UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

Variations in approaches to urban climate adaptation

Anguelovski, Isabelle; Chu, Eric; Carmin, JoAnn

DOI: 10.1016/j.gloenvcha.2014.05.010

License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version Peer reviewed version

Citation for published version (Harvard):

Anguelovski, I, Chu, E & Carmin, J 2014, 'Variations in approaches to urban climate adaptation: Experiences and experimentation from the global South', *Global Environmental Change*, vol. 27, pp. 156-167. https://doi.org/10.1016/j.gloenvcha.2014.05.010

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

Published as above, final version of record available at https://doi.org/10.1016/j.gloenvcha.2014.05.010.

Checked 16/5/18

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

ABSTRACT

1

2 3 In recent years, an increasing number of local governments are recognizing the impact of climate change 4 on different urban sectors. This has led many to pursue climate adaptation planning, seeking to achieve 5 preparedness through reducing vulnerability and enhancing resilience of populations, assets, and 6 municipal operations. Although cities typically share these common goals, many are electing to pursue 7 different planning approaches. In this paper, we examine three climate adaptation planning approaches in 8 the cities of Quito (Ecuador), Surat (India), and Durban (South Africa) and analyze the trade-offs 9 associated with different planning pathways and different forms of stakeholder involvement. We assess 10 the potentials and limitations of these different approaches, including their implications for enhancing 11 government integration and coordination, promoting participation and adaptive capacity of vulnerable 12 groups, and facilitating overall urban resilience. We find that, in order to gain widespread commitment on 13 adaptation, sustained political leadership from the top, departmental engagement, and continued 14 involvement from a variety of stakeholders are integral to effective decision-making and institutionalization 15 of programs in the long run. When climate adaptation is advanced with a focus on learning, awareness, 16 and capacity building, the process will likely lead to more sustained, legitimate, and comprehensive 17 adaptation plans and policies that enhance the resilience of the most affected urban areas and residents. 18 19 20 Keywords: Climate adaptation; cities; planning; experimentation; innovation; participation 21 22

1 1. Introduction

2

3 Planning for climate change adaptation is one of the most complex and intricate challenges that 4 cities are currently facing. While adaptation policies are being developed at national and regional levels 5 as centerpieces of adaptation governance arrangements directed toward lower levels (Bauer et al., 2012; 6 Biesbroek et al., 2010), municipalities have a central and critical role to play in adaptation planning and 7 implementation. As climate change will exert compounding effects on cities (da Silva et al., 2012), 8 municipalities must effectively respond to these shifting climate factors and be proactive at multiple scales 9 while, at the same time, maintaining basic urban infrastructure and service providing functions 10 (Amundsen et al., 2010).

11 In vulnerable and growing cities, the challenges posed by climate change are even more acute. 12 On top of addressing particular project climate impacts, planners and policy makers must also take into 13 consideration the geographical spread, growth patterns, and the conditions and locations of the urban 14 poor. In cities in the global South, climate impacts are compounded as these municipalities are often ill 15 equipped for adaptation due to ineffective local governments and inadequate services, housing, and 16 infrastructure provision (Satterthwaite et al., 2007). These cities often lack institutional capacity or have 17 difficulty preventing conflicts among departments over scarce financial resources (Hardoy and Romero-18 Lankao, 2011). Despite such constraints, many local governments are increasingly being approached by 19 different international organizations interested in testing and implementing urban adaptation programs 20 through technical assistance (Ayers, 2009; Anguelovski and Carmin, 2011). Although external actors are 21 often primary drivers for urban adaptation planning, the successful institutionalization of adaptation 22 programs requires political leadership, ongoing resource dedication, and procedural legitimacy within city 23 governments.

24 Over the past few years, more and more cities have developed internal plans, programs, and 25 projects to address climate impacts. In this paper, we examine three municipalities in the global South -26 Quito, Surat, and Durban – that have been moving forward with climate adaptation action, but who have 27 adopted quite different planning and institutionalization pathways. We illustrate these different 28 approaches over time, assess the implications of each planning pathway for institutionalizing climate 29 adaptation action, and unpack the trade-offs between approaches. Our key analytic framing questions 30 are: How do municipalities in the South overcome existing obstacles to engage in adaptation planning 31 action? What are the factors and conditions that help municipalities move forward? Are they paralyzed by 32 resource and capacity constraints or do they actually transform them into opportunities for innovation and 33 experimentation? The results show that when climate adaptation is planned in a way that generates initial 34 learning, awareness, and integration into the city's development agenda while also building internal and 35 external capacity, the process gives space to the development of comprehensive adaptation actions that 36 eventually facilitate the resilience of the most affected areas and groups.

2.

Theories of experimentation and innovation in urban climate adaptation

3 Many cities have begun to search for options and paths to best prepare for climate impacts and 4 risks (Carmin et al., 2012; Romero-Lankao and Dodman, 2011). They often use existing data or 5 commission assessments of future climatic conditions as a basis for identifying adaptation options and 6 priorities (Hay and Mimura, 2006; Romero-Lankao and Qin, 2011; Smit and Wandel, 2006). Hazard-7 based approaches focus on applying climate change projections to the local scale in order to identify 8 hazard impacts (Füssel, 2007), while vulnerability approaches examine the socioeconomic factors that 9 determine the sensitivity and coping capacity of urban systems and societies (Miller et al., 2010). To an 10 extent, the latter approach sees future climatic conditions as too uncertain to warrant interventions tied to 11 particular climatic regimes. Cities work to strengthen existing systems while also managing a wide range 12 of uncertain conditions (Tyler and Moench, 2012; da Silva et al., 2012).

13 Due to the relative novelty and uncertainties associated with different climate adaptation planning 14 methodologies, experimentation, innovation, and creativity characterize the ways in which municipalities 15 engage in adaptation on the ground (Anguelovski and Carmin, 2011). In some cases, cities benefit from 16 the leadership of a local champion or a lead department working one-on-one with different actors to 17 generate momentum and plan around climate adaptation. In other instances, adaptation is shared across 18 offices such as public health or water and sanitation. In other instances still, the planning process is 19 developed through a citywide integrated assessment, with focuses on developing general climate or 20 adaptation plans, and then subsequently delegating mainstreaming and implementation responsibilities to 21 municipal departments (Carmin et al., 2012). During the adaptation planning phase, some cities engage 22 with international organizations that provide orientation, funding, and technical direction, although the 23 most vulnerable urban groups often end up receiving the least amount of support (Avers, 2009; Barrett 24 2013). These different approaches highlight a pattern of practicing inquiry, testing, and reflection that is 25 particularly important in light of incomplete information on long-term climate impacts (Tshakaert and 26 Dietrich, 2010).

27 Two issues that municipalities often consider when pursuing adaptation are issues of coordination 28 and the prospects of integrating adaptation into ongoing work at the departmental level (Groven et al. 29 2012; van den Berg and Coenen, 2012). Capacities required for implementing climate adaptation are 30 often constrained by economic (such as funding), institutional (such as unfriendly public policies or laws), 31 political (such as relationships between municipal departments or the relative lack of visibility and power 32 of environmental programs), and competing development considerations, which ultimately crowd out 33 adaptation concerns from the overall planning agenda (Simon, 2012; Chuku, 2010; Mees and Driessen, 34 2011; Urwin and Jordan, 2008). Internal sectoral divides or an overly sectoral focus on adaptation, such 35 as around key departments like water, also tend to limit a more sustained approach to adaptation 36 planning and implementation (van den Berg and Coenen, 2012). Lastly, cities are devising strategies to 37 mainstream adaptation into development and other urban agendas (Hug and Reid, 2004; Anguelovski

and Roberts, 2011; Smit and Wandel, 2006), which are meant to increase policy coherence, avoid
 duplication and contradictions between policies, and balance adaptation with other concerns (Kok and de
 Coninck, 2007).

4 Participation and partnership techniques are critical to the accountability and effectiveness of 5 urban adaptation planning and implementation processes (Aylett, 2010; Kithiia and Dowling, 2010; 6 Rosenzweig and Solecki, 2010; Anguelovski and Carmin, 2011). Processes that involve local 7 stakeholders shape government decisions (Shackley and Deanwood, 2002) and promote strategies and 8 policies best suited to local realities and experiences (van Aalst et al., 2008). For instance, participatory 9 vulnerability assessments help identify feasible and practical adaptation strategies in local communities 10 (Smit and Wandel, 2006). Many cities target local networks of stakeholder groups through the formation 11 of climate action committees, task forces, and knowledge brokers (Anguelovski and Carmin, 2011; Lu, 12 2011) and shape their adaptation planning and implementation methodologies according to their results 13 and recommendations. Network governance contributes to raising awareness of the need for climate 14 adaptation (Klausen et al., forthcoming). Others work with private sector companies to promote projects, 15 such as green roofs in the context of urban stormwater management, and they show a high level of public 16 responsibility in guiding the implementation of those projects (Mees et al., 2013).

17 Despite growing scholarship on climate adaptation, more attention needs to be given on 18 unpacking and assessing the different approaches that urban governments take in adaptation planning. 19 There is also a lack of understanding around how climate adaptation programs are eventually 20 mainstreamed and institutionalized and what trajectories municipalities choose to take to accomplish this. 21 In this paper, we highlight the experience of three cities in the global South to examine how adaptation 22 approaches emerge and take root, the ways in which strategies develop over time, and how local actors 23 and institutions affect the pathways through which adaptation is implemented and integrated into 24 municipal structures. Finally, we draw lessons on these planning experiments and consider the strengths 25 and challenges of each approach for enhancing the ability of urban actors, institutions, and infrastructures 26 to cope with, recover from, and be resilient to future climate impacts (Tyler and Moench, 2012).

