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A B S T R A C T

Currently, no clear standards exist for determining urban building natural ventilation rates, especially under
varying realistic meteorological conditions. In this study, ventilation rates are determined using tracer gas decay
and pressure-based measurements for a full-scale (6 m tall) cube. The cube was either isolated (2 months of
observations) or sheltered within a staggered array (7 months), for both single-sided and cross ventilation
(openings 0.4 m×1m). Wind speeds at cube height ranged between 0.04m s−1 and 13.1m s−1. Errors for both
ventilation methods are carefully assessed. There is no discernible linear relation between normalised ventilation
rates from the two methods, except for cross ventilation in the array case. The ratio of tracer gas and pressure
derived ventilation rates is assessed with wind direction. For single-sided (leeward opening) cases it approached
1. For cross ventilation the ratio was closer to 1 but with more scatter. One explanation is that agreement is
better when internal mixing is less jet-dominated, i.e. for oblique directions in the isolated case and for all
directions for unsteady array flows. Sheltering may reduce the flushing rate of the tracer gas from the cube
relative to internal mixing rate. This new dataset provides an extensive range of conditions for numerical model
evaluation and for understanding uncertainty of ventilation rates. Knowledge of the latter is critical in building
design.

1. Introduction

Accurate predictions of ventilation rates are required for the health
and well-being of the occupants inside a building. Natural ventilation is
suited to mild climates [47] to create a comfortable and healthy indoor
environment, and save energy compared to mechanical ventilation
systems [11,26]. A variety of tools are used to simulate natural venti-
lation: EnergyPlus (e.g. [54]), TRNSYS coupled with CONTAM (e.g.
[31]) and CFD (Computer Fluid Dynamics) models (e.g. [32,33,69]). To
verify natural ventilation simulations, detailed datasets are required
with temperature, internal gains, operable window position, tracer gas
concentrations and air velocity observed [42]. Given natural ventila-
tion's dependence on the external conditions, many studies use test
chambers (e.g. [58,69]) or wind tunnel models (e.g. [35]) to control the
boundary conditions, but lose the true information of the impact from
varying atmospheric conditions. Full-scale measurements in true

atmospheric conditions are limited, because of the variability of ex-
ternal conditions, measurement difficulties and cost limitations [42].
Furthermore, determining natural ventilation rate in the urban en-
vironment is more challenging due to the complex wind environment
and all scales of turbulence encountered [1].

To date few full-scale studies of natural ventilation within an urban
area have been undertaken, though most agree that natural ventilation
becomes less effective in urban areas [13,14,63]. For isolated buildings,
opening shape, size and location [45,56,65] could affect natural ven-
tilation performance. Instantaneous fluctuations in wind direction and
wind speed also have an effect [24]. To our best knowledge, the long-
term measurement of natural ventilation for both isolated and array
cases under the varying realistic atmospheric conditions, allowing the
direct comparison of the two, has never been studied.

In terms of methods for full-scale measurement of natural ventila-
tion rate, both tracer gas techniques and pressure taps are the most
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frequently used [9,46]. Despite the study of ventilation becoming more
multi-disciplinary, there is no clear guidance on which method to use
and how methods compare for realistic buildings in actual meteor-
ological conditions. Typically, average climate data are used, which by
definition, missing both the extremes and the variability.

Comparisons between pressure difference and tracer gas methods
for naturally ventilated livestock buildings [10,52] found pressure dif-
ference methods were unable to provide ‘accurate’ estimates or of true
ventilation rate because of the dependence on wind speed. Un-
fortunately, the inaccuracy was not quantified.

The objective of this paper is to compare tracer gas and pressure-
based methods to determine ventilation rates in a full-scale field en-
vironment (both isolated and building array), with a detailed metho-
dology and error analysis. The mean ventilation rates are determined
with tracer gas decay (Section 2.1) and pressure-based (Section 2.2)
methods for a ventilated 6m high cube in an isolated and staggered
cube array and with cross and single-sided ventilation. Mean ventila-
tion rates are compared over a range of weather conditions and wind
directions.

2. Description of tracer gas and pressure-based methods

2.1. Tracer gas decay method

Determining ventilation rates through measurement of tracer gas
concentrations is best suited to single zone systems or where sections of
a building can be completely isolated [55]. The tracer gas methods
commonly used are constant injection (e.g. [66]), constant concentra-
tion (e.g. [4]) and tracer gas decay (e.g. [9]). Of the three, the decay
method is more common, as smaller amounts of gas are required and it
is easier to implement [44].

