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Abstract 

Membrane proteins remain a somewhat enigmatic group of biomolecules. On the 

one hand they mediate some of the most important processes in biology with molecular 

mechanisms that are often elegantly complex. On the other hand they are exceptionally 

challenging to produce, making studies of membrane protein structure and function among 

the most difficult projects undertaken by biochemists. The central issue with studies of a 

membrane protein has been the need to extract them from their native lipid environment 

before purification and production of a homogenous sample. Historical approaches have 

utilized detergent solubilisation but these often lead to a sample with low activity and 

stability. In the past 15 years a new approach that focuses on preserving the local lipid 

environment surrounding the membrane proteins has been developed. The latest, and 

perhaps most complete, incarnation of this method has been the use of polymers based on 

styrene maleic acid (SMA) to stabilise nanoscale discs of lipid that contain membrane 

proteins. In this review we examine the range of SMA-related polymers that have now been 

shown to have utility in the production of membrane proteins. We discuss the differences 

between the polymers and attempt to discover rules and trends that explain their behavior.  

 

Introduction 

Located at the interface between cells and their environment and on the surfaces of 

organelles, membrane proteins play an integral role in coordinating cellular function. 
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Current estimates predict that more than 50% of modern drugs target membrane proteins 

[1], demonstrating the importance of the study of these systems. However, the purification 

of membrane proteins for structural and functional study remains a challenge. Despite close 

to 20% of both the human and E. coli genome encoding for membrane proteins, they 

represent less than 1% of the structural entries to the Protein Data Bank (PDB) repository 

[2]. 

 

One of the biggest roadblocks to studying membrane proteins is the need to 

separate them from unrelated proteins co-localised in the same membrane continuum [3]. 

Historically this has been achieved by removing them from their lipid environment prior to 

purification. Classical ‘head and tail’ detergents such as dodecyl maltoside (DDM) have been 

used to perform the membrane extraction process. When present above a critical micelle 

concentration (CMC) these amphiphilic compounds disrupt the membrane to form soluble 

micelles and are thought to arrange around the hydrophobic transmembrane domain of 

membrane proteins in a torus, replacing surrounding lipids [4]. It had been assumed that 

the detergent micelle would be able to sufficiently replicate the lipid environment ensuring 

that the membrane protein retained native structure and function. While the hydrophobic 

interior and polar exterior of the native membrane is partially mimicked by a detergent 

micelle, it has become evident that the micelle acts as a poor replacement to a lipid.  The 

composition of membranes can be highly variable, and it has been demonstrated that 

alteration of the chemical environment around these proteins can affect their activity [5]. 

Membrane proteins are also known to associate to regions of specific components, for 

example in lipid rafts, that influence their function [6]. For these reasons, it is clear that 

detergents fail to sufficiently replicate the complex environment of the cell membrane.  

To address these issues a new approach to membrane protein solubilisation has 

been developed, which recognizes the paramount importance of phospholipids in 

maintaining correct folding and function of membrane proteins. These methods attempt to 

produce a particle that contains the chosen membrane protein whilst maintaining its local 

lipid environment. A number of approaches have been developed over the past 15 years to 

achieve this challenging goal. These include the use of peptides that stabilise bilayer 

fragments (membrane scaffold proteins, MSPs) [7], amphipols [8] and most recently styrene 

maleic acid copolymers [9]. This latter method, developed in 2009 by Knowles et al. has 
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generated significant interest in the past few years. Unlike previous methods, styrene 

maleic acid-mediated solubilisation enables direct extraction of the protein complete with 

its native annular lipid environment from the bulk membrane without prior detergent 

extraction. 

 

Applications of SMALP technology to membrane protein studies 

Styrene maleic acid (SMA) is an amphipathic, synthetic copolymer made up of 

hydrophilic maleic acid and hydrophobic styrene moieties, which has been recently found to 

have significant applications outside of its principal use in the plastics industry. Amphipathic 

polymers such as SMA were found to associate with and destabilise lipid bilayers in a pH-

dependent manner, forming discoidal lipid-polymer assemblies [10]. This behavior was 

exploited to produce homogenous, membrane protein-containing particles without the 

need for the use of classical detergents.  

Since the initial demonstration of the SMALP method for the stabilisation of a 

membrane protein in aqueous solution [9], SMA has been used to purify a range of 

important membrane proteins, including GPCRs [11], transporters [12] and ion channels [13] 

(For review see [14]). This is achieved by the direct addition of SMA to native membranes, 

removing the need for any classical ‘head-and-tail’ detergents in the preparation whilst 

keeping a near native membrane environment. Importantly, SMALP-encapsulated proteins 

are amenable to studies utilising common biophysical techniques such as circular dichroism 

(CD) spectroscopy [9], solid [15] and solution state [16] nuclear magnetic resonance 

spectroscopy (NMR), analytical ultracentrifugation (AUC) [9], X-ray crystallography [17] and 

cryo-electron microscopy (EM) [18].  

The vast majority of studies using the SMA method in the production of membrane 

proteins have focused on the use of two related polymers. These polymers are of similar 

lengths and both are made using the same process, the only difference being that one 

contains a 2:1 ratio of styrene to maleic acid [13,19–21] while the other contains a 3:1 ratio 

[17,22]. These polymers seem to be very effective at solubilising a wide range of proteins 

but have a number of limitations, the most troublesome being that neither functions in 

acidic conditions or in the presence of millimolar concentrations of magnesium and calcium 

ions. This latter limitation in particular presents challenges in the study of proteins that 
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require these ions for activity (e.g ATPases). In addition it is becoming clear that in some 

cases encapsulation in the lipid particle leads to an inhibition of the natural conformational 

changes of membrane proteins. To address these and other issues, attempts have been 

made to produce improved SMA-related polymers. In this review we examine these new 

polymers in terms of performance. 

SMALP self-assembly. 

 Much of the initial work on the use of SMA in membrane protein production focused 

on applications of SMA technology. These studies established the method as generically 

applicable to a range of proteins and showed that, once encapsulated, these proteins could 

be used in structural [12,23,24] and functional studies [9,13,25,26]. The subsequent 

increase in the use of the SMALP method has resulted in a number of studies about the 

mechanisms of SMALP self-assembly [18,27–31]. Scheidelaar et al. [27] have proposed a 

three-stage model for SMALP formation based on their experimental findings (Figure 1). 