27 28

29 3. Methods

30

This paper is based on fieldwork conducted in the cities of Quito (Ecuador), Surat (India), and Durban (South Africa). We selected these three "early adaptor" cities because they have a history of anticipating climate risks and needs, initiating adaptation planning, and institutionalizing adaptation programs. The three cities all have strong international profiles in climate adaptation networks and have received much attention for their work. They are all situated in middle-income countries in the global South with acute developmental, fiscal, and capacity constraints. These cities also experience varying levels of reliance on donor, multilateral, and intergovernmental resource transfers. However, climate 1 adaptation goals and priorities were initially framed and pursued differently across each city. As a result, 2 over time, the Surat, Quito, and Durban cases took on different forms of innovative methodologies for 3 adaptation planning and institutionalization. Such commonalities and variations allow us to better 4 understand the relationship between different adaptation planning processes, implementation approaches, 5 and the levels of commitment across cities.

6 Data for this study was collected through semi-structured interviews with key informants recruited 7 through snowball sampling from 2008 to 2013 (see Appendix for list of interviews), through participant 8 observation of meetings and events related to climate adaptation, and through secondary data collection 9 (including official city annual reviews, project reports, municipal budgets, local newspaper articles, and 10 reports from international institutions). We analyzed our data through a thematic analysis based on the 11 indicators outlined in Table 1, which seek to identify motivations, priorities, and approaches to public 12 engagement. We then used these indicators to assess the current state of adaptation action and 13 institutionalization across Quito, Surat, and Durban. As a methodological contribution to the literature, 14 these indicators are critical for assessing urban climate adaptation processes because they shed light on 15 the institutional contexts driving and enabling adaptation planning, the mechanisms through which 16 adaptation plans were operationalized, and the relationship between adaptation and other urban planning 17 and decision-making actors across different scales. The comparative assessment of the three cases will 18 focus on the trade-offs associated with different adaptation planning pathways and different forms and 19 degrees of stakeholder involvement.

20

21 [Insert Table 1 here]

22 23

24 4. Variations in approaches to urban climate adaptation

25 26

27

4.1. Quito: municipality-driven adaptation

28 Climate change is expected to intensify extreme weather events and rainfall in Quito, while 29 decreasing annual precipitation by 8% (Zambrano-Barragán, 2012). As average temperatures have 30 increased, the Antisana glacier around Quito, whose ecosystems supply a large portion of water to the 31 city's 2.1 million inhabitants, has shrunk by 23% between 1993 and 2005 (Bradley et al., 2006; Maisincho 32 et al., 2007). Climate impacts are likely to exacerbate landslides and mudslides across the city, stress the 33 existing transportation infrastructure, affect biodiversity and food production, and endanger indigenous 34 and migrant populations living on the city's hillsides and slopes (Dirección Metropolitana Ambiental y 35 Fondo Ambiental, 2008; Zambrano-Barragán, 2012).

36

37 4.1.1. Building blocks for climate adaptation planning

2 No national laws or policies, international frameworks, or national funding schemes initially 3 existed to guide and support Quito's efforts to prepare for the impacts of climate change. Early awareness 4 of climate impacts stems from the combination of two related factors: the publication of scientific reports 5 by renowned scientists in the mid-1990s (Semiond et al., 1998) and the exposure to extreme weather 6 impacts. Growing sensitivity to the rate of glacial melt, along with information about the doubling of 7 Quito's population by 2025, served as catalysts for the City Council and the General Manager of the 8 EMAAP-Q (the Metropolitan Sewage and Drinking Water Authority) to start making provisions to secure 9 the city's water supply. Back then, the vocabulary of adaptation was not used, but the EMAAP-Q 10 managers became aware that they had to act quickly to address water scarcity. Additionally, floods, 11 landslides, and forest fires increased in frequency and intensity over the 2000s, which helped bring 12 climate change to the forefront of policy issues. For instance, in May 2006, intense rainfall provoked 13 landslides in residential neighborhoods, damaging houses and obstructing roads (Sánchez, 2006). As the 14 Director of Quito's Risk Management Unit (2009) explains:

15 16

17

18

1

"Rainfall is not normal... sudden storms [are becoming] more frequent. Houses are affected. So we became aware that climatic changes increased the vulnerability of at-risk areas and that we needed new management plans based on those different risks... we also needed a long-term vision for development."

19 Adaptation planning in Quito began when former Mayor Paco Moncayo and members of the 20 Metropolitan Council hosted the Clima Latino Conference in October 2007. Climate Latino was a 21 conference for the Andean Community of Nations meant to help governments identify appropriate climate 22 change measures and to showcase existing adaptation action. Through the work of an Inter-Institutional 23 Commission representing a variety of sectors and agencies throughout the Metropolitan Government of 24 Quito (DMQ), a draft climate change strategy addressing both mitigation and adaptation was prepared in 25 late 2007. The feedback on the draft document offered by public agencies revealed that planning for 26 climate adaptation in Quito would not be a straightforward task, and that the staff from the Environmental 27 Secretariat in charge of climate action planning in Quito needed to be both specific and flexible in the final 28 Quito Climate Strategy. As a member in the Territorial Planning Office (2009) explains:

29 "Agencies in Quito did not formulate climate adaptation as a long-term vision, but as a 30 solution to specific problems. Long-term planning is about the appropriate management of 31 the environment—the rivers, the hillsides, and air pollution. We slowly incorporated, with 32 greater detail, the idea of 'risks' into our work."

After further input from residents, the *Quito Strategy for Climate Change* (EQCC) was approved in October 2009, and has since become an official environmental policy and cross-institutional planning tool for the DMQ. The strength of the EQCC is that it harnesses citizen representation to form urban institutions that are flexible, progressive, and adaptable (Quito Distrito Metropolitano, 2009).

37 Quito's climate adaptation work builds on existing plans in the municipality. The EQCC is in line

1 with the Metropolitan Development Plan 2012-2022, which establishes climate adaptation as a strategic 2 axis of action in the Green Quito Objective. Similarly, Quito's existing environmental programs planted the 3 seeds for adaptation planning. For example, the Risk Management Unit developed a Rain Plan back in 4 1999 to establish disaster response measures for extreme weather events. The EQCC, therefore, is 5 building on the city's vision and existing priorities for sustainable development.

6 7

4.1.2. Internal operationalization, coordination, and institutionalization

8

9 In order to operationalize the EQCC, in 2010 the municipality began to develop a Climate Change 10 Action Plan (2012-2016). The Action Plan emphasizes reducing social vulnerability to extreme climate 11 events and combining tools and methods from land use and urban planning. Quito is implementing the 12 Action Plan's climate vulnerability and risk reduction measures by relocating people, promoting 13 sustainable land use planning, protecting slopes, improving the sewer system, creating an early warning 14 system and climate monitoring, building capacity, and enhancing forest fire prevention and control. 15 Coupled with these initiatives, the municipality designed ecological corridors, planned new green spaces, 16 developed an Integrated Water Management System, and defined a Protected Area Sub-System in order 17 to better protect local ecosystems. Lastly, 60 new gardens are being built every year and 1,000 people 18 are being trained to participate in urban agriculture.

19 The development and implementation of Quito's Climate Change Action Plan reflects the holistic 20 vision of decision-makers to maximize mitigation strategies that also contribute to adaptation and build 21 resilience. Adopted actions have to create win-win results. For instance, some strategies combine 22 benefits derived from reforestation, water conservation, and biodiversity. As the former Metropolitan 23 Director of Environmental Policy and Planning explains (2012):

24 "Not only is there a highly urban Quito, there is also an urban/rural Quito. This forces the 25 city to really think differently about how to address climate change related challenges. It 26 also means that policy makers, academics, and other relevant stakeholders must have a 27 holistic approach to addressing climate change related challenges and learn to prioritize 28 climate change related issues."

29 As such, one of the main drivers for the institutionalization of climate adaptation action is the strong 30 commitment of different municipal administrations to the issue of adaptation. In the face of political 31 instability, they have worked to ensure that departments take ownership over these actions. A civil 32 servant working on climate adaptation planning back in 2009 explains:

33

34

"The priority is how to incorporate climate adaptation in a way that is more grounded. What does adaptation mean for decision-makers, and in a context in which they need to confront

35 many different necessities in the short term?"

36 Today, climate adaptation is being incorporated into local institutional practices as an added value to 37 specific climate-related interventions, such as into existing forest fire prevention strategies. However, 1 adaptation is an issue that policy-makers are committed to not only because of Quito's vulnerability to 2 climate impacts, but also because it entails political gains. Some interviewees mention that members of 3 the Metropolitan Council see climate change as a way to raise their political profiles, which explains why 4 the issue is, so far, guaranteed resources and support.

5 On the ground, the Environmental Secretariat is currently the focal point for climate adaptation 6 work in Quito. Staff members from the Secretariat dedicate much effort to helping other sectors consider 7 climate change not solely as an environmental issue. Climate change is one of the few domains that can 8 be connected to different departments through an intra and inter-institutional articulation. As the former 9 Metropolitan Director of Environmental Policy and Planning again explains (2013):

10 "Our role—everything. If the Secretariat stops talking about climate adaptation, no one will 11 keep that work officially. They will keep implementing the projects because it is part of their 12 planning processes but they won't focus on added value for adaptation [...]. Climate change 13 is a topic that facilitates relationships with other institutions. It is crosscutting. We have 14 established relationships with them."

As a result, an Inter-institutional Climate Change Metropolitan Committee has been created to help different departments interact with one another and monitor and evaluate climate actions.

17

18 4.1.3. Engaging relevant stakeholders and partners

19

As Quito made strides towards sustained and comprehensive climate action, the city became increasingly conscious of the importance of incorporating scientific expertise into climate adaptation and improving decision-makers' access to research. In 2010, the Quito Panel on Climate Change was created to commission scientific studies by leading Ecuadorian experts and scientists and to monitor climate impacts on the city. This decision demonstrates the willingness of a municipality to delegate tasks and develop a joint research agenda through an alliance between the public and the academic sectors.