Despite carbon dioxide (CO2) being naturally present in the atmo-
sphere, it is commonly used as an indoor air quality indicator and as a
tracer gas. Advantages includes its low cost and straightforward safety
requirements. CO2 can be released (e.g. [9,16]) or generated by room
occupants (e.g. [39,70]) to be utilised [41]. Other gases used include
sulphur hexafluoride (SF6) [57], sulphur dioxide (SO2) [18], carbon
monoxide (CO) [59,67] and nitrogen dioxide (NO2) [68].

Few guidelines for sensor positioning are available [21] [22]; de-
spite this being crucial to obtaining representative measurements [40].
Within mechanically ventilated rooms, inappropriate sensor positioning
can cause tracer gas decay ventilation rate errors of up to 85% [62].
Van Buggenhout et al. recommend siting at the ventilation outlet, while
acknowledging wind speed, thermal effects and wind direction may
make this impractical. This lack of guidance combined with other ex-
perimental aspects can make comparison of results difficult [40]. Basic
comparisons require: measurement method, application details, in-
strumentation and their calibrations, timings, number of measure-
ments, meteorological conditions and building conditions [48]. found
only half of [60] 26 studies gave instrumentation details and only 4 of
the 26 provided measurement uncertainty values.

Tracer gas ventilation rates stem from the mass-balance equation
[36]:

= − +V dC t
dt

C C t Q E( ) ( ( ))i
a i (1)

where V (m3) is the room volume, Q (m3 s−1) is the volumetric flow
rate, Ci (kg m−3) is the indoor concentration of tracer gas, Ca (kg m−3)
is the external concentration of tracer gas, E (kg s−1) is the amount of
tracer gas emitted from an indoor source and t (s) is time. CiQ is the
transport of tracer gas from the room to the outside through openings or
cracks and CaQ is the transport of tracer gas from the outside into the
room. If no indoor source is present, then by integrating equation (1)
the indoor concentration is:

= − − +C t C C λt C( ) ( )exp( )i a a0 (2)

where C0 is the concentration of gas when t=0 and λ is the ventilation
rate in air changes per hour (h−1). To derive ventilation rate, taking the
natural logarithm of equation (2) gives a linear relation with slope λ:

− = − −C t C C C λ tln( ( ) ) ln( )i a a0 (3)

Ventilation rates (Q, in m3 s −1) can be converted to λ (h−1) using:

=λ 3600 Q
V (4)

Here all ventilation rates are in m3 s−1 unless otherwise stated.
Equation (3) requires several assumptions [36,55]:

• The tracer gas is chemically inert, with the room objects neither
absorbing nor releasing the tracer gas;

• Room air is well-mixed; i.e., Ci is spatially uniform;

• Exchange of internal and external air occurs in places with direct
contact with the outside; e.g. windows;

• Room is a single zone system.

Differences in room temperature may lead to stratification, in-
effective mixing and the presence of dead-zones within a room [62].

2.2. Pressure-based method

Pressure differences across a building provide a second ventilation
rate method. Either the internal-external or windward - leeward ex-
ternal face (e.g. [12,25,59]) pressure differences may be used. An al-
ternative to direct pressure measurement is to assume a pressure
coefficient can be estimated. However, the effects of urban surround-
ings on pressure coefficients (e.g. [2,32,33,64]); are not well known.
Research to determine pressure coefficients often focuses on parts of a
building design, e.g. wind towers [28]. The review by [8] of pressure
coefficient data models highlighted that significant variations in esti-
mates occur between sources. Given the lack of pressure coefficient
data for low wind speeds (< 4m s−1), building ventilation rates for
these conditions are rare. The relative role of thermal or wind driven
processes poorly understood [8].

If a pressure difference (Δp) between the internal and external en-
vironments or between the front and back of a building can be deduced,
the flow rate through the opening (Qp) is:

=Q C A
Δp
ρ

2
p d

(5)

where ρ is the air density. CdA is the effective area of an opening. This
changes with the number of openings and their relative positions. Cd is
the discharge coefficient and A is the opening area. The assumptions
required for equation (5) are:

• flow is turbulent under normal pressures,

• kinetic energy is dissipated at the windward opening

• presence of openings does not influence the surface pressure dis-
tribution.

