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Brief report
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Abstract

Background: Whilst robust preclinical and postmortem evidence suggests that altered GABAergic function is central to 
the development of psychosis, little is known about whether it is altered in subjects at ultra-high risk of psychosis, or its 
relationship to prodromal symptoms.
Methods: Twenty-one antipsychotic naïve ultra-high risk individuals and 20 healthy volunteers underwent proton magnetic 
resonance imaging at 3T. Gamma-aminobutyric acid levels were obtained from the medial prefrontal cortex using MEGA-
PRESS and expressed as peak-area ratios relative to the synchronously acquired creatine signal. Gamma-aminobutyric acid 
levels were then related to severity of positive and negative symptoms as measured with the Community Assessment of 
At-Risk Mental States.
Results: Whilst we found no significant difference in gamma-aminobutyric acid levels between ultra-high risk subjects and 
healthy controls (P = .130), in ultra-high risk individuals, medial prefrontal cortex GABA levels were negatively correlated with 
the severity of negative symptoms (P = .013).
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Conclusion: These findings suggest that gamma-aminobutyric acidergic neurotransmission may be involved in the 
neurobiology of negative symptoms in the ultra-high risk state.

Keywords:  psychosis, magnetic resonance spectroscopy, GABA, ultra-high risk of psychosis, negative symptoms

Introduction
Converging evidence from postmortem and preclinical studies 
indicates that dysfunction of the gamma-aminobutyric acider-
gic (GABAergic) neurotransmitter system plays a major role in 
the pathophysiology of schizophrenia (Marin, 2012). Postmortem 
research has demonstrated decreased mRNA expression of glu-
tamic acid decarboxylase and reduced density of fast-spiking 
parvalbumin-positive interneurons in a corticolimbic circuitry 
involving the prefrontal cortex and the amygdala in schizo-
phrenia (Lewis et  al., 2005; Akbarian and Huang, 2006; Benes, 
2010). Furthermore, animal models of psychosis suggest a link 
between disrupted cortical GABAergic function and dysregula-
tion of subcortical dopaminergic signaling characteristic of the 
disorder (Grace, 2010). Such models propose that inhibitory dis-
ruption would underlie not only dopamine-dependent positive 
symptoms of psychosis, but would also influence other neural 
pathways (e.g., including the basolateral nucleus of the amyg-
dala, or the medial prefrontal cortex [MPFC]) putatively involved 
in the development of the negative symptoms of psychosis 
(Grace, 2016). Moreover, the role of GABA in the development 
of psychosis is further supported by preclinical evidence that 
peripubertal (i.e., premorbid) pharmacological intervention on 
GABA-Aα5 receptors prevents schizophrenia-like GABA cell loss 
and blocks the development of psychosis-like features in adult 
rats (Du and Grace, 2013, 2016).

From animal and human postmortem studies, it may thus 
be hypothesized that cortical GABAergic function is reduced in 
schizophrenia and that this abnormality can be detected in the 
premorbid stages of the disorder (Modinos et al., 2015). However, 
recent meta-analytical evidence from human imaging studies 
using proton magnetic resonance spectroscopy (1H-MRS) did not 
show a significant difference in regional GABA levels between 
patients with schizophrenia and healthy volunteers (Egerton 
et al., 2017). Research in patients with schizophrenia is compli-
cated by previous antipsychotic exposure and heterogeneity of 
clinical subgroups (Kegeles et  al., 2012). In this context, stud-
ies in subjects at ultra-high risk (UHR) of developing psychosis 
are a useful resource to investigate neurobiological correlates 
of psychosis-like characteristics without confounds associ-
ated with the use of antipsychotics or illness chronicity on the 
imaging data. The 3 available MPFC GABA studies in UHR indi-
viduals have also presented mixed results, including increases 
(de la Fuente-Sandoval et al., 2016), decreases (Menschikov et al., 
2016), and no differences (Wang et  al., 2016) when compared 
with healthy controls. Nevertheless, heterogeneity of clinical 
subgroups is also a potential confounder in UHR studies (Fusar-
Poli et al., 2016), and only 1 study to date investigated associa-
tions between GABA levels and severity of positive and negative 
symptoms in this group (de la Fuente-Sandoval et al., 2016). The 
present study sought to address these issues by using 1H-MRS 
in a homogenous sample of antipsychotic-naïve subjects at 
UHR of psychosis to test the hypotheses that: (1) GABA levels 
in the MPFC would be reduced in UHR subjects compared with 
healthy controls (Marin, 2012), and that (2) GABA levels would 
be inversely related to the severity of positive and negative pro-
dromal symptoms (Grace, 2016).