The process of climate planning in Quito also reflects the longstanding commitment of public officials to ensure that residents are able to participate in decision-making and implementation of public policies that affect them. This is what the municipality calls "co-responsibility" and "participatory collective management." Since the adoption of the EQCC, a Youth Program has helped younger citizens develop their own climate action plan, frame recommendations to decision-makers, and raise the visibility of climate change throughout the city and country. As noted by the Environmental Secretary in 2011, this commitment is based on the recognition that:

"The local management of climate change requires a dynamic approach based on the
 concept of 'learning by doing' and on change towards a paradigm where nature is
 recognized as a subject of rights and human beings as part of it."

1 Towards this end, some adaptation strategies involve the rescue and valorization of traditional knowledge 2 and practices, especially agricultural practices of vulnerable indigenous peoples living on the hillsides 3 around the city.

4 One unique characteristic of Quito's climate adaptation work is the deep, constant, and proactive 5 engagement with international networks. Former Mayor Paco Moncayo was active in international 6 networks such as ICLEI-Local Governments for Sustainability and United Cities and Local Governments 7 (UCLG) and became exposed to the importance and relevance of climate change through discussions 8 with other cities. In 2007, when Quito organized Clima Latino, policy-makers not only wanted to show that 9 they were good stewards and to gain a competitive advantage over other cities, but they also aimed at 10 validating their climate initiatives through gaining legitimacy and support locally, nationally, and regionally 11 for their actions. As a consultant for the EQCC recalls:

12 "The EQCC was a document that could be helpful for other climate change documents within 13 and beyond the country. Quito showed leadership by being the first city to have a climate 14 change strategy. It was a great demonstration for the country."

Quito's elected officials believed they would reinforce their position as an innovative city and that they would be imitated for their climate leadership and political capacity. Progress in adaptation also reflects competition between local political leaders and national leaders within ministries in charge of environment and climate change issues. Today, the DMQ is intent on remaining autonomous in its climate action from the national government and, at the same time, working towards a leadership role in climate adaptation beyond Ecuador. For example, Quito has cooperated closely with regional entities and centers working to combat glacier melting across the Antisana Glacier region.

22 Leaders in Quito are also catalysts of South-South collaboration. In November 2011, under 23 Quito's leadership, more than 80 local authorities throughout Ecuador signed the Quito Climate Pact, 24 which was an agreement meant to stimulate other municipalities to emulate Quito's experience and to 25 enhance synergy. Today, Quito leads the Local Environmental Authorities Network through which tools 26 and methodologies for vulnerability analysis, for designing climate change strategies, and for 27 implementing joint adaptation activities are developed. Such a posture is seen as a win-win situation 28 since, by acting as incubator on climate action, Quito's policy-makers are helping residents and agencies 29 develop a stronger sense of ownership over climate actions in the city.

30 Since before the development of the EQCC, Quito has been collaboratively engaging with 31 international funding agencies. Technical cooperation with international agencies remains entirely 32 climate-focused, and Quito has collaborated with them under the city's own terms. This has been the 33 case with the Climate and Development Knowledge Network (CDKN) and UK Department for 34 International Development (DFID) in their contribution to the vulnerability assessment developed in 2012 35 as part of the *Climate Change Action Plan*. As the former Metropolitan Director for Environmental Policy 36 and Planning highlights (2013):

37

"We became the first city who managed to convince them to work with local governments

for technical cooperation. They did not give us money directly, but we decided what we wanted—to promote and create more knowledge from local governments, and not with firms like Price Waterhouse Cooper and their international consultants."
Similarly, for the implementation of climate mitigation measures with adaptation components, Quito has been seeking internal funds rather than molding projects according to international funding demands.

6

1

2

3

4

5

- 7
- 8 9

4.2. Surat: internationally-driven adaptation

10 Surat, with a population of 4.5 million, is the eighth largest city in India. The city is particularly 11 vulnerable to hazard events, such as urban flooding caused by the overflow of the Tapi River, and other 12 slow-onset impacts, such as sea level rise, increasing monsoonal precipitation, and associated public 13 health concerns (ACCCRN, 2011; Dutt et al., 2006). Despite Surat's higher level of wealth relative to 14 other local governments in India, climate vulnerabilities are nonetheless compounded by high levels of 15 poverty, low human development indices across the city's 400 slums, inadequate legal and governance 16 mechanisms, and vulnerability to extreme weather events (Beg et al., 2002). For example, the 0.5 million 17 slum dwellers across the city face high flood risks and high potentials for vector-borne diseases (Ghosh 18 and Ahmad, 1996; Shah, 1997; Lobo and Prasad, 1998; Bhat et al., 2013).

19

20 4.2.1. Building blocks for climate adaptation planning

21

Climate change planning is a nascent policy agenda in India. In 2008, the Government of India released the *National Action Plan on Climate Change* (NAPCC), which noted legislative responsibilities for the various state and local governments (Government of India, 2008). At the same time, many local and regional governments in India started to pursue climate adaptation and resilience planning. Surat's climate planning process began in 2008, when the city was selected as one of the pilot cities for Rockefeller Foundation's Asian Cities Climate Change Resilience Network (ACCCRN).

Even before the ACCCRN intervention in the city, Surat has had a long history of dealing with natural hazards. In 1994, a plague epidemic led to a series of reforms in the city's health services sector and India's first large-scale urban sanitation and public health program. In 2006, unusually high rainfall resulted in high discharges from the Ukai Dam, situated upstream from Surat on the Tapi River. This led to flooding across 75% of the city's built-up area, which also provoked an explosion of gastrointestinal and vector-borne diseases. One municipal official describes this particular episode in 2010 as:

We have no choice but to live with floods. It is bound to come, whether we like it or not,
whether it rains or not. In 2006, there was not a drop of water falling from the sky. It was
sunny, but the water was rising. Almost 70-80% of the city was under an average of
three feet of water. Resilience is natural to the people... we came back in less than

1 three weeks' time."

2 Because of the experience with such major disasters and impacts. Surat's climate adaptation initiative is 3 heavily focused on public health (controlling vector-borne diseases, in particular), flooding, water supply, 4 rapid urbanization, poverty alleviation, and resilient economic and industrial development. The local 5 government unit, the Surat Municipal Corporation (SMC), also maintains detailed records of each episode, 6 continuously carries out citywide data collection and recording, and promotes citizen awareness over 7 flooding, public health, and other hazard-related vulnerabilities. Complemented by high public 8 consciousness of the socioeconomic effects of natural hazard events, these programs were brought 9 together and institutionalized in 2008 under the auspices of the Rockefeller Foundation's Asian Cities and 10 Climate Change Resilience Network (ACCCRN) program.

11 12

4.2.2. Engaging relevant stakeholders and partners

13

14 Between 2009 and 2011, the Rockefeller Foundation, in partnership with local and international 15 consultancies, assisted Surat with designing pilot projects and drafting a City Resilience Strategy. Since 16 the process paid a great deal of attention to stakeholder engagement and vulnerability assessment. 17 ACCCRN helped set up a City Advisory Committee (CAC) that conducted a 2030 visioning exercise for 18 Surat and oversaw the drafting of different assessments and studies. The vision included plans for urban 19 socioeconomic development and delineated the major climate challenges. Members of advisory 20 committee came from key SMC departments, local academics and experts, and the South Gujarat 21 Chamber of Commerce and Industry (SGCCI). Although not representative of all socioeconomic interests 22 across the city, the 14 CAC members brought together critical political and scientific expertise to articulate 23 the different sectoral climate risks and vulnerabilities. As noted by one SMC official, the benefits of this 24 particular composition are that:

25 "The City Advisory Group has nothing to do with the individual sectors... they are all
26 sectors. They are taking control of all sectors, whether they are going in the same
27 direction, whether they are interacting or not, whether they are sharing data or not,
28 whether the suggested projects are in line with the adaptation plan or not... the City
29 Advisory Group does the review."

This planning approach focused on gathering technical and scientific information rather than pursuing a broadly inclusive process that incorporated civil society actors and vulnerable communities throughout the decision-making process. Hazard risk assessments were mainly GIS-based and indicated areas of high climate risk while vulnerability analyses consisted mostly of surveys for socioeconomic and demographic data conducted in various neighborhoods across the city. Sector studies, similarly, were expert-led and focused on issues of environment, flood risk, health, energy, buildings/infrastructure, transportation, and water.

37

Upon the studies' completion, the various ACCCRN partners proceeded to integrate all of the

information through a series of risk-to-resilience workshops, where both expert and community participants engaged in scenario planning and identified short- and medium-term resilience building activities (Kernaghan and da Silva, 2014). After brief consultations with community-level groups, action committees, and engaged citizens, the city published the *Surat City Resilience Strategy* (CRS) in April 2011. The CRS advocated for building on current and planned municipal development activities, for building synergies with state and national level institutions, and stressed the importance of ensuring the resilience of the city's infrastructure, service delivery system, and poverty alleviation programs.

8 This phase of ACCCRN engagement resulted in three pilot projects. First, in 2010, the city 9 initiated a national-level sustainable urban design competition that called for urban design entries 10 proposing planning around flood risk in and around low-income neighborhoods. Second, the city created 11 a short message service (SMS) enabled Urban Services Monitoring System (UrSMS). This allowed city 12 officials to both access real-time data and evaluate the performance of the city's water delivery, solid 13 waste collection, and other public service systems. Lastly, Surat created a vulnerable people's database, 14 which was a web-based platform that combined socioeconomic vulnerability data with flood forecasts and 15 risk maps.