For cross ventilation with both inlets and outlets, some of the tur-
bulent kinetic energy can be preserved and directed outside without
interior dissipation, undermining the kinetic energy assumption
[30,43]. Suggested alternatives (e.g. [23,30,53]) have not replaced the
orifice equation.

The largest source of error arises from using a mean rather than
instantaneous pressure differences [6]. Uncertainty increases with very
large (undefined) openings [46] as non-uniform pressure differences
occur and the ventilation opening velocity profiles vary with time. Er-
rors arise if an incorrect discharge coefficient is used, as Cd is sensitive
to opening size and wind direction and also for cross ventilation, the
ratio of the two openings [5,29].
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3. Experimental design

Observations were undertaken within the REFRESH (Remodelling
Building Design Sustainability from a Human Centred Approach) Cube
Campaign (RCC). Full details of the array set-up, external and internal
flow patterns and an overview of the data gathered within RCC-
REFRESH are given in [16,17,32,33]. Details pertaining to the de-
termination of ventilation rates are given here.

Observations (Table 1) were taken at Wrest Park, Silsoe, Bed-
fordshire, U.K. (52.01088° N, −0.410979° W) using an uninhabited
instrumented cube (height 6m). The cube, was clad in flat, steel sheets
to ensure uniform external surfaces. It was positioned to be perpendi-
cular to the prevailing site wind direction (Fig. 1). Observations oc-
curred in two phases, with the instrumented cube: (i) surrounded by a
limited staggered array of eight cubes (October 2014–April 2015) and
(ii) isolated (May–July 2015). Therefore, radiative differences occur
between the array (winter – spring) and isolated (early summer) cases.
These are accounted for as far as possible within the analysis. The real-

world environmental factors are used to characterise the measure-
ments.

The cube's front and back faces had removable panels (0.4 m wide x
1m high) allowing both a sealed and a ventilated structure. Both single-
sided and cross ventilated set-ups were used with the centre point of the
opening 3.5m above from the ground (Fig. 1a). This is smaller than the
1m2 openings used by [59] as they found the ventilation rates were too
large (gas flushed < 30 s) to accurately measure the tracer gas decay
curves and meteorological conditions.

3.1. Temperature measurements

Temperature measurements inside the cube (Table 1) allowed de-
termination of thermal stratification, and with the external tempera-
tures on the Channel mast (Fig. 1, Table 1) the thermally-driven ven-
tilation component. The Vaisala WXT520 weather station was
positioned to minimise solar gains. Internal temperatures measured at
24 points (Fig. 2, Table 2) were sampled at 10 Hz to allow the average
over a large number of samples in the 30min value and a reasonably
accurate mean.

Eight thermocouples (H1 to H8) were horizontally strung between
the windows at a height of 3m (Table 2b). The other 16 were in four
vertical profiles of four thermocouples (T1 to T4), put at varying
heights (Table 2a) below 4m given access limitations. The thermo-
couple errors (0.45% ± 2 °C, junction error plus thermocouple error)
are unsuitable for measuring instantaneous fluctuations in temperature
[27]. All thermocouples and the WXT520 were calibrated and corrected
(on average < 0.5 °C) for instrument bias at the start and end of the
experiment using an environmental chamber (Design Environmental
Delta 190H) over a −20 °C to 50 °C range, accounting for hysteresis
effects due to instrumental time response.

3.2. Tracer gas decay method set-up

The combination of site limitations, safety concerns, affordability,
lower environmental impact, wide range of sensors and lower risks (cf.
other tracer gases, e.g. Argon and SF6) led to CO2 being chosen as the
tracer gas. The external CO2 concentration (Ca) was measured with an
open path LI-COR LI-7500 on the channel mast (Fig. 1, Table 1). During
the 10-month study, Ca varied between 365 and 450 ppm (95% be-
tween 371 and 403 ppm). Given the low natural variability (standard
deviation typically 3–4 ppm) of Ca during a decay experiment (Table 3),
the mean Ca for that period is used in equation (3). The LI-COR LI-7500
was sufficiently distant from the cube to ensure the tracer CO2 releases
did not have an effect.

The three synchronised K30 NDIR sensors measuring internal CO2

(Ci) (Fig. 3, Table 1) were not electronically shielded. They were en-
cased within modified junction boxes to protect from frost, condensa-
tion and to reduce magnetic noise (Fig. 3). Pre-experiment checks en-
sured there was adequate airflow to the sensors.