Methods

Procedures were approved by the Research Ethics Committee 
of King’s College London and South London and Maudsley NHS 
Trust. All participants provided informed consent.

Twenty-one UHR individuals and 20 healthy volunteers, all 
males aged 18to 30 years, were included. UHR psychopathology 
was assessed using the Community Assessment of At-Risk 
Mental States (CAARMS) (Yung et al., 2005). UHR inclusion cri-
teria required the presence of one or more of the following: (1) 
attenuated psychotic syndrome, (2) a brief psychotic episode 
of <1 week duration that spontaneously remits without anti-
psychotic medication/hospitalization, and (3) trait vulnerability 
(schizotypal personality disorder or a first-degree relative with 
psychosis) plus a marked decline in psychosocial functioning. 
Healthy control subjects were recruited from the local com-
munity. They were excluded if they had a personal or familial 
history of psychiatric disorder, neurological illness, or drug/
alcohol dependence based on the DSM-V (American Psychiatric 
Association, 1994). Current/past medication use and current/
past use of tobacco and cannabis was assessed using a semis-
tructured interview adapted from the Early Psychosis Prevention 
and Intervention Centre Drug and Alcohol Assessment Schedule 
(http://www.eppic.org.au). All subjects were safe for MRI, had an 
IQ in the normal range as assessed using the Wechsler Adult 
Intelligence Scale-III (Velthorst et al., 2013), and were antipsy-
chotic-naïve, and none were taking benzodiazepines.

Subjects underwent 1H-MRS on a General Electric Signa 
HDx TwinSpeed 3T scanner at the Centre for Neuroimaging 
Sciences, Institute of Psychiatry, Psychology & Neuroscience 
(King’s College London). GABA levels were obtained from the 
MPFC using MEGA-PRESS, which incorporates a standardized 
chemically selective suppression water suppression routine 
(TE = 68 milliseconds, TR = 2000 milliseconds). For each acquisi-
tion, unsuppressed water reference spectra (16 averages) were 
also acquired. Shimming was optimized, with auto-prescan 
performed twice before each scan. The region of interest in the 
MPFC was prescribed from the midline sagittal localizer, and 
the center of the 40- × 35- × 20-mm region of interest was placed 
above the middle section of corpus callosum (Figure 1A). Spectra 
were analyzed using LCModel 6.3-1L with the basis set provided 
by its author (Provencher, 2016), which contained the metabo-
lites GABA, glutamine, glutamate, Glx (glutamate + glutamine), 
and N-acetyl-aspartate (NAA). We used Cramer-Rao minimum 
variance bounds (CRLB) >20% as reported by LCModel, which 
are estimates of fit of the metabolite peaks, and signal-to-noise 
ratio <8 to exclude poorly fitted metabolite peaks from statis-
tical analysis (Mouchlianitis et al., 2016; Provencher, 2016). Data 
from all 41 participants in the present study met these criteria. 
Metabolites were expressed as ratios relative to the synchron-
ously acquired creatine signal from the unedited MEGA-PRESS 
spectra. This is a well-established normalization procedure in 
clinical 1H-MRS studies that has been extensively used in pre-
vious studies of MPFC GABA levels in patients with schizophre-
nia (Goto et  al., 2009; Ongur et  al., 2010; Kegeles et  al., 2012; 
Marsman et al., 2014) and UHR subjects (Marenco et al., 2016; 
Menschikov et al., 2016).
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Analysis of demographic and metabolite data was per-
formed with SPSS 24. Group differences were tested using 
independent-sample t tests, and significant effects are reported 
at P < .05. Associations between GABA/Cr levels and severity of 
CAARMS positive and negative symptoms were assessed with 
linear regression, and results were Bonferroni-corrected at 
P < .025. In line with previous studies (e.g., Kegeles et al., 2012; 
de la Fuente-Sandoval et al., 2016), exploratory analyses on the 
other metabolites in the spectra (Glu/Cr, Glx/Cr, and NAA/Cr) 
were conducted for completion but will not be discussed. These 
analyses explored: (1) group differences using t tests, (2) asso-
ciations with CAARMS positive and negative symptoms using 
linear regression, and (3) correlations between GABA/Cr and the 
other metabolites using Pearson’s product-moment correlation 
(Bonferroni-corrected at P < .05/3). As field strengths of 4T or 
more are needed to measure glutamine accurately, exploratory 