- 16
- 17

4.2.3. Internal operationalization, coordination, and institutionalization

18

By 2012, the City Advisory Committee (CAC) believed that planning for climate resilience was critical to the continued economic development of the city. Institutionalizing the ACCCRN-facilitated climate adaptation planning program became an important mechanism for preparing the burgeoning urban population against projected climate impacts and, at the same time, for raising the profile of Surat in the international arena. As a result, the CAC was transformed into the Surat Climate Change Trust (SCCT) in June 2012. The roles of the original CAC members were subsequently formalized into trustees of the SCCT. As the secretary of the SCCT noted in 2013:

"ACCCRN was working as a very informal body. There was nothing formal with regard to
making it institutionalized. We decided to form a trust—an entity which can then take up
this work. [At] the end of ACCCRN, what we wanted was something that keeps us going
further. Now that was possible only if we had some kind of organizational mechanism in
place."

One of the most important reasons behind the creation of the SCCT is to continue the momentum and legacy initiated by the ACCCRN program. In essence, the SCCT is an autonomous entity working sideby-side and receiving indirect support from city government, particular from the offices of water and sanitation, public health, slum and social services, and the office of the city engineer. The idea is that the SCCT would be able to bypass some of the bureaucratic constraints that come with situating the new program within the city government itself, such as an over-reliance on intergovernmental fiscal transfers and conditional grants. Furthermore, institutionalizing adaptation planning in the form of a legally recognized public-private trust would increase the immunity of the adaptation agenda to any changes in political or administrative direction and would prevent the original objectives of the trust from being changed or redirected. As one of the SCCT trustees noted in 2013, the purpose of the original ACCCRN program supported by the Rockefeller Foundation has changed to a platform for dialogue or a possible source of specific support on the SCCT's own terms.

6 In June 2013, the SCCT embarked on three large projects. The first is a solar city project that 7 primarily addresses urban mitigation issues. The project aims to achieve 10% renewable energy usage 8 across the entire municipality within 5 years time. The second project is an End-to-End Early Warning 9 System, which would allow the integration of existing hydrological, climate, and urban development and 10 socioeconomic vulnerability models into one comprehensive database. This system also facilitated action 11 on improving flood management along the Tapi River, where Surat, in collaboration with neighboring state 12 and local authorities, invested in retrofitting water monitoring stations and streamlining information 13 coordination mechanisms across different jurisdictions (Bhat et al., 2013). Third, the Urban Health and 14 Climate Resilience Center (UHCRC) was launched in June 2013 to install an improved vector-borne 15 disease surveillance system, steer an inter-disciplinary research team to steer and advise the city's 16 actions towards managing the existing public health system in light of climate change, and start a 17 community-wide outreach program.

18 Much like the ACCCRN-facilitated planning process between 2009 and 2010, the SCCT's agenda 19 has been similarly dominated by a project-based approach. While projects succeed in targeting the city's 20 key vulnerabilities, such as flooding and public health, city authorities have had trouble integrating 21 discrete projects into the city's planning and decision-making processes. For example, the Chief Town 22 Planner noted in 2013 that:

23 24

"Serious steps in the direction of making provisions in the development plan while

keeping in mind climate change issue [have been made], but nobody is very clear

25 [about] how it is going to reflect in the development plans or regional plans."

Furthermore, despite the forging ahead of the SCCCT's activities, the autonomous nature of the body has prevented the institutionalization of adaptation into the city's legal framework and into bureaucrat's day-today work plans. The Chief Town Planner also noted this conundrum in 2013:

29

"We do talk a lot about the climate change, what should be done... but ultimately one

or any other climate change factors? So, that should be taken care of and those

30 has to convert all these things into some parameter or has to frame them in form of rules

- 31 or act [...] How can we control development keeping in mind the future flood situations
- 32

33 amendments should be included in our development control regulations."

As these quotes show, Surat continues to grapple with the dilemmas of institutionalization and uncertainties around the merits of project-based implementation.

36 One of the main tasks of the SCCT has been to find ways to operationalize some of the projects 37 in Surat's *City Resilience Strategy* (CRS) and to raise funds to support them. The funding challenges are

1 further highlighted as direct engagement by the Rockefeller Foundation is set to conclude by 2015. In 2 early 2013, the city government adopted climate change as one of the line items included in their annual 3 municipal budget. The line item earmarked 20 million rupees (approximately US\$300,000) per year for 4 climate change related programs across the city. Within the city government, access to these specially 5 earmarked, but limited, funds is channeled through the Office of the City Engineer, while other funds 6 dedicated to infrastructure upgrades, service improvements, and other poverty alleviation programs are 7 divided across respective departments. Furthermore, the SCCT has the ability to directly raise funds from 8 citizens as a nonprofit institution and make use of any potential funds coming out of the newly created 9 climate change line item in the municipal budget.

- 10
- 11

4.3. Durban: department-driven adaptation

12

13 With a population of more than three million, Durban is the largest container port on the African 14 continent. Despite this, Durban is South Africa's poorest large metropolitan area. Key climate 15 vulnerabilities for Durban include sea-level rise, ecosystem degradation, and livelihoods sustainability. 16 Various climate projections have found that, starting from 2070, the city will experience increasing 17 number of extremely hot days, changing amount and distribution of rainfall (Anguelovski and Roberts, 18 2011), and an average sea level rise of about 2.7cm each decade (Carmin et al., 2012). Urban residents 19 are most vulnerable to extreme weather events, vector and water born diseases, food insecurity, and 20 economic losses (CSIR NRE, 2006).

21

22 4.3.1. Building blocks for climate adaptation planning

23

South Africa lacks strong climate adaptation leadership and associating mandates at the national level. Still, Durban's initial consideration of climate adaptation dates back from 1999, and the process has since been driven by champions, most notably the deputy head of the Environmental Planning and Climate Protection Department (EPCPD) (formerly called Environmental Management Department). A staff member from the Disaster Management Unit commented in 2009 on the EPCPD's capacity to engage others across the city:

30 "[The EPCPD] is hooking up with a variety of organizations [in the city] that are strong
31 role players... [The EPCPD] is very good at presenting the facts in workshops and
32 everybody listens and people like the materials. There is also a growing body of
33 information from agencies [the EPCPD] works with and [the EPCPD] is able to introduce
34 it to the city."

In 2004, the EPCPD commissioned a group of expert consultants to produce the first scientific study projecting and estimating climate impacts for the city. The resulting document, *Climatic Future for Durban*, was released in 2006. Even though the report did not succeed in bringing concrete outcomes for Durban,

it triggered the creation of key climate programs, including the Municipal Climate Protection Program
 within the Environmental Management Department.

3 Following this assessment report, the EPCPD published a Headline Adaptation Strategy in 2006 4 to identify key municipal sectors that would be affected by climate change and to highlight appropriate 5 and practicable adaptation options (Roberts and O'Donoghue, 2013). Unfortunately, the Headline 6 Adaptation Strategy catalyzed very little cross-departmental action on climate adaptation, which was 7 mainly attributed to the generic nature of the strategy, excessive existing staff workloads, and a lack of 8 understanding of adaptation as an imminent development challenge. To move beyond paralysis, in 2008 9 the EPCPD started coordinating detailed Municipal Adaptation Plans (MAPs) with individual departments, 10 including water, health, and disaster management. The sectoral adaptation plans focused on the 11 biodiversity, health, water, and disaster management sectors because of their vulnerability to projected 12 climate impacts and their critical role in ensuring the development of the city (Roberts, 2010). The 13 resulting 47 discrete adaptation options across these sectors were then prioritized through cost-benefit 14 analyses (Roberts and O'Donoghue, 2013).

15 In parallel to this planning process, the municipality started developing a series of tools and 16 concrete programs, most specifically in partnership with local communities. From 2007 to 2011, the 17 municipality developed an Integrated Assessment Tool and, from 2008 to 2011, it implemented the 18 Climate Smart Communities Pilot Project, which completed food trials for alternative crops, a rainwater 19 harvesting assessment, and a community risk assessment in two local communities. Apart from a focus 20 on community-based adaptation, the city government paid much attention to ecosystem-based adaptation, 21 which primarily targeted the need to understand and respond to the implications of climate change for the 22 design and management of the Durban Metropolitan Open Space System (D'MOSS) (Roberts and 23 O'Donoghue, 2013).

- 24
- 25

4.3.2. Internal operationalization, coordination, and institutionalization

26

Durban has worked to mainstream climate projections within municipal operations. The EPCPD created a Climate Protection Branch and included a Municipal Climate Protection Programme as a deliverable in the city's key strategy planning document. Such integration aligns the *Municipal Adaptation Plan* with existing work streams and with the development of large-scale reforestation initiatives as part of the FIFA World Cup greening program back in 2010.

32 Still, climate adaptation is far from being at the center of municipal planning and decision-making. 33 The lack of internal motivation for climate policy making and planning stems from the fact that Durban's 34 politicians have continuously prioritized economic development over environmental issues, with which 35 climate concerns are associated. Climate adaptation is perceived as anti-development by infrastructure 36 developers, and the conversation in Durban is firmly fixed through the lens of "environment versus 37 development." For instance, despite the fact that new large-scale transportation infrastructures between

1 the Port of Durban and South Africa's industrial hinterland are mandated to go through an environmental 2 impact assessment process, none of the assessment criteria address climate adaptation or resilience 3 requirements. This is particularly problematic since much of this new infrastructure will threaten coastal 4 zones key to biodiversity conservation efforts. South Africa's high emissions and energy export economy 5 also makes national policy makers very sensitive to climate language and policies. Not only is there little 6 advocacy for climate action in Durban, there often is opposition and even incidences of climate change 7 denial across various levels of government. This creates a challenging environment for local adaptation 8 leaders to build internal legitimacy, buy-in, momentum, and commitment.