First, SMA adsorbs to the surface of a phospholipid membrane (Figure 1a) in a process 

driven by the hydrophobic effect; direct interaction of styrene moieties of SMA with the acyl 

chains of lipids has been directly confirmed by NMR [23]. However, this behavior is also 

modulated by electrostatic repulsion, as indicated by increased solubilization in the 

presence of increased salt concentrations or lower amounts of anionic lipids [27]. In a 

second step, SMA buries into the hydrophobic acyl core of the membrane (Figure 1b). This 

stage has been demonstrated to be strongly dependent on lipid packing, with higher 

solubilization found above the Tm of the lipids, and maximal solubilization at Tm where the 

balance of gel phase and liquid crystalline phase results in packing defects, presumably 

allowing SMA to insert into these gaps. Finally, once the membrane is saturated with 

polymer and destabilised, SMALPs are formed (Figure 1c). SMALPs are stabilised in aqueous 

solution by the intercalation of phenyl groups of SMA between lipid acyl chains 

perpendicular to the plane of the bilayer, whilst the acid groups interact with the aqueous 

solvent, stabilizing the now solubilized phospholipid core (Figure 1c, inset) [23]. 

 

Influence of polymer composition on lipid particle generation. 
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In the case of classical detergents it is quite usual to find that only a subset of 

available detergents are able to successfully solubilise the membrane protein of interest. 

Therefore the process of choosing the correct detergent is often key to optimizing the 

extraction and purification of membrane proteins. By contrast, one benefit of the SMALP 

method is that the original SMA polymers were successful at solubilising a wide range of 

targets. However it would be complacent to think that the SMA polymers used in the early 

experiments represented the perfect solution, and it is undoubtedly this thought process 

that has led the development of new polymers. As more studies have investigated the 

SMALP self-assembly process, more insights have been gained about approaches to improve 

the process by modifying the chemistry of SMA copolymers. Figure 2 groups the 

modification of SMA-based copolymers into 4 categories: modification of the styrene to 

maleic acid ratio; modification of the hydrophobic component of the polymers; modification 

of the hydrophilic components and their subsequent functionalization; and finally, utilizing 

different polymerization methods to change the ordering of monomer units along the chain 

and size distribution of the polymers. Table 1 provides a summary of the properties of the 

different polymers that have been studied to date. The advances made in each of these 

areas will be discussed below.  

Influence of the styrene:maleic acid ratio on polymer efficacy 

In the first examples of SMA-mediated membrane protein solubilisations, two 

related SMA polymers were used with differing monomeric ratios: 2:1 S:M and 3:1 S:M. This 

points to an area where polymer chemistry may be modified: the ratio of styrene to maleic 

acid. By altering this ratio the hydrophobicity of the resulting polymer is altered, with 3:1 

SMA being more hydrophobic than 2:1 SMA. One would therefore simplistically expect that 

3:1 SMA would have a stronger thermodynamic driving force towards nanodisc self-

assembly via interaction with phospholipid bilayers to bury the hydrophobic phenyl rings in 

the bilayer core rather than remaining dissociated in solution. This hypothesis has been 

confirmed by studies of the thermodynamics of disc formation by Keller et al. [29]. These 

studies have shown that the free energy change associated with SMA during SMALP self-

assembly is more favourable for 3:1 SMA than 2:1. One may expect the thermodynamic 

efficiency of SMA polymers in SMALP self-assembly to directly relate to the solubilisation 

efficiency of membranes and proteins. However, the more relevant thermodynamic 
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parameter is the free energy change of lipids undergoing the vesicle to nanodisc transition. 

In all cases studied so far, the lipids have a small positive free energy change, although this 

is lower in 2:1 SMA [29] than 3:1 [32]. From a thermodynamic perspective, this indicates a 

more ‘native-like’ environment of the lipids within a nanodisc. Morrison et al. [30] have 

shown that the protein solubilisation efficiency of 3:1 or 2:1 SMA is broadly similar despite 

different thermodynamic efficiencies. However, Hall et al. [31] have demonstrated that a 

2:1 SMA polymer with extended poly(styrene) hydrophobic stretches display poor protein 

solubilisation efficiency. Larger positive free energy changes were associated with the lipids 

undergoing SMALP formation, despite the high thermodynamic efficiency of the polymer. 

This suggests a disparity between polymers that appear to be thermodynamically efficient, 

yet are limited in their application to membrane protein extraction by a thermodynamically 

unfavourable lipid environment. Interestingly, a 1:1 SMA is also ineffective in membrane 

protein solubilisation [30]. This suggests that both a minimal level of hydrophobicity and an 

optimal distribution of hydrophobic moieties along the polymer chain influence the 

suitability of a given polymer for membrane protein extraction. Little work has been done to 

understand polymers that are substantially more hydrophobic (e.g. with a higher 

percentage of styrene) than the 3:1 polymer. Such a polymer would be interesting to study: 

although the increased hydrophobicity could aid solubilisation, it might also reduce the 

aqueous solubility of the polymer to such a level as to make the polymer ineffective. 

Without sufficient lipid, SMA polymers can form a collapsed higher order aggregate [31,33]. 

The structure of this aggregate is unknown, but it is likely to involve the partition of 

hydrophobic moieties into the interior of the aggregate, while the hydrophilic moieties 

mediate interactions with the aqueous solvent. The formation of SMALPs may be limited by 

the ability of polymer chains to dissociate from this aggregate before inserting into the 

target membrane. If this hypothesis is true then increasing hydrophobicity would stabilise 

the aggregate, thereby reducing the effectiveness of the polymer as a solubilisation agent.  

Influence of the hydrophobic groups of the polymer. 

