. TOC and Ro of Carboniferous–Permian shale in central Hunan 

 

Formation Sections(code) 
TOC (%) Ro (%) 

Min value Max  value Mean value Min value Max  value Mean value 

Dalong Shimingqiao(SMQ) 0.4 5.0 3.3 1.1 1.4 1.3 

Dalong Qixingjie(QXJ) 0.6 4.6 2.3 1.2 1.7 1.4 

Dalong Duanpoqiao(DPQ) 0.9 6.6 4.8 1.2 1.8 1.5 

Dalong Tantou(TT) 0.5 4.8 2.2 1.2 1.7 1.5 

avg. 0.6 5.3 3.2 1.2 1.7 1.4 

Longtan Qixingjie(QXJ) 0.8 8.8 4.4 1.2 1.9 1.5 

Longtan Doulishan(DLS) 6.9 8.8 7.8 1.4 1.5 1.4 

Longtan Nantang(NT) 2.4 5.3 4.0 1.1 1.6 1.4 

Longtan Jilong(JL) 2.6 9.2 6.0 1.6 1.9 1.7 

Longtan Tantou(TT) 1.8 6.2 3.6 1.1 1.9 1.6 

avg. 2.9 7.7 5.2 1.3 1.8 1.5 

Ceshui Jingzhushan(JZS) 0.8 6.1 2.4 1.3 2.8 1.8 

Ceshui Zhaoyang(ZY) 2.2 9.0 4.5 1.6 2.2 1.9 

Ceshui Liangshuijing(LSJ) 0.4 7.4 1.8 1.5 2.4 2.1 

Ceshui Xiandong(XD) 0.4 1.6 1.2 1.4 1.8 1.7 

Ceshui Lumaojiang(LMJ) 0.7 2.0 1.3 1.2 1.9 1.5 

Ceshui Douling(DL) 0.8 3.6 2.4 1.4 2.0 1.8 

avg. 0.9 5.0 2.3 1.4 2.2 1.8 
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Table 2.  Results of TOC, Ro and XRD mineralogy for some representative shale samples 
 

ID Formation samples Lithofacies 
TOC 
(%) 

Ro 
(%) 

quartz 
(%) 

feldspar 
(%) 

carbonate 
(%) 

pyrite 
(%) 

clay 
(%) 

1 Dalong QXJ02 Calcareous shale 0.6 1.7 39.1 0.0 35.2 0.0 25.7 
2 Dalong QXJ05 Calcareous shale 4.6 1.2 50.6 0.0 30.0 1.3 18.1 
3 Dalong QXJ08 black siliceous shale 3.2 1.2 86.2 2.8 0.0 0.0 11.0 
4 Dalong DPQ02 Calcareous shale 0.9 2.0 52.6 4.6 32.7 0.0 10.1 
5 Dalong DPQ03 black shale 5.9 1.8 43.8 12.5 1.6 0.0 42.1 
6 Dalong DPQ06 black shale 6.1 1.5 79.3 4.4 0.0 4.3 12 
7 Dalong DQ09 black shale 6.3 1.3 53.8 1.4 0.0 13.1 31.7 
8 Longtan DLS02 black carbonaceous shale 8.8 1.4 47.6 14.2 0.0 13.1 25.1 
9 Longtan DLS05 black carbonaceous shale 6.9 1.5 48.9 4.3 0.0 8.9 37.9 
10 Longtan NT02 black shale 3.2 1.6 64.6 0.0 0.0 0.0 35.4 
11 Longtan NT03 black shale 3.1 1.5 70.3 0.0 0.0 0.0 29.7 
12 Longtan QXJ10 black carbonaceous shale 8.2 1.8 50.8 0.0 0.0 9.2 40.0 
13 Longtan QXJ14 black shale 3.5 1.4 50.0 2.4 0.0 1.0 46.6 
14 Ceshui XD01 dark–grey shale 1.5 1.8 53.7 0.0 0.0 0.0 46.3 
15 Ceshui XD06 dark–grey shale 0.4 1.7 62.9 0.5 1.1 0.0 35.5 
16 Ceshui JZS05 dark–grey shale 1.4 2.4 60.4 0.0 0.0 0.0 39.6 
17 Ceshui JZS07 dark–grey shale 1.3 1.6 54.4 0.0 0.0 0.0 45.6 
18 Ceshui JZS09 black carbonaceous shale 6.1 1.7 29.2 0.0 1.7 0.0 69.1 
19 Ceshui LMJ02 dark–grey shale 1.2 1.6 52.2 0.0 0.0 0.0 47.8 
20 Ceshui LMJ06 silty shale 0.7 1.7 39.0 0.0 0.0 3.7 57.3 
21 Ceshui ZY04 black shale 2.3 2.0 50.9 0.0 0.7 8.6 39.8 
22 Ceshui ZY08 Calcareous shale 2.2 2.1 19.3 0.0 48.2 4.8 27.7 
23 Ceshui LSJ01 black carbonaceous shale 10.7 2.0 63.7 0.0 0.0 0.0 36.3 
24 Ceshui LSJ04 black carbonaceous shale 7.4 2.1 60.0 0.0 0.0 0.0 40.0 
25 Ceshui LSJ05 dark–grey shale 0.4 2.4 61.5 0.0 0.0 0.0 38.5 
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Table 3. Rock Density, Porosity, and Permeability for Carboniferous–Permian shale in central Hunan 