analysis of this metabolite was not performed (Snyder and 
Wilman, 2010). Finally, Pearson’s product-moment correlation 
was used to examine potential associations between GABA lev-
els and age as well as cigarette use in UHR subjects, and Mann 
Whitney-U test was used to examine potential group effects 
between UHR with and without current or past cannabis use.

Results

Table 1 summarizes participant characteristics and metabolite val-
ues. All UHR subjects met Attenuated Psychosis Syndrome criteria.

GABA Levels

There were no significant differences in the creatine-scaled 
GABA levels between UHR subjects and healthy controls (P = .130). 

Figure 1.  (A) Voxel placement on medial prefrontal cortex (MPFC) and representative sample 1H-MRS spectra. (B) MPFC metabolite levels by group. (C) Scatterplot of the 

significant association between CAARMS negative symptom severity and GABA/Cr levels (ß = -.556, t = -2.761, R2 = .310, P = .013). (D) Scatterplot of the nonsignificant 

associations between CAARMS positive symptom severity and GABA/Cr levels (P =  .298). Cr, creatine; Glu, glutamate; Glx, glutamate + glutamine; NAA, N-Acetyl-

aspartate; UHR, ultra-high risk of psychosis.
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Exploratory analysis of the other metabolites in the spectra also 
showed no significant differences between groups corrected for 
multiple comparisons (all P > .017) (Table 1; Figure 1B).

Within the UHR group, MPFC GABA/Cr levels were inversely 
associated with the severity of negative symptoms (ß = -.556, 
t = -2.761, P = .013, significant after Bonferroni correction at 
P < .025), but there was no relationship with positive symptoms 
(ß = -.245, t = -1.071, P = .298) (Figure 1C–D).

MPFC GABA/Cr levels were not significantly associated with 
age (r = -.027, P = .908), cigarette use (r = -.195, P = .410), or differed 
in UHR subjects with current or past cannabis use compared 
with those without (current use: U = 38.0, Z = -1.723, P = .085; past 
use: U = 22.0, Z = -.945, P = .345). Groups did not differ in spectral 
quality (CRLB, P = .484; SNR, P = .939; linewidth, P = .778) (Table 1). 
Follow-up clinical data revealed that 3 of the 20 UHR subjects 
developed psychosis at a mean follow-up time o 18  months. 
Exploratory analyses removing these subjects rendered the cor-
relation between GABA/Cr and CAARMS negative symptoms no 
longer significant (ß = -.377, t = -1.578, P = .135), suggesting that 
the association was driven by those individuals who went on to 
develop a psychotic disorder.