While changing the S:M ratio alters hydrophobicity it is also possible to achieve the 

same effect by changing the hydrophobic monomer in the polymer. Major contributions in 

demonstrating the use of alternate hydrophobic moieties have come from work by Keller et 

al. [34,35]. These studies have shown that a related polymer (DIBMA, Mn 8.5 kDa, Figure 3) 
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containing aliphatic diisobutylene in place of aromatic styrene moieties is also functional in 

lipid particle self-assembly. Like SMA, DIBMA is capable of extracting proteins directly from 

cell membranes. The presence of a diisobutylene chain in place of styrene offers a number 

of advantages. The strong UV absorption of styrene overlaps with the UV absorption of 

intrinsic chromophores in membrane proteins (e.g. tryptophan, phenylalanine and tyrosine). 

The presence of diisobutylene in place of styrene allows for UV spectroscopic studies of 

membrane proteins solubilised using DIBMA, without absorption contributions from styrene 

in the polymer belt. In addition, calorimetry and Raman spectroscopy showed that the 

introduction of diisobutylene chains from DIBMA into the encapsulated lipid bilayer led to 

less perturbation of phospholipid bilayer dynamics in the lipid particle than phenyl rings 

from SMA. Jamshad et al.  previously showed that phenyl rings from SMA inter-digitate into 

the bilayer in a similar fashion to cholesterol [23]. It is likely that this reduces molecular 

motions in the region of lipid bilayer near the polymeric annulus, forming a lipid raft-like rim 

in the membrane disc. Should this perturbation occur, it is likely that the physical properties 

of this region of lipid would be significantly different to that of a bulk phospholipid bilayer. 

This has the potential to affect the structure and function of any protein encapsulated in 

this region of the disc. At its most extreme, styrene groups could potentially interact directly 

with the encapsulated membrane protein, for instance inserting between α-helices 

inhibiting conformational changes in the protein. In contrast one might expect that 

diisobutylene chains in place of phenyl rings would provide a more native-like region at the 

polymer:lipid interface.  

In addition, the DIBMA polymer is less sensitive than SMA to the presence of 

divalent cations. This is somewhat surprising as it was assumed that the maleic acid 

constituent of the polymer, which remains unchanged in DIBMA, mediated the interaction 

with divalent cations. These ions cause SMA to precipitate, limiting their use with SMALP-

solubilised proteins, which is an issue particularly where such ions are an important element 

in bioassays. These observations make DIBMA seem an attractive alternative to SMA, 

however as the ability of DIBMA to solubilise a wide range of proteins yet to be proven. 

Nonetheless, the success of DIBMA in forming lipid particles also suggests a new range of 

functional groups for use as the hydrophobic moiety of the polymer. Further alterations in 

the chain-length of these polymers might provide more efficient than the existing polymers, 
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though attempts to form lipid particles from other maleic acid polymers with different 

hydrophobic monomers have been met with no success so far (Sandro Keller, personal 

communication, see Table 2). This suggests that there is a preference for certain chain 

geometries when forming stable lipid particles. 

Influence of the hydrophilic groups of polymers 

It is becoming apparent that changes can be made to the hydrophobic moiety in the 

polymer while retaining its disc-forming capability. The same question can be asked of the 

hydrophilic element of the polymer. There have been several reports where the maleic acid 

groups have been modified to an alternative hydrophilic moiety to produce a polymer which 

is functional in nanodisc formation. The route to modifying the polymer has, in general, 

been through modification of the anhydride form of a “parent” polymer in contrast to 

utilising alternate commercially available polymers with a different hydrophobic moiety. 

This has the advantage of preserving the underlying polymer architectures (e.g. length, 

dispersity and monomer ratios) that are known to be effective in SMALP self-assembly.  

The first modification to the SMA backbone aimed to provide a wide range of 

possible functional chemical modifications to a single SMA polymer. Aubin et al. modified 

the anhydride form of SMA using cysteamine  to add a sulphydril functional group (SMAnh-

SH) before hydrolysis to the acid form (SMA-SH, Mn ND, Figure 3) [36]. Thiolation of SMAnh 

was performed at three molar ratios of cysteamine to SMAnh in the reaction in order to 

demonstrate that SMALP formation and size distribution is unaffected by different degrees 

of thiolation of SMA-SH. The addition of the sulphydril allows a wide range of common 

bioconjugation chemistries, which have been developed for modification of proteins, to be 

applied to the functionalisation of SMA-SH. Reagents developed to take advantage of free 

sulphydrils include dyes, affinity tags (e.g. Biotin), haptens, inorganics (e.g. Nanogold) and 

even antibodies. The presence of the sulphydril also provides the potential to crosslink the 

polymer in free form or as part of a lipid particle to another moiety. For example this could 

allow SMALPs containing proteins to be attached permanently to chromatography matrices 

or surfaces for application in techniques such as surface plasmon resonance (SPR). Other 

groups have built on this work and used the hydrolysed acid functional group to directly link 
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similar moieties to the SMA backbone [37], including using it as an alternative method for 

producing SMA-SH 

Ravula et al. have also taken the approach of modification of a ‘parent’ polymer and 

shown that the substitution of N-(2-aminoethyl) moieties onto the anhydride group of 

SMAnh can be used to produce a positively charged polymer [38]. This new polymer, SMAd-

A (Figure 3, Table 1) was made using a styrene maleic anhydride backbone with a Mn of 1.6 

kDa, which is significantly lower than that for the conventional SMA 2:1 (2000, Mn 3.0 kDa) 

and 3:1 (3000, Mn 3.8 kDa) polymers used for the majority of protein solubilisations to date. 

Despite its smaller size, SMAd-A was effective in producing lipid particles when mixed with 

phospholipids (DMPC). Interestingly it was observed that altering the polymer-to-lipid ratio 

modulated the size of the discs, with larger discs being produced at higher lipid to polymer 

ratios. This observation agreed well with a previous study that shows a similar behavior for a 

3:1 SMA polymer [39].  

