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Abstract 

Modern railway stations are often designed architecturally to embed long-span roof structures to 

enhance portal bird-eye views for commuters and dwellers. Commonly, slender-by-nature spatial glass 

shell elements are installed over such the long-span roof structure. The span/depth ratio of the shell 

elements often causes excessive responses and high sensitivity to dynamic actions (e.g. wind, 

Earthquakes, explosion, etc.). The issues are pronounced when thin-walled glass roof structures 

experience shock loads. At present, terrorist attack is one of the global grand challenges for engineers 

to resolve. Especially in Europe, the railway stations are considered to be at extreme risk of terrorist 

exposure. This implies that the activity could occur imminently. Also, many railway critical 

infrastructures were built or designed long before the explosive actions being taken into account. In 

this study, the blast simulation and transient effects on a long-span glass roof structure are thus 

highlighted. The focus is placed on spatial glass shell elements, which are ones deemed to be at risk. 

Nonlinear modeling, validation and transient analyses of the station roofing structure have been carried 

out using a finite element package, LS-Dyna. The explosion is simulated by rapid and abrupt release of 

energy using LS-Dyna code. The explosion effects are highlighted in a waveform of high intensity 

pressure that spreads outward from the source to the surrounding air. It is designed to place the blast 

load close to the escalators because the location can affect most people/structure. Nonlinear transient 

dynamic results can be obtained. In this study, critical fragility and vulnerable component analyses 

will be presented so that railway and structural engineers can develop risk-based retrofit program 

against terrorist attacks for the railway station. Sensitivity of explosion intensity has been evaluated to 

quantify structural capacity and vulnerability of the glass shell roof. The insight into this transient 

behavior will help railway and structural engineers to establish strategic retrofitting methods to 

minimise catastrophic damage to and potential losses of train passengers, the public & rail assets. 

Keywords: blast, transient effect, response, long span, spatial shell, glass shell roofing, railway station  

1. Introduction 

Over the past 30 years, terrorist attacks in Western Europe have remained a constant threat (very likely 

to happen) [1]. The number of historical attacks and fatalities can be seen in Figure 1. Therefore, it is 

of paramount importance to consider blast attack resistance in all design processes of new built 

environments and the assessment of existing ones in order to mitigate risks and minimise hazards to 

the public. To put the physical and cyber threats into context, areas of high importance and potential 

targets include train stations, airports, shopping centres, sport stadiums, malls, concert halls and 

theatres. In other words, anywhere that could have a large number of casualties or have a detrimental 

effect on transport and infrastructure networks or the economy [2]. 



Proceedings of the IASS Symposium 2018 

Creativity in Structural Design 
 

 

 2  

Design against blast loading is an ongoing and vital research subject in structural engineering [1-3]. 

This is a direct result of the constant threat of terrorism around the globe; infrastructure posing a 

significant risk appears to be associated with the public transportation system where the potential for 

mass disruption and destruction is greatest [4]. A study [5] stated that 89 terrorist attacks were targeted 

at the transportation system sector between 1970 and 2015 in America. These statistics are able to 

bolster the research into blast resistant design in critical infrastructure. Modern technologies have 

allowed architecture to produce elegant, slender structures that optimise the use of space in very 

compact environments such as cities. These constraints lend themselves to the utilisation of thin shells, 

which derive their strength from their shape and are known as form resistant structures [6]. The 

application of thin shells maximise the efficiency of construction materials through membrane theory 

where out of plane forces are able to be resisted by in plane responses. The compromise between blast 

resistance and structural slenderness is ongoing topic to design a blast resistant glass. 

 

Figure 1: Terrorism statistics in Western Europe 

This paper investigates the dynamic responses of curved glasses subjected to blast pressures. The 

expulsion of glass panes has previously been considered beneficial in order to relieve internal 

pressures; however the fragments can cause more damage as they shower down on the public and 

infrastructure below. An example of this is in the 1995 Oklahoma City bombing: 198 people suffered 

direct glass related injuries such as lacerations or abrasions from flying glass debris, a further 265 

people suffered hearing impairment from the blast where glass windows were shattered and no longer 

able to exhibit their acoustic insulation properties [7]. Glazing and structural technologies to prevent 

these phenomena will be highlighted in this paper. 