Other Metabolites

Exploratory analysis showed no significant associations 
between levels of the other metabolites in the voxel and posi-
tive or negative symptom severity (Glu/Cr and CAARMS positive: 
ß = -.159, t = -.684, P = .503; Glu/Cr and CAARMS negative: ß = -.297, 
t = -1.283, P = .217; Glx/Cr and CAARMS positive: ß = -.109, t = -.463, 
P = .649; Glx/Cr and CAARMS negative: ß = -.096, t = -.400, P = .694; 
NAA/Cr and CAARMS positive: ß = -.173, t = -.746, P = .465; NAA/
Cr and CAARMS negative: ß = -.034, t = -.142, P = .889). None of 
these metabolites were significantly correlated with age (Glu/
Cr: r = -.296, P = .192; Glx/Cr: r = -.421, P = .058; NAA/Cr: r = .342, 
P = .130). Finally, Pearson’s product-moment correlation showed 
that in healthy controls, GABA/Cr was positively associated with 
NAA/Cr (r = .516, P = .020), while in UHR individuals, GABA/Cr 
was positively associated with Glu/Cr (r = .460, P = .041). However, 
these associations did not survive Bonferroni correction, or 

significantly differed between the groups (GABA and NAA: 
z = 1.7, P = .089; GABA and Glu: z = -.69, P = .490).

Discussion

We did not find evidence that cortical GABA levels (creatine-
scaled) in subjects at UHR of psychosis differed from those in 
healthy controls. The 3 previous GABA MRS studies in UHR sub-
jects reported either increased (de la Fuente-Sandoval et  al., 
2016), decreased (Menschikov et al., 2016), or no difference from 
healthy controls (Wang et  al., 2016). Although the location of 
the 1H-MRS voxel in those previous UHR studies was more ven-
trally placed within the MPFC than in our study, another recent 
study in unaffected relatives using an overlapping voxel to ours 
did find a significant decrease in the relatives (Marenco et al., 
2016). However, these were asymptomatic individuals at genetic 
high risk as opposed to a sample of subjects with an attenu-
ated psychosis syndrome. Potential sources of variability may 
thus relate to voxel placement and to the nature of the high-
risk sample under study. Future studies should consider stand-
ardizing voxel placement or using multiple rather than single 
voxels (Duyn et  al., 1993). Allowing GABA quantification from 
both dorsal and ventral MPFC in the same individuals would 
help elucidate region-specific effects in people at increased 
risk for psychosis and clarify whether GABA function is rela-
tively uncompromised in more dorsal MPFC areas compared 
with healthy individuals. Regarding the nature of the high-risk 
samples recruited to different studies, the UHR category is het-
erogeneous with respect to both inclusion criteria and clinical 
outcomes, and the neuroimaging findings in a sample may vary 
depending on its composition (Fusar-Poli et  al., 2016). In this 
context, our study expands the previous literature by showing 
results from a homogeneous sample of UHR individuals who all 
fell under attenuated psychosis syndrome criteria. Prospective 
studies in similarly homogenized UHR samples are needed to 
further clarify whether GABAergic dysfunction can be reliably 
detected in this group, whether the MPFC subregions affected 
are predominantly ventral, and whether alterations in GABA 
levels are identifiable with 1H-MRS in UHR individuals who 

Table 1.  Participants’ Characteristics and Spectral Data

HC (n = 20) UHR (n = 21) HC vs UHR

Mean (SD, range) Mean (SD, range) Statistic P

Age (y) 23.7 (2.7, 20–28) 22.2 (3.0, 18–29) t = 1.613 .111
Estimated IQ 117.1 (10.4, 95–132) 110.0 (12.5, 75–128) t = 1.736 .092
CAARMS positive - 11.9 (6.7, 1–34) - -
CAARMS negative - 8.4 (6.4, 0–29) - -
Tobacco (cigarettes/d) - 4.75 (6.7) - -
Cannabis now (yes/no) - 11/12 - -
Cannabis ever (yes/no) - 16/4 - -
SNR 21.6 (2.8) 21.7 (2.80) -.076 .939
Line width 6.2 (1.8) 6.4 (1.28) -.284 .778
GABA/creatine .4 (.1) .3 (.05) 1.546 .130
GABA % CRLB 5.5 (1.0) 5.9 (1.4) -1.052 .300
Glutamate/creatine .5 (.1) 5.5 (.1) -.769 .446
Glutamate % CRLB 7.6 (1.5) 6.6 (1.5) 2.001 .053
Glx/creatine .8 (.1) .8 (.1) -.255 .800
Glx % CRLB 5.6 (1.4) 5.2 (1.5) .835 .409
N-acetyl-aspartate/creatine 1.1 (.1) 1.1 (1.1) .823 .415
N-acetyl-aspartate % CRLB 1.15 (.37) 1.63 (1.34) -1.512 .146