The K30 sensors were calibrated by the manufacturer and compared
in-house to the LI-7500 in both a constant concentration test, and a
decay from the sensor upper limit (10,000 ppm) before and after the
field campaign. None of the three sensors drifted over the course of the
experiment. Fig. 3 shows the ‘East’ sensor (E) positioned under the east
opening (1m from the wall, 2.75m above the ground). The ‘Low’ sensor
(L) was hung under the steel girder of the east wall, (1 m from the
North-East corner of the cube, 0.3m above the ground). The ‘Middle’
sensor (M) was 3m above the ground at the centre-point of the
Northern wall (∼0.5 m from the wall) but near a crack between the
floor and building to help understand infiltration effects on the venti-
lation rate. To reduce the infiltration rates, cracks at the cube base were
filled with foam. Ideally more sensors would have been used to give
more representative results of the cube over-all ventilation rate.

The cube's nine inlet pipes (Fig. 3) were used to release the tracer
evenly throughout the cube. A large desk fan (estimated effective range

Table 1
Equipment used for measurements of data analysed.

Variable Manufacturer Model
Instrument
Sampling Frequency

Specifications

Velocity
Direction

Gill Windmaster R3-
50
Sonic Anemometer
10 Hz (20 Hz on
Channel mast)
[15]

Velocity: Range: 0–45m s−1

Resolution: 0.01m s−1

Accuracy:< 1.5% RMS at 12m s−1

Direction: Range: 0–359°
Resolution: 0.1°
Accuracy: 2° at 12m s−1

External CO2 LI-COR LI-7500
Infra-red gas
analyser
20 Hz
(LI-COR [38]

Range CO2: 0–3000 ppm
Accuracy CO2: 1% of reading

Internal CO2 Senseair K30 FR
2Hz 1%
non-dispersive infra-
red (NDIR) CO2
Sensor
2 Hz
[7]

Range: 0–10000 ppm
Error:± 20 ppm ± 1% of measured
value
Accuracy:± 30 ppm ± 3% of measured
value
Response time: 2 s at 0.5 Lmin−1

flow
20 s diffusion time

Surface pressure Honeywell Analogue
Pressure taps
10 Hz
[20]

1:16 Range: −2.5 to 2.5 Inches of H2O
Honeywell 163PC01D75
17:32 Range: 5 to 5 Inches of H2O
Honeywell 163PC01D76
Response time (all): 1 ms
Drift (all) 0.5% of measurement span per
year

Internal
temperature

RS components
Type-K
Thermocouples
(0.2mm diameter)
10 Hz
[51]

Range: −100 to 250 °C
Error:± 1.5 °C ± 0.25%
Response time in moving air: 0.1 s
Diameter: 0.2 mm

Velocity,
External
temperature
Surface
pressure,
Humidity
Precipitation

Vaisala WXT520
Weather Station
20 Hz
[61]

Wind Speed Accuracy: ± 3% at 10m s−1

Wind direction Accuracy: ± 3°
Wind Response time: 250ms
Air temperature accuracy at
20 °C:± 0.3 °C
Humidity 0–90% accuracy:± 3%
Pressure accuracy at 0–30 °C:± 5 hPa
Precipitation accuracy:± 5%

Shortwave and
longwave
radiation

Kipp and Zonen
CNR4
20 Hz
[34]

Response time:< 18 s
Non-Linearity:< 1%
Sensitivity: 5 to 20 μ V/W/m2
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of 4m horizontally, 2 m vertically) was used to improve mixing. Eight
outlets were 3m above floor level. Outlet number 6 was placed at floor
level in the centre of the room and had a pipe length (outlet to reg-
ulator) of 2.2m, whereas all others were 3.1m. The CO2 was heated by
the regulator to approximately 10 °C to prevent the outlet freezing

during release and to reduce the temperature difference between the
tracer gas and the ambient air. Gas release was controlled externally.

The procedural order for each tracer gas decay experiment was:

1) The openings (if used) were blocked from the outside with a tem-
porary panel. The fan was turned on

2) Sensors were checked for any signs of water damage or loose con-
nections before logging initiated

3) The door was shut, and CO2 released for 10–15min. The maximum

Fig. 1. Cube array and instrument (sonic anemometer, Table 1), storage shed (black diamond) and sewage tanks (black triangle) locations: a) aerial image towards
the prevailing wind direction b) plan of the array case with measurements and angle notation. For the isolated case, the grey cubes were removed [17].