Our own unpublished work has shown how the maleic anhydride groups on the 

polymer can be substituted with dimethylaminopropylamine maleimide to form a positively 

charged polymer: poly(styrene-co-maleimide) (SMI, Figure 3). We have shown that despite 

this charge swap, SMI is still able to self-assemble in the presence of lipids into nanodiscs 

and the thermodynamics of this process are fairly similar to those measured for 2:1 SMA, 

3:1 SMA and DIBMA. The size of the discs produced using this process is also similar to the 

other polymers, albeit slightly smaller. The major difference with SMI is that the pH range 

over which it functions is the reverse of that for maleic acid-based polymers. The SMI 

polymer produces lipid particles below pH 7.5 compared to above pH 6.5 for the negatively 

charged SMA polymers. Our data also shows that the positively charged polymer is much 

less sensitive to the presence of divalent cations than maleic acid-based polymers. This 

polymer will be vital in the production of membrane proteins whose properties complement 

these characteristics. For example membrane proteins that function at pH ranges below 7.5 

(e.g. lysosomal proteins, certain acidophilic bacteria) would be more suited to solubilisation 

using this polymer. In addition the polymer could be used for proteins that required 

elevated levels of divalent cations for function (e.g. ATPases, ion-channels). Positive charge 

on the outside of the SMI-lipid particle, compared to the negative charge on the SMA-based 

polymers, could also be of importance in some applications. One potential problem with 
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positive charged polymers is that they are likely to interact with soluble biomolecules during 

the purification process, notably negatively charged proteins and DNA. It is therefore 

advisable that these polymers are used in buffers with a high ionic strength.  

The presence of such a high charge density close to a protein may also influence on 

its function. Proteins such as cytochromes, for which electron transfer is an important part 

of their function, these areas of charge density could significantly influence protein activity. 

Proteins with a net surface charge that is complementary to that of the polymer annulus 

could experience considerable electrostatic attraction to the edge of the particle. Likewise, 

if the net protein charge matches that of the polymer belt the protein could become 

electrostatically confined to the center of the particle. In either case, this might not favour 

optimum protein function. It is also possible that the charge on the polymer may influence 

the areas of a biological membrane with which the polymer is able to interact, influencing 

its ability to solubilise proteins found in such regions. Once again, these effects should be 

mitigated by using buffers with high ionic strength. 

Perhaps in response to these considerations, the hydrophilic element of the polymer 

has also been modified to produce a reagent with both positive and negative charges, 

namely a zwitterionic polymer. In one case, Fiori et al. replaced the carboxylic acid groups 

on SMA with cysteamine-phosphatidylcholine moieties to produce zSMA (Figure 3, Table 1) 

[40] while Ravula et al. substituted one of the carboxylic acid groups on each maleic acid 

moiety with N-(2-aminoethyl)amide to produce SMA-ED (Mn 1.6 kDa, Figure 3, Table 1) [38]. 

It is also important to note that the polymer scaffold on which SMA-ED is constructed is 

structurally closer than zSMA to the original SMA 2:1 polymer. Unlike zSMA, SMA-ED shares 

the same production chemistry for the polymer backbone (using the continually stirring tank 

reactor method), although it has a smaller mass (Mn 1.6 kDa, compared to 3.0 kDa for the 

SMA 2000). Analysis of the activity of the SMA-ED shows that it is as effective at 

solubilisation of DMPC membranes yielding discs that range in radius from approximately 4 

to 10 nm in diameter depending upon the polymer:lipid ratio. The stability of lipid particles 

made using SMA-ED across a pH range showed that unlike SMALPs, the particles were stable 

at extremes of pH but between pH 6 and pH 4 the particles dissociated and aggregated. A 

separate study of the polymer alone showed similar behavior, suggesting that when both 

charged groups were ionized, intermolecular interactions occurred that led to polymer 
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dissociation from the lipid. The polymer was resistant to precipitation by divalent cations 

unlike SMA but this resistance only occurred when the carboxylic acid group was 

protonated at pH below 3.5. Unfortunately, this is incompatible with most membrane 

proteins. 

The zwitterionic polymer made by Fiori et al. used a reversible addition-

fragmentation chain transfer polymerization (RAFT)-synthesised SMA backbone that was 

modified with cysteamine-phosphatidylcholine [40]. As discussed later in this review, RAFT 

polymerization has a significant influence over the topology and size distribution of the 

polymers. Two zwitterionic SMA polymers (zSMA, Figure 3, Table 1) were produced with Mw 

values of approximately 21 kDa and 43 kDa. These were considerably larger than the SMA 

2000-polymer used in most solubilisations, which has an Mw of 7.5 kDa. Studies of these 

polymers showed that each were proficient at solubilising membranes containing 

proteorhodopsin. It is interesting to note that the chemical group added in zSMA is not only 

zwitterionic but also significantly more bulky than the original maleic acid moiety. 

Estimations of the efficiency of extraction efficiency suggested that the zSMAs were as 

effective as conventional SMA 3:1 polymer. The important difference between conventional 

SMA and the zSMA variants was that, like DIBMA, zSMA showed much reduced 

susceptibility to divalent cations. Unlike SMA-ED this resistance occurred over the 

physiological pH range.  

Influence of polymer architecture and size distribution 

It is clear that the constituents of the polymer can have a significant influence on its 

solubilisation efficiency. These moieties are not the only aspect of a polymer that can be 

altered. Both the length of the polymer and the arrangement of monomeric units within the 

polymer sequence can also altered by changing synthesis conditions. In addition the 

dispersity of the polymer can be controlled. It should be forgotten that the vast majority of 

polymer preparations do not contain a single chemical entity but instead contain a statistical 

distribution of polymers. These polymers vary in length and composition around a mean 

value. Depending upon the synthesis conditions the variation from the mean can be 

adjusted producing polymers with high and low structural dispersities. For the SMA class of 

polymers the only aspect of the polymer sequence that cannot be easily altered concerns 
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the maleic anhydride constituent. The formation of a maleic acid to maleic acid bond (M-M) 

in the polymer is not possible in the polymerisation process (Figure 3b). Given this limitation 

a number of studies have examined the influence of polymer length on lipid particle 

formation. The first of these [30] examined a range of different SMA polymers made using 

the continually stirring tank reactor method (CSTR). This method is used to make the 

majority of commercially available polymers as it is easily deployed for the production of 

large quantities.  