9 When climate issues do make it into the city's political agenda, adaptation is only considered if 10 environmental impacts, particularly extreme weather events, threaten development goals. In speaking 11 about sea level rise, a staff member from the Coastal, Stormwater and Catchment Management 12 Department highlighted in 2010 how experience of storms in 2007, from which flooding and coastal 13 erosion resulted in significant damages to 400 kilometers of coastline around Durban, created sensitivity 14 to the ways in which the full range of climate impacts could undermine critical city development agendas:

15 "The question is: what could sea level rise mean for the coastline? Durban has strong

16 [coastal] tourism activity and the economy is underpinned by the tourism issue. It is critical

17 to know from an economic point of view what we are looking at [with climate change]."

18 Extreme events as evidenced by climate change emerged at the forefront of local policy and planning 19 debates because of their potential impact on tourism development and other economic development 20 needs and pressures.

21 One of the key challenges to Durban's climate adaptation planning process has been the lack of 22 engagement of municipal departments. Although the EPCPD was able to generate some engagement 23 with the health and water sectors, continued commitment has proven challenging. As the deputy head of 24 the EPCPD noted in 2012:

25 "We realized that we would have to do a lot more handholding, that we were going to 26 have to build institutional momentum and commitment to adaptation... And that we were 27 going to have to choose a couple of pilot sectors and hand-hold them through this 28 process, and actually develop something that they could more easily utilize and without 29 fear of fuss drawn into their work stream. So it wasn't something new or burdensome."

The legitimacy and credibility of climate action has been undermined by a lack of institutional capacity and by the stress exerted on departments by large infrastructural backlogs, constant restructuration, and a loss of skills. Even though resources could not be easily redirected for climate adaptation efforts, the EPCPD was an important catalyst for pushing the adaptation agenda forward and creating and maintaining allies and individual champions with key sectors. In that process, as noted by an executive at the Durban Coastal Management Project in 2010, exploiting personal relationships within the municipality was vital: "[M]ost of the guys that are heads of those departments I've had personal relationships
for 20 years... Because I've been working with them, there's that recognition and I think
that actually helps a lot because I don't have the institutional power to force them. But I
think I've got a strong personal power to influence them. Essentially my job is 90%
based on personal power."

6 Since adaptation planning in Durban has prioritized building institutional champions within each sector, 7 further cross-sectoral engagement, integration, and broad strategy development have become rather 8 difficult. Each department works within its own silos and has little crosscutting activity. Therefore, one of 9 the key objectives of the EPCPD has been to identify the "gatekeepers" for every function and then invite 10 them into the overall adaptation conversation.

Durban's experience has highlighted many challenges, particularly in building institutional allies, ensuring commitment through time, and in adequately framing the issues in a way that is synergistic with each department's own mandate. Constant efforts and much creativity are required to move climate adaptation forward. As the deputy head of the EPCPD noted in 2012:

15 "How do I make sure that these guys keep moving? We've got the buy-in. It's a much 16 better process than we had up front... Clearly, I need to keep holding hands because 17 that's been a success in this process, so now we could. [...] How are we going to work 18 with you on this? We wander off and we all do that and see what happens then, so we 19 unpack it one step at a time."

As a result of this fairly individualized and haphazard approach, Durban's experience highlights the relevance of an innovative and experimental approach to the pursuit of an urban climate adaptation agenda. Although this strategy ensures a personalized approach to engaging different municipal department, it also risks further entrenching the "silo" mentality of sectoral operations.

More recently, the Durban city government has embarked on a series of institutional reorganizing efforts. The EPCPD is currently housed under the city's planning department, which facilitates the department's authority to interact with other city departments. The current reorganization efforts will either lead to the integration of EPCPD with the city's mitigation efforts to form a larger climate change office or the EPCPD will be completely removed from under the planning department to form its own autonomous agency. If the latter occurs, the EPCPD's capacity to interact and coordinate with other departments will be diminished, which will result in climate adaptation efforts being sidelined further.

In 2013, Durban took on an effort to draft a citywide *Climate Change Strategy*, whereby adaptation concerns would be integrated with city climate mitigation priorities to form a comprehensive policymaking action plan. The city departments originally involved in the sectoral municipal adaptation plans continue to be key participants in the *Durban Climate Change Strategy* drafting process. However, consistent engagement from public health officials has not been achieved due to a change of leadership in the public health department. During the visioning and public engagement processes, issues of solid waste management became a key concern, with the public responding strongly to the importance of
 addressing waste and climate concerns simultaneously.

3 4

5

4.3.3. Engaging relevant stakeholders and partners

6 While the EPCPD put much effort into making climate adaptation more concrete and streamlined 7 throughout, the city has also become increasingly active and visible across South Africa as a whole. For 8 instance, in 2009, Durban hosted the country's first public climate summit, which became the basis for a 9 permanent Climate Change Partnership. This partnership promoted ongoing dialogue with business, 10 academia, and civil society groups. In 2010, Durban led the creation of a South African cities network for 11 the purpose of facilitating local coastal adaptation action plans. Since then, because of political fractures 12 across different levels of government in South Africa, further efforts to engage other cities within the 13 country have been stymied.

As noted earlier in this section, initial incentives for adaptation planning came from the city's exposure in international organization and networks, such as ICLEI-Local Governments for Sustainability. As part of ICLEI's Cities for Climate Protection (CCP) Program, and combined with a competitive atmosphere between large metropolitan cities in South Africa, Durban launched a series of programs aimed at both mitigation and adaptation. The CCP program was funded by the United States Agency for International Development (USAID), but very little of these resources were dedicated to cross-institutional learning and institution building. As a result, very few of these projects were ever implemented.

21 In 2011, Durban hosted the United Nation's Framework Convention on Climate Change COP17-22 CMP7. The key outcome of this convention was the Durban Adaptation Charter, which was signed by 107 23 mayors worldwide. Charter signatories pledged to mainstream adaptation into all local government 24 development planning projects and programs. This Charter also signals broad, worldwide political 25 commitments to strengthen local resilience to climate change and to prepare and implement long-term 26 adaptation strategies. The EPCPD has since continued to work with members of the original local 27 government partnership, as well as a group of new international partners, to ensure the effective 28 implementation of the Durban Adaptation Charter (Roberts and O'Dononghue, 2013). But, again, 29 because of low staffing and resource capacities within the Durban city government, efforts to sustain 30 engagement across different signatories of the Durban Adaptation Charter have been challenging.

- 31
- 32
- 33

5. Comparative assessment of city approaches

34

As the experiences of Quito, Surat, and Durban highlight, processes of experimentation and innovation are key characteristics of how cities are approaching adaptation planning (Anguelovski and Carmin, 2011; Castán Broto and Bulkeley, 2012). From these cases, we see the trend of cities identifying

1 the best ways to mainstream and integrate adaptation into existing policies and ongoing departmental 2 work (Hug and Reid, 2004; Smit and Wandel, 2006; Kok and de Coninck, 2007; Groven et al., 2012; van 3 den Berg and Coenen, 2012; Moser and Boykoff, 2013), particularly in relation to existing urban 4 development needs and the distribution of political power within local government. Throughout the course 5 of adaptation planning and institutionalization, urban practitioners also rely on participation and 6 partnerships to build and strengthen urban adaptation projects and programs (Aylett, 2010; Kithiia and 7 Dowling, 2010; Rosenzweig and Solecki, 2010; Anguelovski and Carmin, 2011). The cases of Quito, 8 Surat, and Durban present a snapshot of how cities in the global South, who are at the forefront of climate 9 impacts, are approaching and institutionalizing adaptation planning, working with relevant partners and 10 stakeholders, and how each approach is shaping local resilience outcomes. Table 2 compares each city's 11 approach using the contextual, operational, and relationship indicators presented in Table 1.

- 13 [Insert Table 2 here]
- 14

12

15 Quito presents an inclusive approach to climate adaptation planning and implementation, where it 16 is neither champion-driven (like in Durban) nor donor-driven (like in Surat). Climate adaptation planning 17 was initiated and has since been sustained by city leaders across administrations. Also, building on the 18 city's long tradition of participation in general urban policy-making, the adaptation planning process was 19 further strengthened by widespread and continuous engagement of civil society and local research 20 institutions. This process then resulted in a robust set of project activities and led to adaptation being 21 integrated within and across city departments. Today, the Climate Adaptation Plan guides the 22 development of adaptation initiatives in strategic areas that address Quito's different vulnerabilities-23 some projects are implemented by sector (i.e. water, housing) and others are flagship projects (i.e., green 24 corridor). Quito's experimental approach to adaptation planning benefits from the local government's 25 "learning by doing" mentality that values traditional knowledge, youth informants, and community 26 ownership over the decision-making and implementation processes.

27 Adaptation has also been aligned with existing urban environmental sustainability priorities, which 28 address adaptation in an integrated and holistic way, consider the needs of the most vulnerable groups, 29 and encourage the development of programs with both mitigation and adaptation benefits. Although 30 Quito's broadly inclusive approach generates adaptation, mitigation, and sustainable development co-31 benefits, this approach can result in the dilution of targeted adaptation benefits. In particular, this 32 approach increases the difficulty of assessing the benefits of particular adaptation interventions and 33 heightens the risk of overlooking important climate impacts that require a more targeted adaptation 34 approach, such as in the case of public health.

Another strength in Quito's approach is that local leaders have engaged with international networks, agencies, and national policies on their own terms and with a strong sense of ownership. The absence of early national climate policies and continued competition between local and national political

1 actors have prompted Quito to take early leadership steps and to maintain and highlight this leadership 2 over time. Local elected officials and planners stress that their autonomous adaptation innovations are 3 independent of any national government interventions. The Quito case shows that when climate 4 adaptation is implemented gradually, with initial learning, awareness, integration into the city's agenda 5 and vision, and with internal and external capacity building, the results give rise to comprehensive 6 adaptation actions that enhance resilience of the most affected areas and groups. That said, Quito's 7 approach does entail the risk of having to redirect the course of climate adaptation action if national 8 ministries decide to take a stronger hold of municipal climate work. The broad scope of its programs might 9 also become jeopardized if budget priorities change in subsequent municipal administrations.