Fig. 2. Locations of the 24 thermocouples (vertical (T1-T4) and horizontal (H)
arrays, see Table 2 for heights) and two sonic anemometers (Sf and Sb) within
the cube and its openings and door shown.

Table 2
(a) Heights (m) of the thermocouples (T1-T4) and (b) distance (m) from the
front internal sonic anemometer (Sf) of the horizontal thermocouples (H) lo-
cated as shown in Fig. 2.

(a) Number in vertical Height (m)

T1 T2 T3 T4

1 1.0 1.5 3.0 2.0
2 1.5 2.75 2.5 2.5
3 2.5 3.5 1.0 3.5
4 3.0 4.0 0.75 4.0

b) H8 H7 H6 H5 H4 H3 H2 H1

Distance from Sf (m) 5.5 5.0 4.0 3.0 2.0 1.5 1.0 0.0
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concentration achieved for all runs was between 3000 and
10000 ppm

4) After 10–15min, the blocking panels were removed, and the gas
switched off (fan remained on to aid mixing)

5) The cube was left undisturbed for at least 20min. For infiltration
experiments, the cube was often left over-night due to the low air
exchange rate

The local air change rate (λ) for each sensor is calculated by linear
fit (equation (3)) incorporating errors (e.g. Fig. 5, section 4.1). The
instrumental errors are accounted for in λ by fitting curves to measured
data plus and minus the instrumental error (Table 1). The final venti-
lation rate λ for an experiment is the average of all three sensors when a
“well-mixed” criterion is satisfied: (i) flow structure verified by filming
smoke release inside the cube or (ii) all 30min horizontal (difference of
the average temperature of H1, H2 and H7, H8) and vertical

temperature differences (difference in average temperature of thermo-
couples at 3–4m and those at 0–1.5 m) were less than 2.5 °C. The
combination of temperature measurements and smoke releases elimi-
nated 15 tracer gas releases from the dataset. Incomplete temperature
or smoke data resulted in another 13 being excluded. Thus, 28 out of
156 releases were discarded.

Only the tracer gas method permits infiltration rate measurements,
as the area of cracks and gaps could not be determined by other means.
The mean infiltration rate (average of 15 infiltration experiments, all
wind directions) is 0.562 h−1 (0.034m3 s−1) (median 0.572 h−1) with
an inter-quartile range of 0.426 h−1 (0.026m3 s−1) and an error of
approximately 5% was removed from the total measured ventilation
rate in all results presented (see Table 3).

3.3. Pressure difference

To measure the cube surface pressure, 30 external and 2 internal
pressure taps were used. The external pressure taps had 7mm holes
located centrally on 0.6m2 steel panels. These were mounted flush to
the cube cladding. The taps, located closer together where sharper
gradients in pressure were expected (Fig. 4), are in identical positions to
[59]. Pressure signals were transmitted pneumatically, using 6mm in-
ternal diameter plastic tubes to transducers located within the cube, at a
rate equivalent to 10 Hz. The sensors for taps 1–16 were Honeywell
163PC01D75 differential pressure sensors; pressure taps 17–32 were
Honeywell 163PC01D76 differential pressure sensors (Table 1). Two
internal pressure taps were located directly under the openings on both
the front and back of the cube.

To combat instrument drift, the pressure tap system logged con-
tinuously (new file every 30min). At the start and end of each

Table 3
Number (#) of tracer gas release (Qt) experiments, mean length of the decay
(min) and number of 30min average pressure (Qp) measurements for the dif-
ferent ventilation cases when cube was isolated and within the array. Only days
with all input data required for calculation are included.

Ventilation case Isolated Array

Qt

# Mean length (min)
Qp

#
Qt

# Mean length (min)
Qp

#

Infiltration 15 201 N/A 9 475 N/A
Single-sided 26 36 763 15 47 907
Cross ventilated 26 16 648 18 24 637

Fig. 3. Tracer gas set-up showing locations of: a)
tracer gas inlet pipes (purple squares, 1–9; 1–5 and
7–9 at 3m above floor level, #6 at ground level), K30
CO2 sensors (E/L/M, position within 0.1 m), open-
ings (door shown open but closes flush with the wall)
and mixing fan (blue cross). b) Photos showing K30
sensors (red circles): Low sensor (L), East sensor (E)
and Middle sensor (M). (For interpretation of the
references to colour in this figure legend, the reader
is referred to the Web version of this article.)
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measurement file 60 s of zero measurements based on a reference
pressure and 60 s of calibration of the pressure transducers to the zero
measurements were taken. The last second of data in each file is not
analysed as the valves switched to the reference rather than surface
pressure.