CSTR synthesis involves the active addition of reactants into a continuously running 

reaction to maintain a consistent polymer composition. Fully formed polymers are removed 

from the system throughout the reaction. This means, for example, that a polymer made 

using CSTR with parameters set for 3:1 styrene:maleic anhydride acid will contain 

statistically arranged styrene and maleic anhydride moieties in a 3:1 ratio. While CSTR 

produces polymers of relatively homogenous composition, the length of the polymer in the 

final product has a wider distribution than other methods that are discussed later. Analysis 

of the lipid particle formation of a range of these CSTR polymers [30] shows that the length 

of the polymer has a significant influence on whether the polymer is able to form a lipid 

particle. The size of the polymer also dictates whether that particle is stable enough to allow 

a protein-lipid-polymer particle to be captured and purified. These data show that extension 

of the polymer beyond Mn of 10 kDa yielded polymers that showed little or no ability to 

solubilise proteins from membranes.  

It is unclear why increases in polymer length are so detrimental to membrane 

protein solubilisation efficiency. It could be that larger polymers are too long to form stable 

discoidal structures. To examine if this might be true a relatively simple analysis of polymer 

size can be carried out. This is somewhat naïve in concept as it only assumes an extended 

conformation of the polymer but it does give some insights into the scale of the polymer 

verses that of the disc.  If one assumes that the SMA has an extended chain conformation 

when bound to the lipid particle then for each monomer with 2:1 S:M has an approximate 

length of 0.78 nm (3 times the distance between two terminal carbons in propane) when 

extended. If we assume a polymer with a Mn of 3.0 kDa, which is in line with the average 

mass of SMA 2:1 used in most solublisations, then a 2:1 ratio of would have 9 copies of the 

SSM unit. This means that the polymer has a length of 7 nm. Assuming a disc diameter of 10 
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nm, in line with most measurements of disc size, this makes the circumference 31.4 nm. 

Hence, five polymers of 3.0 kDa SMA 2000 are required to encircle an average-sized disc. 

This assumes one layer of SMA but it is possible that two layers of SMA are required to 

cover completely the edge of the disc. Polymers significantly larger than this may be too 

long to comfortably wrap around a 10 nm diameter disc without leaving a free tail. 

Presumably this unassociated polymer reduces the stability of the complex. From 

thermodynamic studies of SMALP self-assembly [29,31] the large negative free energy 

change associated with the polymer upon the vesicle to nanodisc transition indicates that 

the polymers interaction with lipids is favoured over self-interaction, supporting this 

hypothesis. Without more detailed structural information it is difficult to prove that such a 

simplistic analysis of polymer size is accurate in predicting the disc forming capacity of novel 

polymers. However the observation that longer polymers do not function as well as small 

polymers is suggestive that certain sizes of polymer are favoured. In interpreting these data, 

one caveat should be mentioned: studies have also shown that the polymer:lipid ratio can 

alter the size of discs formed. For example Ravula, Fiori, and Hall have all shown that 

increasing the lipid-to-polymer ratio leads to formation of larger discs [31,40,41]. Under the 

different conditions used in each study, it is difficult to understand how this effect is 

modulated by different polymers and will require further research to dissect these effects. 

As already mentioned, the CSTR polymer production method provides good 

composition control but leads to a broad size distribution. In contrast, an alternative 

method of making polymers, reversible addition fragmentation chain transfer 

polymerization (RAFT), allows closer control of both size and polymer sequence. Smith et al. 

used this method to assess the effectiveness of a number of polymer architectures [42]. To 

create these different polymer species, RAFT polymerisation reactions were initiated under 

different starting conditions and samples taken at different stages in the polymerisation 

process. Based on simulations of the polymerisation developed by Smith et al., the 

depletion of monomeric maleimide as the reaction progresses increased the likelihood of 

longer stretches of styrene occurring in the polymer chain. If the reaction were allowed to 

progress to completion, all maleimide would have been incorporated in the chains, leading 

to the excess styrene forming a poly(styrene) tail. These studies showed that the styrene 

content of the polymer has a significant influence on lipid solubilisation capability. In 
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general, polymers made with styrene to maleic acid ratio exceeding 1.5:1 were more 

efficient at solubilising lipid. 

 

Some influence of polymer length was also observed with a shorter version (RAFT-

SMA A1, Mn 2.0 kDa) of a 1.94:1 ratio polymer being much less efficient at solubilisation 

than a longer version (RAFT-SMA A2, Mn 3.0 kDa). This might suggest that there is a lower 

limit for polymer size to be effective at generating lipid particles from a bilayer, although it 

should be noted that a polymer of similar mass (RAFT-SMA B1, Mn 1.8 kDa) but with a 

decreased styrene content (1.5:1 ratio) is an effective solubiliser of lipid. This suggests a 

complex interplay exists between polymer length and styrene-to-maleic acid ratio. The most 

effective polymer made using this method, RAFT-SMA D, was approximately 60% as 

effective as SMA 2000 made using the CSTR method. This polymer had a styrene to maleic 

acid ratio of 1.63:1 and a Mn of 2.8 kDa. Interestingly the architecture of this polymer 

included a short styrene-rich region at one terminus. Comparison of this RAFT-SMA D with 

similar RAFT-SMA (C2 or B3) synthesized with the same monomer ratio and chain length, 

but lacking a poly(styrene) tail, indicated that RAFT-SMA D is more effective. This may 

suggest that in this case the hydrophobic poly(styrene) tail could play a role in lipid particle 

formation. For example its hydrophobicity may mean that it forms the initial interaction 

between the polymer and the lipid bilayer. However one must be careful drawing too many 

conclusions from this experiment as the SMA 2000polymer (produced using CSTR) that was 

more effective at solubilising lipids has no tail. To further confirm that the presence of a 

hydrophobic tail may not be helpful, a RAFT-SMA with similar length and styrene to maleic 

acid ratio to the CSTR-synthesized 2:1 SMA was synthesized (RAFT-SMA E). Again this would 

have a tail containing a high styrene content compared to the CSTR polymer. These 

experiments showed that this polymer was only a third as effective as the SMA 2000 (2:1 

produced using CSTR) polymer at solubilising lipids. This conclusion is supported by Hall et 

al. [31] who showed that a 2:1 RAFT-SMA with a poly(styrene) tail (Mn 6 kDa) is less 

effective in membrane protein solubilisation from E. coli membranes than SMA 2000. The 

authors attributed the decreased performance to the poly(styrene) tail burying into the 

bilayer core of the particle, potentially interacting with the solubilised membrane protein. 
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Smith et al. also examined how polymer length altered the size of the discs produced 

during lipid solubilisation. The most effective polymer produced using the RAFT process (D, 