 
ID Formation samples TOC (%) Rock density (g/cm3) Porosity (%) Permeability (mD) 

1 Dalong QXJ02 0.6 2.60 0.5 0.0032 

2 Dalong QXJ05 4.6 2.53 5.2 0.0040 

4 Dalong DPQ02 0.9 2.51 4.2 0.0031 

5 Dalong DPQ03 5.9 2.62 5.1 0.0072 

6 Dalong DPQ06 6.1 1.49 12.0 0.0470 

7 Dalong DPQ09 6.3 2.40 6.9 0.0026 

8 Longtan DLS02 8.8 1.66 14.0 0.0067 

9 Longtan DLS05 6.9 1.78 8.2 0.0089 

10 Longtan NT02 3.2 1.45 5.6 0.0034 

11 Longtan NT03 3.1 1.46 9.2 0.0250 

15 Ceshui XD06 0.4 2.60 1.4 0.0045 

16 Ceshui JZS05 1.4 2.57 2.3 0.0034 

22 Ceshui ZY08 2.2 2.53 4.7 0.0046 

24 Ceshui LSJ04 7.4 2.06 8.6 0.0640 

25 Ceshui LSJ05 0.4 2.06 8.0 0.0110 
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Table 4. Comparison of the shale gas reservoir rocks in central Hunan with other worldwide shale gas source rocks. Setting = depositional environment of source rocks; TOC – Total Organic 

Carbon; Kerogen = Kerogen Type; Ro = Vitrinite reflectance values; GAC = Gas adsorbtion capacity. Data for Ceshui, Dalong and Longtan shales from this paper; sources for other data from 

the study by Dong et al.(2016). 

 

Shale unit Ceshui shale (China) Dalong Shale 
(China) 

Longtan Shale 
(China) 

Wufeng-Longmaxi 
Shale(China) 

Haynesville 
Shale (US) 

Woodford shale 
(US) 

Barnett Shale 
(US) 

Age Carboniferous Permian Permian Ordovician-Silurian Jurassic Devonian  Carboniferous 
Setting Transitional Transitional Transitional Marine Marine Marine Marine 

TOC (%) 
0.4–9.0 

 (x̅=2.3 ) 
0.4–6.6 

 (x̅=3.2) 
0.8–9.2 

 (x̅=5.2 ) 
0.4–25.7 
 (x̅=2.6 ) 3.0 5.3 3.7 

Kerogen Ⅲ Ⅱ Ⅱ Ⅰ-Ⅱ Ⅰ-Ⅱ1 Ⅰ-Ⅱ1 Ⅱ1 

Ro (%) 
1.8–2.8 
 (x̅=1.8 ) 

1.1–1.8 
(x̅=1.4) 

1.1–1.9  
(x̅=1.5 ) 

1.6-3.6 1.5 1.5 1.6 

Brittle minerals 
(%) 

30.9–67.5 
 (x̅=55.0 ) 

55.2–89.9 
(x̅=75.8 ) 

50.8–70.3 
(x̅=58.9) 

21.0-44.0 35.0-65.0 50.0-75.0 40.0-60.0 

Porosity (%) 
1.4-8.6 

 (x̅=5.0 ) 
0.5-12.0 
(x̅=5.7 ) 

5.6-14.0 
(x̅=9.3 ) 5.2 8.3 5.0 5.0 

Permeability 
(mD) 

0.003-0.064 
(x̅=0.018 ) 

0.003-0.047 
(x̅=0.011 ) 

0.003-0.025 
(x̅=0.011 ) 