10 In Surat, the interventions initiated by the Rockefeller Foundation since 2008 have clearly 11 facilitated the drafting of the City Resilience Strategy, the implementation of the various pilot projects, and 12 contributed to the founding of the Surat Climate Change Trust (SCCT). In fact, the successful 13 institutionalization of climate adaptation and resilience planning in Surat can be primarily attributed to the 14 "hand-holding" by the various ACCCRN partners working in the city. Still, the ability of the ACCCRN 15 program to take root in Surat depended on a number of crucial local political factors, such as existing 16 policy experience in dealing with natural hazards and public health emergencies, a receptive municipal 17 government with a strong focus on good governance, transparency, and pro-activeness, and a strong 18 private sector engaged in facilitating public participation and providing institutional strategies of sustaining 19 adaptation planning beyond ACCCRN engagement.

20 Still, compared to Quito, adaptation planning in Surat has resulted in projects and programs that 21 continue to be institutionally distinct from the rest of the city's development and planning processes. This 22 approach has also prompted the sidelining of further participatory programs that specifically target issues 23 of poverty reduction, access to basic urban services, local livelihoods security, and overarching social 24 justice and equity concerns. The inability to institutionalize a broadly inclusive approach has confined 25 adaptation decision-making to a few experts in local government and in the SCCT, prevented awareness 26 generation across poor and vulnerable sections of society, and has reduced the overall legitimacy of the 27 adaptation planning process. As the SCCT gradually takes hold, climate adaptation planning in Surat will 28 continue its project-based approach, with a simultaneous focus on advocating and supporting climate 29 adaptive action across different departments within city government. Although the SCCT provides an 30 institutional home of the urban adaptation agenda, it remains unclear how this approach can be expanded 31 in the future to include more stakeholder voices, to achieve less project-oriented interventions, and to 32 insert adaptation objectives into existing urban development programs.

For Durban, the city's sustained engagement and action in climate protection has resulted in an important international profile. Many of the early success of the Durban experience can be attributed to strong dedication of the EPCPD leadership, which led to the various assessments, municipal and sectoral adaptation strategies, and community- and ecosystem-based adaptation projects. The EPCPD has dedicated efforts to bring climate adaptation to the forefront of the city's agenda and departmental work, often through experimenting, working with gatekeepers, and learning by doing. While this approach fosters creativity and flexibility, it also weakens possibilities for institutionalizing and mainstreaming climate adaptation at the municipal level and for considering vulnerability and resilience in a broad, holistic manner. Compared to Quito and Surat, Durban's adaptation planning process is most heavily driven by institutional champions. Although this approach facilitates targeted inter-departmental linkages that are based on specific institutional interests and personal relationships, this approach also inhibits broad inclusive and representative planning process and further enables siloed departmental mentalities.

Lastly, the fact that climate adaptation is perceived in Durban's municipality as an environmental problem distinct from the national priorities of economic growth and development limits opportunities for legitimizing the climate adaptation agenda, securing dedicated resources, and integrating departmental responsibilities. Relationships with expert and civil society stakeholders remain ad hoc and engagements with international networks and donors continue to be haphazard despite continued efforts by the head of the EPCPD. Such constraints are thus limiting the comprehensive development of climate measures, cross-sectoral integration, and long-term actions to increase resilience.

- 15
- 16

17 6. Conclusion

18

Our comparison of adaptation approaches in Quito, Surat, and Durban reveals that different planning pathways based on a city's prior and existing priorities, programs, and policy-making processes may be important elements during initial phases. But, in order to gain widespread commitment within local government, strong political leadership, departmental engagement, municipality-wide institutionalization, and continued stakeholder involvement are integral to sustaining adaptation planning and decisionmaking programs in the long run.

25 More specifically, although local politics, histories, and institutional biases often shape the 26 contexts within which adaptation plans and strategies are conceived, adaptation experiments that seek to 27 generate climate and development co-benefits and promote local ownership are more likely to succeed 28 and be institutionalized. This point is particularly poignant when comparing the progress between Quito 29 and Durban-adaptation actions should not be built only in one sector or domain, but should consider 30 cities holistically as systems. This is particularly important because little guidance, best practices, or 31 extensive local capacities exist to help growing and vulnerable cities in the global South adapt to 32 projected climate impacts. Therefore, as we have highlight in this paper, when climate adaptation is 33 planned in a way that generates initial learning, awareness, integration in the city's agenda and vision, 34 and builds internal and external capacity, the process gives space to the development of comprehensive 35 strategic adaptation actions that can eventually enhance the resilience of the most affected areas and 36 groups.

3	Coastal, Stormwater and Catchment Management Department, eThekwini Municipality. 2010. Interview	W
4	with representative. January 20: Durban, South Africa.	

- 5 Disaster Management Unit, eThekwini Municipality. 2009. Interview with department representative. April
 6 14: Durban, South Africa.
- 7 ECOLEX. 2009. Interview with NGO representative. January 13: Quito, Ecuador.

8 EMAAP-Q, Quito Municipal Water and Sewage Corporation. 2009. Interview with representative. January
 9 12: Quito, Ecuador.

- Environmental Office, Metropolitan District of Quito. 2009. Interview with representative. January 20:
 Quito, Ecuador.
- Environmental Planning and Climate Protection Department, eThekwini Municipality. 2011. Interview with
 Deputy Head. April 20: Bellagio, Italy.
- Environmental Planning and Climate Protection Department, eThekwini Municipality. 2012. Interview with
 Deputy Head. January 29: Durban, South Africa.
- Environmental Planning and Climate Protection Department, eThekwini Municipality. 2014. Interview with
 Deputy Head. February 2: Cambridge, USA.
- Environmental Secretariat, Metropolitan District of Quito. 2010. Interview with Metropolitan Director of
 Environmental Policy and Planning. February 22: Quito, Ecuador.
- Environmental Secretariat, Metropolitan District of Quito. 2011. Interview with Metropolitan Director of
 Environmental Policy and Planning. April 21: Bellagio, Italy.
- Environmental Secretariat, Metropolitan District of Quito. 2013. Interview with Metropolitan Director of
 Environmental Policy and Planning. February 7: Quito, Ecuador.

1	eThekwini Municipality. 2010. Interview with city manager. January 19: Durban, South Africa
2 3	Office for Citizens' Security, Metropolitan District of Quito. 2009. Interview with representative of the Risk Management Unit. January 15: Quito, Ecuador
4 5	Office of the City Engineer, Surat Municipal Corporation. 2013. Interview with Chief Engineer. June 12: Surat, India.
6 7	Office for Territorial Planning, Metropolitan District of Quito. 2009. Interview with representative. January 15: Quito, Ecuador.
8 9	South Gujarat Chamber of Commerce and Industry. 2011. Interview with vice-president. January 10: Surat, India.
10 11	South Gujarat Chamber of Commerce and Industry. 2013. Interview with president and secretary of the Surat Climate Change Trust. January 25: Surat, India.
12	Surat Urban Development Authority. 2013. Interview with Chief Town Planner. January 28: Surat, India.
13 14	Town Planning Department, Surat Municipal Corporation. 2011. Interview with town planner. January 17: Surat, India.
15	Urban Health and Climate Resilience Centre. 2013. Interview with director. January 26: Surat, India.
16 17 18	Urban Social Health Advocacy Alliance. 2011. Interview with Technical Director. January 11: Surat, India. Water Treatment Authority, Surat Municipal Corporation. 2011. Interview with representation. January 12: Surat, India.

1 List of Tables

Contextual indicators	
Actors	Key actors and institutional drivers
Motivators	Primary planning impetus, such as experience of impacts or external interventions
Enablers	Existing policies, legislations, laws, and institutions
Legitimacy	Presence of internal political support and institutional authority
Information	Climate knowledge and availability of impact, exposure, and vulnerability assessments
Operational indicators	
Approaches	Decision-making structures and implementation pathways
Deliverables	Specific adaptation policies, strategies, action plans, and hard/soft projects
Integration	Mainstreaming into existing city sectoral, development, and spatial plans and policies
Institutionalization	Linkage to existing urban planning, decision-making, and governance arrangements
Resources	Presence of human, institutional, and financial support
Relational indicators	
Civil society	Involvement of civic sphere stakeholders, including academics, CBOs, NGOs, etc.
Private	Engagement with local private businesses, industries, and entrepreneurs
Government	Relationship to higher levels of government, including national and regional bureaucracie
Networks	Engagement with international partnerships and peer-to-peer learning mechanisms
Other external	Relationship to multi-/bi-lateral aid, philanthropic, and development assistance institution