Mn of 2.80 kDa and an S:M of 1.63:1) produced lipid particles that had a significantly smaller 

size distribution than the CSTR 2:1 (SMA 2000) polymer. This could have important influence 

on the use of this type of polymer. The increased structural homogeneity could have 

advantages for techniques such as small-angle scattering and cryo-EM, where sample 

homogeneity is important. However the reduced disc diameter may mean that a more 

limited number of proteins and their complexes can be solubilised. This correlates with 

observations from zSMA made using RAFT polymerisation that showed that polymers with 

Mn of 21.5 kDa and 43.7 kDa produced discs with diameters of approximately 17 and 35 nm 

respectively [40]. However it should also be noted that the shortest polymer of the 

sequence (Mn of 1.82 kDa) formed larger discs than any of the other polymers in the 

sequence. This is clear evidence of more than one shorter polymer interacting with the lipid 

generating a larger disc. The final observation made in this study was that the ability to 

solubilise pure lipid and lipid-containing protein was not necessarily linked. A set of 

polymers with styrene:maleic acid ratios close to 1.3:1 that were shown to be very 

ineffective solubilisers of pure phospholipids proved to be reasonably good solubilisers of 

membranes containing proteins. There are two possible explanations for this observation; 

either native lipids show more susceptibility to solubilisation, or the polymer is able to 

interact in a more favourable manner to the protein:lipid complex than lipids alone. 

Conclusion. 

The importance of membrane proteins in our understanding of biology means that studying 

their structure and function has to be an essential part of biochemistry as a discipline. This 

interest is magnified by the importance of membrane proteins in human disease and hence 

the development of new drugs and treatments. Despite this our studies of these proteins 

has lagged significantly behind other biomolecules, largely because it is so difficult to 

produce stable active samples of membrane proteins.  

The development of the SMALP method for the solubilisation of membrane proteins in 

2007, for the first time, provided a protocol that allowed membrane proteins to be 

extracted with their local lipid environment intact [9]. This has allowed samples of a number 

of membrane proteins to be generated that retain function and have substantially enhanced 
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stability. However our enthusiasm for extracting membrane proteins using this method has 

exceeded our understanding of the process itself, and more specifically, our understanding 

of the influence of the polymer on the process. In this review we have drawn together a 

number of independent studies that have examined the use of a range of polymer variants 

in the formation of SMALPs and SMALP-like particles. These studies have shown that the 

length and composition of the polymers used to form lipid particles can have significant 

influence over the size and stability of the assembly. There appears to be an optimal balance 

of hydrophobic and hydrophilic character within the polymer exemplified by a range 

between 1.5:1 and 3:1 S:M ratio. In addition there seems to be general agreement that 

polymers with sizes below Mn of 5 kDa offer the optimum performance in the formation of 

lipid particles. The polymer sequence has also been shown to influence activity; polymers 

without a styrene tail are in general the most effective solubilisers. 

The introduction of different hydrophobic and hydrophilic monomers has shown 

that the overall approach is surprisingly rugged, with a wide range of substituents 

supporting lipid particle formation. This has allowed a range of polymers with different 

physical properties to be developed that will have applications in areas where the existing 

SMA polymers do not perform (e.g. at low pH and high divalent cation concentrations).  

Finally the development of polymers that allow sporadic functionalisation (e.g. SMA-

SH) provide the exciting opportunity to generate reagents for specific downstream 

applications, including  polymers that bind to specific resins or surfaces or that can be 

tracked optically. 

All of these developments are substantially increasing the reagent “tool kit” available 

to the study of membrane proteins as well as providing a simpler alternative to the 

historical detergent screening process. For example, polymers forming larger discs would be 

ideal for the solubilisation of large membrane proteins and complexes. Increased structural 

homogeneity of the resultant nanodiscs would be ideal for downstream applications such as 

small angle scattering and the rapidly evolving field of cryo-TEM. Likewise, if low pH or the 

presence of divalent cations is required for function or stability of the membrane protein of 

interest, polymers have now been developed that can tolerate these solution conditions. .  

However, a number of caveats should be noted in response to the development of 

new lipid disc-forming polymers. Firstly, the majority of these polymers have not been 

tested on a wide range of biological membranes. Secondly, it will take some time to discover 
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whether these new polymers are applicable in the production of a broad range of proteins. 

Lastly, the growth in the number of polymers means that it may be more difficult to choose 

the ideal reagent for all downstream applications, leading to the requirement for polymer 

screening. Nonetheless, the advantages of certain polymer variants cannot be disputed, and 

development of further variants with optimized properties for given applications should be 

encouraged. With this comes the necessity for consistent comparisons to known and widely 

used polymers to facilitate the process of choosing the best performing polymer for the 

desired application. This approach has been successfully adopted in recent studies 

[30,36,42] and, if continued, will lead to more widespread adoption of the exciting new 

polymers that are being developed.  

It is clear from this review that the success of the SMALP method has generated a lot 

of interest in the research community, which has also catalysed the development of new 

and improved  lipid disc-forming polymers. This can only go to ensure that the production of 

membrane proteins using the SMALP method will grow in success and acceptance. The 

generation of new polymers has certainly opened a wide variety of additional routes to help 

in the production of membrane proteins. However time will tell whether these new 

reagents will perform better than established polymers. In particular it will be interesting to 

see whether these new polymers address some of the persistent issues with SMALP 

methods including perhaps the most important issue, the preservation of conformational 

changes in encapsulated membrane proteins.  
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FIGURES. 
 
Figure 1. Schematic representation of the 3-stage SMALP self-assembly process. a. SMA 
(green ribbons) chains adsorb to the phospholipid bilayer surface. b. SMA chains bury into 
the acyl core of the bilayer until the membrane is saturated with polymer. c. As the 
membrane becomes saturated with polymer, it becomes destabilised, allowing for SMALP 
formation. SMALP nanodiscs are stabilised by burying of phenyl groups of SMA into the acyl 
core of the phospholipid bilayer, while acid groups allow interaction with the aqueous 
solvent. 