0.221 0.350 0.050 0.050 
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Figure1 (a) The position of Hunan Province and study area; (b) Regional geological map and sampling 

locations; (c) Generalized stratigraphic column of Permo-Carboniferous strata of the study area 

(Modified after Jing et al., 2013). 
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Figure 2 Structure geology map of the central Hunan (Modified from Li et al. 2013). 1. 
Cretaceous; 2. Upper Triassi-Jurassic; 3. Permian-Middle Triassic; 4. Carboniferous; 
5. Silurian-Devonian; 6. Proterozoic-Ordovician; 7. Magmatic body; 8. Coal measures; 
9. Fault line; 10. Stratigraphic boundary; 11. Depression; 12. Uplift; F1. Anhua-Xupu 
fault; F2. Chengbu-Xinhua fault; F3. Xinshao-Xinning fault; F4. Miluo-Shaoyang 
fault; F5. Qiyang Arc fault; F6. Zhuzhou-Shuangpai fault; F7. Jiyun fault; F8. 
Jinpanlun fault; F9. Fengguanshan fault; Z1. Lianyuan Depression; Z2. Shaoyang 
Depression;  L1. Baimashan-Longshan bead-shape uplift; L2. Niuxingzhai-
guandimiao bead-shape uplift. 
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Figure 3. Ternary diagram of mineralogical constituents 
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Figure 4. Micro-photographic images of Carboniferous-Permian shale samples. (a) Upper Permian 

Dalong calcareous shale (QXJ05) from the Qixingjie section. Quartz and carbonate concentrate in the 

white laminae, while clay and organic matter concentrate in the black laminae. (b) Upper Permian 

Dalong nonlaminated shale (DPQ06) from the Duanpoqiao section. The dark area is mainly composed 

of organic matter and clay, while the light area primarily comprises quartz and feldspar. (c) Upper 

Permian Longtan nonlaminated shale (NT02) from the Nantang section. The dark area consists of 

organic matter and clay, and the light is mainly quartz. (d) Upper Permian Longtan carbonaceous 

shale (DLS05) from the Doulishan section. The dark area is mainly organic matter and clay, and the 

light is mainly quartz and feldspar. (e) Lower Carboniferous Ceshui silty shale (LMJ06) from the 
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Lumaojiang section. Clay minerals occupy a large area in the texture, while organic matter and quartz 

scatter in the matrix. (f) Lower Carboniferous Ceshui carbonaceous shale (LSJ04) from the 

Liangshuijing section. The dark place is mainly organic matter and the light is mainly quartz. Organic 

matter aggregates or particles are randomly distributed in the matrix. 
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Figure 5. SEM images of Carboniferous–Permian shale samples. (a) Lower Carboniferous Ceshui 

carbonaceous shale (LSJ04) from the Liangshuijing section. “Honeycomb” organic pores and miro-

fractures are well developed. (b) Upper Permian Longtan carbonaceous shale (DLS05) from the 

Doulishan section. Intra-particle pores exist in the pyrite framboids and the feldspar minerals. Inter–

particle pores between pyrite crystals and clay flakes, and “honeycomb” organic–matter pores 

generated by hydrocarbon expulsion are well developed. (c) Upper Permian Dalong calcareous shale 

(QXJ02) from the Qixingjie section. Intra-particle pores in the carbonate minerals are well developed. 

(d) Upper Permian Dalong shale (DPQ03) from the Duanpoqiao section. Inter–particle pores occur 

between quartz minerals, intra–particle pores exist in the feldspar minerals and miro-fractures in clay 
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minerals and at weak interfaces are well developed. (e) Lower Carboniferous Ceshui carbonaceous 

shale (LSJ05) from the Liangshuijing section. Micro-fractures between clay flakes or between clay 

laminae and silty laminae are well developed. (f) Lower Carboniferous Ceshui silty shale (LMJ06) 

from the Lumaojiang section. Inter-particle pores in the clay flakes are well developed.  
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Figure 6. Methane adsorption isotherms at 40 °C  
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Figure 7. Correlation plots of porosity with (a) TOC content, (b) density, and (c) TOC content with 

density for Permo-Carboniferous shale samples in Central Hunan Province.  
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• Methane adsorption capacity is between 1.24 cm3/g and 4.53 cm3/g. 
• Mean porosity and permeability are 6.4% and 0.013md, respectively. 
• Carboniferous and Permian shales are abundant in type III and II organics, respectively. 
• Thermal maturity is locating in the wet gas window. 
• Mineral constituents are dominated by brittle minerals.  

 