2. Case Study: Spatial Roof of the Erasmusline, Hague, The Netherlands  

A long span spatial roof of the Erasmusline railway station in Hague, The Netherlands has been 

chosen for this study, as shown in Figure 2. The structure optimises a gridshell roof canopy with singly 

curved glass along platform level and double curved at the “closed end”. It is 90m long and spans 17m 

across the platform, the maximum height above platform level is 6m and is formed of rectangular 

hollow sections for the mesh and cold formed laminated glass as the canopy [8]. The boundary 

conditions use one pinned connection on either side of the roof connecting to the edge beam to allow 

for the required rotation, the remaining connections are able to slide longitudinally, to allow for 

thermal effects. The laminate construction of the roof canopy uses 10mm plies according to Helbig et 

al. [8] and a (assumed) 5mm interlayer. The 15kg blast will be located in the “closed” end of the 

structure where the danger to both life and structure will be most catastrophic. 

This study aims to model both the non-linear response of the laminated glass shell panel as well as the 

breakage configuration of the entire structure due to blast. The former involves a single panel that is 

modelled similar to the research conducted by Kranzer et al. [9] and Hooper et al. [10] and the latter 

reflects the work of Kaewunruen et al. [2], where the entire Canary Wharf underground station canopy 

was modelled against blast effects.  It is a common approach to model laminated glass as monolithic 

when analysing against short term loads. This is because the interlayer behaves as a relatively stiff 

material in short term loads like blast. The shear modulus of 10MPa results in bending stresses similar 
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to that of a monolithic pane under blast loads, where these similarities end is when the glass breaks. 

The transition of strength between the layers of the laminate throughout the stages of blast loading was 

an important phenomenon to attempt capture by the model. The structure has been exposed to a 

uniformly distributed and an exponentially decaying blast load. This can be calculated from the LS-

DYNA pre-post using the empirical function LOAD_BLAST_ENHANCED. It is a continuum solver 

and models a spherical TNT charge in free air with normal temperature and pressure acting on a 

Lagrangian structure. FE model of the structure has been validated by experiments [8]. 

     

  Figure 2: The Erasmusline, The Hague, Netherlands                    Figure 3: Validation of blast pressure 

Table 1: Comparison of blast pressure 

3. Results and discussion 

Figure 3 shows the reflected and incident blast pressures that are experienced by the plate adopted by 

Kranzer et al. [9]. Table 1 shows the data collected from Kranzer et al [9], UFC [9] and the finite 

element model, to compare the magnitudes of the incident and reflected blast pressures. The table 

shows that the CONWEP method used by the LOAD_BLAST_ENHANCED function in LS-DYNA 

mimics the Friedlander equation used in UFC [9] effectively.  

      

Figure 4: Blast damage on glass structure (left: this study; right: experiment by [9]). 

This study has been used to illustrate the adequacy of the boundary conditions through the distribution 

of cracks compared to the experiment. The finite element model and experiment crack pattern can be 

found in Figure 4. This model used MAT_032, due to its failure algorithm mentioned in table 2, which 

shows good agreement to the experimental results. A potential reason for the lack of cracking in the 

centre of the finite element model could be attributed to the size of the cracks that formed in the 

specimen. The lack of cracking in the centre of the finite element model could potentially be attributed 

to excessive deflections of the larger cracks around the outside which relieve the stress on the inner 

elements. This hasn’t occurred in Kranzer et al.’s [9] specimen as micro-cracks are still able to 

withstand some stresses to transfer to the centre elements. 
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4. Conclusion 

This research investigated the blast effects on highly non-linear, thin shell structures, through a 

rigorous parametric study to identify the suitable material nonlinearities, as well as an effective model 

of a light rail station in The Netherlands to model the geometric nonlinearities of its roof canopy. The 

study has critically reviewed and established a suitable model for the nonlinearities of laminated glass 

shell structures. Experimental data have been used to validate the finite element models in LS-DYNA. 

The study reveals that the shell model subsequently reacted stiffer than the experiment when 

modelling the post-crack phase. The crack propagation of glass shell structure can be simulated 

precisely. It is also found that erosion criteria assigned to each layer have proven to lead to premature 

deletion from the modal and hence greater deflections. 
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