19 
 

 



20 
 

 
 
Figure 2. The four modes of variation for SMA and SMA-related polymers used for lipid 
particle production. a) A diagrammatic representation of a generic SMA polymer. Orange 
circles represent the hydrophobic styrene groups and blue circles represent the hydrophilic, 
negatively charged maleic acid groups. b) Changing the monomer ratio. The most common 
variants tested have consisted of either a 1:1, 2:1 or 3:1 styrene:maleic acid ratio. These can 
either be strictly alternating or stastistically arranged monomer units, though synthesis 
conditions prohibit the formation of maleic acid dimers. c) Modification of the hydrophobic 
groups. Aromatic phenyl rings can be replaced by branched aliphatic chains. d) Modification 
of the hydrophilic groups. The hydrophilic groups can be modified in two ways, either by 
complete substitution of maleic acid during synthesis to yield polymers of differing charge, 
or by functionalisation of an SMA polymer to add additional functional groups. e) Utilising 
alternative synthesis methods to generate polymers of differing architectures and size 
distributions. Continually stirring tank reactor (CSTR) synthesis yields statistically arranged 
monomer units along the polymer whilst giving a broad size distribution as measured by the 
polydispersity index. Reversible addition-fragmentation chain transfer (RAFT) 
polymerization yields alternating polymers with an extended hydrophobic tail, with a much 
more narrow size distribution. 
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Figure 3. Chemical structures of different SMA polymer derivatives used for membrane 
protein encapsulation. The polymers have been categorised according to the synthesis 
method. Hydrophobic and hydrophilic functional groups are coloured red and blue, 
respectively. Modifications made to the hydrophilic groups have been coloured green. 
Purple functional groups correspond to the end-group present on the polymer due to the 
choice of RAFT agent used during polymer synthesis. 
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TABLE 1. Summary of SMA and SMA-like polymers used for the production of lipid particles. Where available, details of the lipid particles 
produced by each polymer are included. Qualitative assessments of lipid and membrane protein solubilisations are made with reference to 
solubilisation using SMA 2000. 
 
 
Polymer 
Name 

H-
phobic 

H-
philic  

% 
MA 

Secondary 
Functional-
isation 

Mw 
(g/M) 

Mn 
(g/M) 

Method Disk 
Size 

pH Range Ions Solubi
lisatio
n  
Lipid 

Lipids 
investigat
ed 

Solubil
isation 
Protei
n 

Proteins 
investigate
d 

SMA 1000 Styrene Maleic 
Acid 

50  5500 2000 CSTR  Only pH 8 
published 

   1 LeuT, ZipA, 
BmrA [30] 

SMA 2000 Styrene Maleic 
Acid 

33  7500 3000 CSTR 10 > pH 7.5 < 4 mM 
MgCl2 or Ca 

3 Examples 
include 
DMPC, 
POCP/PO
PE [32] 

3 Examples 
include 
bacteriorho
dopsin, 
PagP [9] 
LeuT, ZipA, 
BmrA [30] 

SMA 3000 Styrene Maleic 
Acid 

25  9500 3800 CSTR 5 
(DLS) 

Only pH 8 
published 

MgCl2 not 
tolerated 

Succes
ful - 
No 
compa
rison 
to 
SMA2
000 

Native 
mitochon
drial 
membran
es [22] 

2 Examples 
include 
SecYEG 
[43] LeuT, 
ZipA, BmrA 
[30] 

XZ09006 Styrene Maleic 
Acid 

40  7500  CSTR  Only pH 8 
published 

< 4 mM 
MgCl2 

  2 
LeuT, ZipA, 
BmrA [30] 

 XZ09008 Styrene Maleic 
Acid 

25  10000  CSTR 5 
(DLS) 

Only pH 8 
published 

MgCl2 not 
tolerated 

  3 
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SZ40005 Styrene Maleic 
Acid 

42  5000 2000 CSTR  Only pH 8 
published 

   1 

SZ25010 Styrene Maleic 
Acid 

25  10000  CSTR  5 
(DLS) 

Only pH 8 
published 

MgCl2 not 
tolerated 

  3 

SZ42010 Styrene Maleic 
Acid 

42  10000  CSTR  Only pH 8 
published 

   1 

SZ33030 Styrene Maleic 
Acid 

33  30000  CSTR  Only pH 8 
published 

   1 

SZ28065 Styrene Maleic 
Acid 

28  65000  CSTR  Only pH 8 
published 

   1 

SZ28110 Styrene Maleic 
Acid 

28  11000
0 

 CSTR  Only pH 8 
published 

   1 

SZ30010 Styrene Maleic 
Acid 

31  10000 2500 CSTR  Only pH 8 
published 

   3 

Rhodobact
er 

sphaeroide
s reaction 

centres 
(RCs) 
[44] 

 

SZ30030 Styrene Maleic 
Acid 

33  30000 9000 CSTR  Only pH 8 
published 

   3 

SZ26030 Styrene Maleic 
Acid 

24  10000 4000 CSTR  Only pH 8 
published 

   3 

SZ26080 Styrene Maleic 
Acid 

25  80000 32000 CSTR  Only pH 8 
published 

   2 

SZ26120 Styrene Maleic 
Acid 

25  12000
0 

48000 CSTR  Only pH 8 
published 

   2 

SZ20010 Styrene Maleic 
Acid 

19  11000 25000 CSTR  Only pH 8 
published 

   0 

DIBMA  Diisobut
ylene 

Maleic 
Acid 

  15000 8500 CSTR 30 
(DLS) 

pH 7.4 
and 8.3  

At least 20 
mM Ca2+ or 
Mg2+ 

3 DLPC, 
DMPC, 
DPPC, 
POPC [36] 

3 OmpLA and 
range of 
MPs by 
SDS-PAGE 
[34] 
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SMA-SH Styrene Maleic 
Acid 

33 Cysteamin
e 

7500 Not 
publis
hed 

CSTR 10 
nm 
(TEM
DLS) 

Only pH 8 
published 

Not 
published 

3 DMPC 
[36] 

3 Bacteriorho
dopsin [36] 

A1 Styrene Maleic 
Acid 

5 Terminal 
malemide 

1200 2000 RAFT  

Published 
pH 7.4 

 1 

Liss Rho 
PE with 
DOPC 
[42] 