Abbreviations: CAARMS, Clinical Assessment for At-Risk Mental States; CRLB, Cramer Rao Lower Bounds; GABA, gamma-aminobutyric acid; Glx, glutamate + glutam-

ine ratio; HC, healthy control subjects; SNR, signal to noise ratio; UHR, ultra-high risk subjects.
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are destined to develop a psychotic disorder. Nevertheless, it 
is worth noting that a recent meta-analysis of 1H-MRS studies 
in schizophrenia did not find a significant effect in GABA lev-
els (Egerton et al., 2017), suggesting a lack of convergence with 
predictions from animal and postmortem studies. This might 
relate to the divergent nature of the measurements across 
disciplines. While preclinical and postmortem studies suggest 
that the GABAergic abnormality refers to parvalbumin-positive 
interneurons (Marin, 2012), 1H-MRS assesses total tissue con-
centrations and as such it is likely to not be restricted to a par-
ticular GABA cell type. Future translational animal and human 
work measuring GABA levels in homolog regions across species 
may be able to comprehensively delineate the molecular path-
way linking GABAergic dysfunction to the expression of schizo-
phrenia-like characteristics, including GABA measurements in 
other anatomical regions such as the hippocampus, amygdala, 
and thalamus.

Although preclinical models would primarily predict that 
cortical GABA dysfunction leads to positive psychotic symp-
toms through a hyper-responsive dopamine system arising 
from a glutamatergic dysregulation, our regression analysis 
did not reveal an association between GABA and positive 
symptoms. However, we observed that GABA levels were sig-
nificantly inversely associated with the severity of negative 
symptoms. This finding is of interest, as the pathophysio-
logical basis of negative symptoms is unclear (Salamone et al., 
2015), and it merits replication in a larger sample. Previous 
studies had not found a significant association between MPFC 
GABA levels and severity of positive or negative symptoms in 
UHR subjects (de la Fuente-Sandoval et al., 2016) or in unmedi-
cated patients with a first episode of psychosis (Kegeles et al., 
2012). Nevertheless, as mentioned above, effects of anatom-
ical location of the MEGA-PRESS acquisition and study sample 
composition may be at play. Furthermore, although this cross-
sectional study was not designed to examine longitudinal 
effects, the correlation appeared to be driven by UHR individu-
als who went on to develop a psychotic disorder. Preclinical 
models have proposed circuit-based approaches to the devel-
opment of psychosis-like behaviors (Lisman et al., 2008), and 
it has been recently postulated that the positive, negative, 
and disorganized dimensions of schizophrenia may originate 
from disruption of multiple, interconnected circuits involv-
ing GABAergic dysfunction and converging on hippocampal 
hyperactivity (Grace, 2016). Hence, larger multimodal imaging 
studies in UHR subjects investigating associations between, 
for example, GABA levels and hippocampal activity in relation 
to clinical symptomatology and outcomes are warranted to 
expand the present findings.

Strengths of the current report include a homogenous UHR 
sample as determined by trained clinicians, a well-matched con-
trol group, and a validated method (MEGA-PRESS) to quantify 
water-scaled GABA concentrations at 3T. A limitation intrinsic to 
all MEGA-PRESS studies is that the GABA signal contains some 
contribution from macromolecules, that is, diverse proteins and 
lipids, but it is unlikely that the macromolecule contribution 
would differ across groups. Furthermore, the results should be 
considered in the context of a sample of male participants and 
as such may not generalize to all individuals with an attenuated 
psychosis syndrome.

In conclusion, if there is any alteration in GABA levels meas-
urable with in vivo 1H-MRS in the MPFC in people at UHR of 
psychosis, it is small and difficult to detect even with a homoge-
neous sample of antipsychotic-naïve individuals. Nevertheless, 
our data provides a direct link between GABAergic levels and 

prodromal negative symptoms, which warrants replication in 
larger samples.
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