Table 1: Indicators for assessing urban climate adaptation planning processes

Adaptation building blocks	QUITO	SURAT	DURBAN
Core driver	Municipality driven	Donor driven	Champion and department driven
Origins and motivations climate adaptation action	Municipal policymakers supported by local experts and international networks abd acting autonomously from national government	Assessment commissioned by international institution combined with existing disaster experience	Leader and expert in environmental department constrained by local and national economic development priorities
Internal legitimacy	Strong: Mayor and Metropolitan Council as champion and motor for adaptation planning and local residents encouraged to develop a sense of ownership	Strong: Municipal Commissioner has been a key supporter of the planning process led by the City Engineer, with the authority to coordinate across sectoral departments	Moderate: Single champion in a sectoral department. Strong support from within EPCPD and some support from partner departments.
Climate vulnerability assessments	Implicit work throughout from mid-1990s to end of 2000s. Now, formally integrated in the <i>Climate Adaptation Plan</i>	Explicit vulnerability and hazard assessments between 2008 and 2011	Explicit scientific evaluation prior to climate planning
Municipal integration, opera	ationalization, and coordination		
Implementation approach	Climate Action Planning in Strategic Areas taking into consideration a variety of vulnerabilities	Project-based approach led by donor (2008 to 2012) then institutionalized in Surat Climate Change Trust (2012 onwards)	Some specific experimental projects in some sectors (biodiversity conservation, costal)
Concrete climate adaptation projects	Extensive mitigation programs, sustainable natural resources management, risk assessment and response plans	Infrastructure upgrading and service delivery improvement projects around water, sanitation, public health, and social services	Community-based projects, engagement with local leaders and civil society groups, pilot projects
Linkage to existing goals and plans	Strong: planning linked to sustainable development and risks in vulnerable areas	Moderate: adaptation is seen as an addition to existing urban development planning	Weak: climate adaptation seen as environmental problem separate from socio- economic development priorities
Municipal Institutionalization	From general climate policy (EQCC) to specific Climate Action Plan and city-wide mainstreaming	From <i>City Resilience</i> <i>Strategy</i> (2011) to Surat Climate Change Trust	Action in specific individual sectors, but difficulty to implement cross-integration
Commitment of human and material resources for climate adaptation	Strong: Dedicated climate adaptation staff within the municipality with budget line and trust fund. So far \$180 million invested in climate actions	Strong: Surat Climate Change Trust has authority to autonomously generate funds. The city has a dedicated municipal budget line item.	Weak to uncertain: Part-time environmental manager in charge of climate adaptation work
Internal and external engage	ement		
Engagement with Stakeholders (academia and civil society)	Strong: Throughout the planning and implementation process	Ad hoc: through pilot projects at the beginning, but increasingly focused within an expert group during later phases	Ad hoc: through pilot and punctual projects, especially early on in climate adaptation
Participation in international networks / external legitimation	Strong: climate strategy showcased in several national and international instances	Strong: climate strategy internationally renowned and being replicated in India and other countries	Moderate: Adaptation work at times presented in conferences and workshops. Leads Durban Adaptation Charter.
Relation with international donor community	Strong to moderate: Engagement under Quito's own terms and needs	Strong: engagement with international donor (Rockefeller and DFID in particular)	Moderate: engagement through local leader/expert based in environmental Department

Table 2: Summary comparison climate adaptation approaches in Quito, Surat, and Durban

1 References

2

- ACCCRN (2011) Surat City Resilience Strategy. Surat, India: Asian Cities Climate Change Resilience
 Network (ACCCRN) and TARU-Leading Edge.
- 5 Amundsen, H., Berglund, F., and Westskog, H. (2010) Overcoming barriers to climate change adaptation:

6 7

a question of multilevel governance? Environmental Planning C 28(2), 276-289. doi:10.1068/c0941

- 8 Anguelovski, I. and Carmin, J. (2011) Something borrowed, everything new: innovation and
 9 institutionalization in urban climate governance. Current Opinion in Environmental Sustainability
 10 3(3), 169-175. doi:10.1016/j.cosust.2010.12.017
- Anguelovski, I. and Roberts, D. (2011) Spatial (in)justice in urban climate policy: A multi-scale analysis of
 climate impacts in Durban, in: Carmin, J., Agyeman, J. (Eds.), Environmental Inequalities Beyond
 Borders: Local Perspectives on Global Injustices. MIT Press, Cambridge.
- Atteridge, A., Shrivastava, M.K., Pahuja, N., and Upadhyay, H. (2012) Climate policy in India: what shapes international, national and state policy? Ambio 41, 68–77. doi:10.1007/s13280-011-0242-
- 16

5

- Ayers, J. (2009) International funding to support urban adaptation to climate change. Environment and
 Urbanization 21, 225-240. doi:10.1177/0956247809103021
- Aylett, A. (2010) Conflict, collaboration and climate change: participatory democracy and urban
 environmental struggles in Durban, South Africa. International Journal of Urban and Regional
 Research 34, 478-479. doi:10.1111/j.1468-2427.2010.00964.x
- Barrett, S. (2013) The necessity of a multiscalar analysis of climate justice. Progress in Human
 Geography 37, 215-233. doi:10.1177/0309132512448270
- Bauer, A., Feichtinger, J., and Steurer, R. (2012) The governance of climate change adaptation in 10
 OECD countries: challenges and approaches. Journal of Environmental Policy and Planning
 14(3), 279-304. doi: 10.3763/cdev.2010.0040
- Beg, N., Corfee Morlot, J., Davidson, O., Afrane-Okesse, Y., Tyani, L., Denton, F., Sokona, Y., Thomas,
 J.P., La Rovere, E.L., Parikh, J.K., Parikh, K., and Rahman, A.A. (2002) Linkages between

1	climate change and sustainable development. Climate Policy 2(2), 129–144
2	doi:10.3763/cpol.2002.0216
3	Betsill, M. and Bulkeley, H. (2006) Cities and the multilevel governance of global climate change. Global
4	Governance 12(2), 141-159.
5	Bhat, G. K., Karanth, A., Dashora, L., Rajasekar, U. (2013) Addressing flooding in the city of Surat
6	beyond its boundaries. Environment and Urbanization 25(2), 429-441.
7	doi:10.1177/0956247813495002
8	Bradley, R. S., Vuille, M., Diaz, H.F., and Vergara, W. (2006) Threats to water supplies in the tropical
9	Andes. Science 312(5781), 1755-1756. doi:10.1126/science.1128087
10	Biesbroek, G. Swart, R., Carter, R.J., Cowan, C., Henrichs, T., Mela, H., Morecroft, M. and Rey, D. (2010)
11	Europe adapts to climate change: Comparing National Adaptation Strategies. Globa
12	Environmental Change 20(3), 440-450. doi:10.1016/j.gloenvcha.2010.03.005
13	Bulkeley, H. and Betsill, M. (2005) Rethinking sustainable cities: multilevel governance and the "urban'
14	politics of climate change. Environmental Politics 14, 42-63. doi:10.1080/0964401042000310178
15	Castán Broto, V. and Bulkeley, H. (2012) A survey of urban climate change experiments in 100 cities.
16	Global Environmental Change 23(1), 92-102. doi:10.1016/j.gloenvcha.2012.07.005
17	Carmin, J., Anguelovski, I., and Roberts, D. (2012) Urban Climate Adaptation in the Global South:
18	Planning in an Emerging Policy Domain. Journal of Planning Education and Research 32, 18-32.
19	doi:10.1177/0739456X11430951
20	Carmin, J., Nadkarni, N., and Rhie, C. (2012) Progress and Challenges in Urban Climate Adaptation
21	Planning: Results of a Global Survey. Cambridge, MA: DUSP/MIT.
22	Chuku, C.A. (2010) Pursuing an integrated development and climate policy framework in Africa: options
23	for mainstreaming. Mitigation and Adaptation Strategies for Global Change 15(1), 41-52.
24	doi:10.1007/s11027-009-9203-8
25	CSIR NRE (2006) Climatic Future for Durban. Durban: CSIR
26	da Silva, J., Kernaghan, S., and Luque, A. (2012) A systems approach to meeting the challenges of urban
27	climate change. International Journal of Urban Sustainable Development 4(2), 125-145.
28	doi:10.1080/19463138.2012.718279

1	Dubash, N.K. (2012a) "Climate Politics in India: Three Narratives." Pp. 197–207 in Handbook of Climate
2	Change and India: Development, Politics and Governance, edited by Dubash, N.K London and
3	New York: Earthscan.

- Dubash, N.K. (2012b) "Introduction." Pp. 1–25 in Handbook of Climate Change and India: Development,
 Politics and Governance, edited by Dubash, N.K. London and New York: Earthscan.
- Dutt, A.K., Akhtar, R., and McVeigh, M. (2006) Surat Plague of 1994 Re-Examined. Southeast Asian
 Journal of Tropical Medicine and Public Health 37(4), 755–760.
- Füssel, H.-M. (2007) Adaptation planning for climate change: concepts, assessment approaches, and key
 lessons. Sustainability Science 2, 265-275. doi:10.1007/s11625-007-0032-y
- Gadgil, M. and Guha, R. (1994) Ecological Conflicts and the Environmental Movement in India.
 Development and Change 25(1), 101–136. doi:10.1111/j.1467-7660.1994.tb00511.x
- Ghosh, A. and Ahmad, S.S. (1996) Plague in Surat: Crisis in Urban Governance. New Delhi, India:
 Concept Publishing Company.
- Government of India (2008) National Action Plan on Climate Change. New Delhi, India: Prime Minister's
 Council on Climate Change, Government of India.
- Groven, K., Aall, C., van den Berg, M., Carlsson-Kanyama, A., and Coenen, F. (2012) Integrating climate
 change adaptation into civil protection: comparative lessons from Norway, Sweden and the
 Netherlands. Local Environment 12 (6-7), 679-694. doi:10.1080/13549839.2012.665859
- Guha, R. (1988) Ideological Trends in Indian Environmentalism. Economic and Political Weekly 23(49),
 2578–2581.
- Hardoy, J. and Romero Lankao, P. (2011) Latin American cities and climate change: challenges and
 options to mitigation and adaptation responses. Current Opinion in Environmental Sustainability
 3(3), 158-163. doi:10.1016/j.cosust.2011.01.004
- Hay, J. and Mimura, N. (2006) Supporting climate change vulnerability and adaptation assessments in
 the Asia-Pacific Region: an example of sustainability science. Sustainability Science 1(1), 23-35.
 doi:10.1007/s11625-006-0011-8
- Haynes, D.E. (1991) Rhetoric and Ritual in Colonial India: The Shaping of a Public Culture in Surat City,
 1852-1928. Berkeley and Los Angeles: University of California Press.