 
 
 
 
 
 
 
 
 
 
 
 

Liss Rho 
PE with 
DOPC 
[42] 

 

  

A2 Styrene Maleic 
Acid 

5 Terminal 
malemide 

2200 3000 RAFT   2   

A3 Styrene Maleic 
Acid 

5 Terminal 
malemide 

7600 9100 RAFT   2   

B1 Styrene Maleic 
Acid 

10 Terminal 
malemide 

1500 1800 RAFT   2   

B2 Styrene Maleic 
Acid 

10 Terminal 
malemide 

3700 2300 RAFT   2   

B3 Styrene Maleic 
Acid 

10 Terminal 
malemide 

4200 3300 RAFT   2   

B4 Styrene Maleic 
Acid 

10 Terminal 
malemide 

5100 5100 RAFT   2   

B5 Styrene Maleic 
Acid 

10 Terminal 
malemide 

7100 7000 RAFT   1 0 

Oligomeric 
membrane 

protein 
[42] 

 

C1 Styrene Maleic 
Acid 

20 Terminal 
malemide 

1700 1400 RAFT   1 2 

C2 Styrene Maleic 
Acid 

20 Terminal 
malemide 

3700 2500 RAFT   1 2 

C3 Styrene Maleic 
Acid 

20 Terminal 
malemide 

4200 3900 RAFT   1 2 

C4 Styrene Maleic 
Acid 

20 Terminal 
malemide 

4800 4100 RAFT   1 2 

C5 Styrene Maleic 
Acid 

20 Terminal 
malemide 

5900 5000 RAFT   1 0 
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D Styrene Maleic 
Acid 

25 Terminal 
malemide 

3100 2900 RAFT   3 3 

E Styrene Maleic 
Acid 

33 Terminal 
malemide 

3800 3400 RAFT   2   

F Styrene Maleic 
Acid 

25 Terminal 
malemide 

7000 5400 RAFT   2 0 Oligomeric 
membrane 
protein 
 [42] 

HPBD-b-
(P4VP28)2 

Poly(4-
vinylpyri
dine) 

Hydro
genate
d 
polybu
tadien
e 

 Encased in 
MSP1E3D1 

1000 9000 RAFT 11 
(DLS) 

pH 7.5   Succes
ful - 
No 
compa
rison 
to 
SMA2
000 

E. coli 
polar lipid 
42] 

Succes
ful - 
No 
compa
rison 
to 
SMA2
000 

MsbA [45] 

SMA-ED Styrene Maleic 
Acid 

57 Ethylene-
diamine 

 1600 CSTR 5-10  Stable at  
pH < 5 
and > 7 

< 200 mM 
Ca2+ and 
Mg2+ at pH 
3.5. No 
tolerance at 
pH 8.5 

Succes
ful - 
No 
compa
rison 
to 
SMA2
000 

DMPC 
[38] 

  

SMAd-A Styrene Maleic 
Acid 

57 Dehydrate
d SMA-ED 

 1600 CSTR 3-10  Stable at 
pH < 6 

< 200 mM 
Ca2+  and 
Mg2+ at pH 
3.5.  

Succes
ful - 
No 
compa
rison 
to 
SMA2
000  

DMPC 
[38] 

  

SMA-EA Styrene Maleic 57 Ethanolami  1600 CSTR    Succes DMPC   
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Acid ne ful - 
No 
compa
rison 
to 
SMA2
000 

[41] 
 

zSMA1 Styrene Maleic 
Acid 

 Phosphatid
ylcholine 

12,500 ND RAFT 10 
nm 
(DLS) 

pH 5 and 
8 

< 5 mM Mg 
or CaCl2 

3 

E. coli 
total lipid 

[40] 
 

3 

MsbA [40] 
 

zSMA2 Styrene Maleic 
Acid 

 Phosphatid
ylcholine 

21,500 35,000 RAFT 17 
nm 
(DLS) 

  Succes
ful - 
No 
compa
rison 
to 
SMA2
000 

Succes
ful - 
No 
compa
rison 
to 
SMA2
000 

zSMA3 Styrene Maleic 
Acid 

 Phosphatid
ylcholine 

43,800 53,000 RAFT 30 
nm 
(DLS) 

  Succes
ful - 
No 
compa
rison 
to 
SMA2
000 

Succes
ful - 
No 
compa
rison 
to 
SMA2
000 

Table 2.  A list of polymers that have been unsuccessfully trialled for lipid particle production (personal comm. Dr Sandro Keller) 
 
Polymer name Polymer Composition Mw 

(g/mole) 
Lipid 
tested 

Supplier 

Nvoy Chemical structure not revealed by manufacturer 5000 POPC Expedeon 

No trade name supplied Poly(isobutylene-alt-maleic anhydride) 6000 POPC Sigma 
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EUDRAGIT® E 100 Poly(butyl methacrylate-co-(2-di-methylaminoethyl) methacrylate-co-methyl 
methacrylate) 

47000 POPC Evonik 

EUDRAGIT® E PO Poly(butyl methacrylate-co-(2-di-methylaminoethyl) methacrylate-co-methyl 
methacrylate) 

47000 POPC Evonik 

EUDRAGIT® L 100 Poly(methacrylic acid-co-methyl methacrylate) 125000 POPC Evonik 
EUDRAGIT® S100 Poly(methacrylic acid-co-methyl methacrylate) 125000 POPC Evonik 
Gantrez AN-119 Poly(methyl vinyl ether-co-maleic acid) 130000 DMPC Ashland 
EUDRAGIT® FS 30 D Poly(methyl acrylate-co-methyl methacrylate-co-methacrylic acid) 280000 POPC Evonik 
EUDRAGIT® L 30 D-55 Poly(methacrylic acid-co-ethyl acrylate) 320000 POPC Evonik 
EUDRAGIT® L 100-55 Poly(methacrylic acid-co-ethyl acrylate) 320000 POPC Evonik 
EUDRAGIT® NE 40 D Poly(ethyl acrylate-co-methyl methacrylate) 750000 POPC Evonik 
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