1	Huq, S. and Reid, H. (2004) Mainstreaming Adaptation in Development. Institute for Environment and
2	Development Bulletin 35(3), 15-24. doi:10.1111/j.1759-5436.2004.tb00129.x
3	Kantor, P., Rani, U., and Unni, J. (2006) Deficits Decent Work Informal Economy: Case of Surat.
4	Economic and Political Weekly 41(21), 2089–2097.
5	Kashyap, S.P. and Tiwari, R. (1984) Diamond Shaping Industry in Surat: Characteristics of Firms by Size.
6	Economic and Political Weekly 19(34), M99–M103.
7	Kernaghan, S., da Silva, J. (2014) Initiating and sustaining action: Experiences building resilience to
8	climate change in Asian cities. Urban Climate 7, 47–63. doi:10.1016/j.uclim.2013.10.008
9	Kithiia, J. and Dowling, R. (2010) An integrated city-level planning process to address the impacts of
10	climate change in Kenya: the case of Mombasa. Cities 27, 466-475.
11	doi:10.1016/j.cities.2010.08.001
12	Klausen, J.E., Saglie, I.L., Stokke, K.B., and Winsvold, M. (forthcoming) Planning for climate change
13	adaptation in urban areas. In: O'Brien, K. and Selboe, E. (eds), The Adaptive Challenge of
14	Climate Change. Cambridge: Cambridge University Press.
15	Kok, M. and De Coninck, H. (2007) Widening the scope of policies to address climate change: directions
16	for mainstreaming. Environmental Science and Policy 10, 587-599.
17	doi:10.1016/j.envsci.2007.07.003
18	Lobo, L. and Prasad, P. (1998) Ethnography of Malaria in Surat District Putting: People on the Agenda.
19	Economic and Political Weekly 33(24), 1444–1446.
20	Lu, X. (2011) Provisions of climate information for adaptation to climate change. Climate Research 47,
21	83-94. doi:10.3354/cr00950
22	Maloni, R. (2002) Surat to Bombay: Transfer of Commercial Power. Itinerario 26(1), 61-73.
23	doi:10.1017/S0165115300004940
24	Mathy, S. and Guivarch, C. (2010) Climate policies in a second-best world-A case study on India.
25	Energy Policy 38(3), 1519–1528. doi:10.1016/j.enpol.2009.11.035
26	Mees, HL.P. and Driessen, P.P. (2011) Adaptation to climate change in urban areas: climate-greening
27	London, Rotterdam, and Toronto. Climate Law 2, 251-280. doi: 10.1080/1523908X.2012.707407

1	Mees, H.L., Driessen, P.P., Runhaar, H.A., and Stamatelos, J. (2013) Who governs climate adaptation?
2	Getting green roofs for stormwater retention off the ground. Journal of Environmental Planning
3	and Management 56(6), 802-825. doi:10.1080/09640568.2012.706600
4	Mejia, R. (2009) The challenge of environmental regulation in India. Environmental Science and
5	Technology 43(23), 8714–5. doi:10.1021/es903239b
6	Menning, G. (1997) Trust, Entrepreneurship and Development in Surat City, India. Ethnos 62(1-2), 59–90.
7	doi:10.1080/00141844.1997.9981544
8	Miller, F., Osbahr, H., Boyd, E., Thomalla, F., Bharwani, S., Ziervogel, G., Walker, B., Birkmann, J., van
9	der Leeuw, S., Rockström, J., Hinkel, J., Downing, T., Folke, C., and Nelson, D. (2010) Resilience
10	and vulnerability: complementary or conflicting concepts? Ecology and Society 15(3), 11.
11	Moser, S. C. and Boykoff, M. T. (Eds.) (2013) Successful Adaptation to Climate Change: Linking Science
12	and Policy in a Rapidly Changing World. Routledge.
13	Mukhopadhyay, P. and Revi, A. (2012) "Climate Change and Urbanization in India." Pp. 303-316 in
14	Handbook of Climate Change and India: Development, Politics and Governance, edited by
15	Navroz K. Dubash. London and New York: Earthscan.
16	Narsiah, S. and Ahmed, W. (2012) The Neoliberalization of the Water and Energy Sectors in South Africa
17	and India. Journal of Asian and African Studies 47(6), 679–694. doi:10.1177/0021909611429922
18	Quito Distrito Metropolitano (2010) Estrategia Quiteña ante el Cambio Climático. Dirección Metropolitana
19	de Medio Ambiente and Fondo Ambiental, Quito, Ecuador.
20	Ravindranath, N.H. and Murthy, I.K. (2010) Greening India Mission. Current Science 99(4), 444–449.
21	Revi, A. (2008) Climate change risk: an adaptation and mitigation agenda for Indian cities. Environment
22	and Urbanization 20(1), 207–229. doi:10.1177/0956247808089157
23	Roberts, D. (2008) Thinking globally, acting locally- institutionalizing climate change at the local
24	government level in Durban, South Africa. Environment and Urbanization 20(2), 521-537.
25	doi:10.1177/0956247808096126
26	Roberts, D. (2010) Prioritizing Climate Change Adaptation and Local Level Resilience in Durban, South
27	Africa. Environment and Urbanization 22(2), 397–413. doi:10.1177/0956247810379948

- Roberts, D. and O'Donoghue, S. (2013) Urban Environmental Challenges and Climate Change Action in
 Durban, South Africa. Environment and Urbanization 25(2), 299–319.
 doi:10.1177/0956247813500904
- 4 Romero-Lankao, P. and Dodman, D. (2011) Cities in transition: transforming urban centers from hotbeds 5 of GHG emissions and vulnerability to seedbeds of sustainability and resilience: introduction and 6 editorial review. Current Opinion in Environmental Sustainability 3(3), 113-120. 7 doi:10.1016/j.cosust.2011.02.002
- Romero-Lankao, P. and Qin, H. (2011) Conceptualizing urban vulnerability to global climate and
 environmental change. Current Opinion in Environmental Sustainability 3(3), 142-149.
 doi:10.1016/j.cosust.2010.12.016
- Rosenzweig, C., Solecki, W., Hammer, S., and Mehrotra, S. (2011) Climate Change and Cities: First
 Assessment Report of the Urban Climate Change Research Network. Cambridge, Cambridge
 University Press.
- Satterthwaite, D., Huq, S., Reid, H., Pelling, M, and Romero-Lankao, P. (2007) Adapting to Climate
 Change in Urban Areas: The Possibilities and Constraints in Low-and Middle-Income Nations.
 London, UK: International Institute for Environment and Development (IIED).
- Secretaría de Ambiente Municipio del Distrito Metropolitano de Quito (2012) Plan de Acción Climático
 de Quito. Quito Distrito Metropolitano, Quito, Ecuador.
- Shackley, S. and Deanwood, R. (2002) Stakeholder perceptions of climate change impacts at the regional scale: implications for the effectiveness of regional and local responses. Journal of Environmental Planning and Management 45, 381-402. doi:10.1080/09640560220133414
- Shah, G. (1997) Bureaucracy and Urban Development: Can It Made to Last? Post-Plague Scenario in
 Surat. Economic and Political Weekly 32(12), 607–613.
- Shah, G. (1994) Economy and Civic Authority in Surat. Economic and Political Weekly 29(41), 2671–
 25 2676.
- Sharma, D. and Tomar, S. (2010) Mainstreaming Climate Change Adaptation in Indian Cities.
 Environment and Urbanization 22(2), 451–465. doi:10.1177/0956247810377390

1	Simon, D. (2012) Reconciling development with the challenges of climate change: business as usual or a
2	new paradigm? In The Political Economy of Environment and Development in a Globalised World,
3	D. Kjosavik and P. Vedeld (eds.). Tapir Akademisk Forlag, Oslo, Norway. 195-217.
4	Smit, B. and Wandel, J. (2006) Adaptation, adaptive capacity and vulnerability. Global Environmental
5	Change 16(3), 282-292. doi:10.1016/j.gloenvcha.2006.03.008
6	Subramanian, L. (1985) Capital and Crowd in a Declining Asian Port City: The Anglo-Bania Order and the
7	Surat Riots of 1795. Modern Asian Studies 19(2), 205–237.
8	Torri, M. (1990) Ethnicity and trade in Surat during the dual government era: 1759-1800. Indian Economic
9	and Social History Review 27(4), 377–404. doi:10.1177/001946469002700401
10	Tschakert, P. and Dietrich, K.A. (2010) Anticipatory learning for climate change adaptation and resilience.
11	Ecology and Society 15(2), 11.
12	Tyler, S. and Moench, M. (2012) A framework for urban climate resilience. Climate and Development 4(4),
13	311-326. doi:10.1080/17565529.2012.745389
14	Urwin K. and Jordan, A. (2008) Does public policy support or undermine climate change adaptation?
15	Exploring policy interplay across different scales of governance. Global Environmental Change 18,
16	180-191. doi:10.1016/j.gloenvcha.2007.08.002
17	van Aalst, M.K., Cannon, T., and Burton, I. (2008) Community level participation to climate change: the
18	potential role of participatory community risk assessment. Global Environmental Change 18, 165-
19	179. doi:10.1016/j.gloenvcha.2007.06.002
20	van den Berg, M. and Coenen, F. (2012) Integrating climate change adaptation into Dutch local policies
21	and the role of contextual factors. Local Environment 17(4), 441-460.
22	doi:10.1080/13549839.2012.678313
23	Zambrano-Barragán, C. (2012) Quito's Climate Change Strategy: Lessons and opportunities. Quito
24	Distrito Metropolitano, Quito, Ecuador.