Reference pressure was measured with a static pressure probe at
ground level (custom-built as described in [49]). A reference dynamic
pressure was measured using a directional pitot tube [37] at 6m
alongside the 6m reference sonic anemometer (Fig. 1). External pres-
sure was defined as the mean pressure measured around the opening at
the front (Taps 3, 4, 18 and 19) and back (Taps 12, 13, 26 and 27) faces
(Fig. 4). Tests undertaken of sealed and ventilated conditions found no
effects of the opening on the mean surface pressure measurements
closest to the opening.

After the mean of the external taps is calculated, difference calcu-
lations (external and internal) are performed for each 10 Hz reading.
These differences (averaged per 30min) is used in equation (5) to
calculate QP with a flow direction dependent Cd determined from wind
tunnel tests. An open-ended wind tunnel (cross section 1.7m×1m,
turbulence intensity ∼4%) was used with a model of the openings
(0.4 m w x 1m h x 0.23m d). The sill pointed inwards for the inlet set
up and outwards for the outlet set up. A fan within the rig drew air
through the inlet cones. This was calibrated to give flow rates from
pressure at the conical outlet. Pressures inside the settling chamber box
at the downstream end were measured by micro-manometer [50]. The
test opening was mounted at the end of the settling box. Temperature,
humidity and barometric pressure measurements allow for an accurate
calculation of air density. Flow rates and resultant normalised pressure
differences were compared, with the gradient between the two being
equal to CdA (Hoxey and Robertson, personal communication, 2015).
When acting as an inlet, Cd= 0.616 ± 0.016 and as an outlet,
Cd= 0.658 ± 0.022, with errors on Cd being determined from the
standard error of the fitted coefficients. The local mean wind direction
(Front mast, Fig. 1) is used to select the Cd. If the wind is from −90° to
90° the inlet value is used, otherwise (91° to −91°) the outlet value is
used. Directional fluctuations (« 30-min) will introduce additional er-
rors into the calculations. The errors in QP are calculated with the error
propagation method using the standard error of Δp.

Alternatively, the ventilation rates can be calculated for each in-
stantaneous pressure measurement. The average of these is the mean
ventilation rate. The two pressure-based methods have approximately a
10% difference in 30-min averages. This decreases to 3–5% for 5-min
averages.

3.4. Ventilation measurement summary

Table 3 summarises the ventilation data. The 30min averaging
period for the pressure based ventilation and meteorological variables
allows error statistics to be consistent with other meteorological studies
[3]. The tracer gas decay length varied with experimental set up.
Pressure-based ventilation rates from the full range of observed wind
speeds are analysed, unlike earlier pressure coefficient studies which
restricted wind speeds (e.g. [19] > 4m s−1 [49], > 3m s−1). Inclu-
sion of lower wind speeds leads to higher scatter in the range of ven-
tilation rates.

The Archimedes number (Ar): ratio of external forces to internal
viscous forces can be used to determine whether a flow is being driven
by buoyant processes (large Ar) or is being affected by external pro-
cesses (e.g. wind driven, small Ar). The dataset has less than 10 cases
where buoyant forces are completely dominant; i.e. the most cares are
wind driven.

4. Results and discussion

The pressure-based and tracer gas decay results are analysed in
three ways: (i) error analysis is discussed and then a single tracer gas
release case (< 30min) is compared to the 1, 5, 10 and 30min averages
for pressure-based ventilation rate (QP) for the same period; (ii) the
tracer gas decay timestamps are used for the QP calculation times; and
(iii) all Qt rates are compared to the 30min QP averages for the entire
dataset. The array and isolated cube data are treated separately. For
more details about the sheltering effect of the array on the ventilation
rate see [17].

To enable comparison across different wind speeds, a normalised
ventilation rate (QN) is used:

=Q Q
A UN

ref (6)

where Uref is the reference wind speed taken at 6m (Fig. 1). Tracer gas
decay air changes per hour (λ) are converted into Q (m3 s−1) before
being normalised using equation (6).

Pressure difference derived ventilation rates are only used when the
data series for that period is complete.

4.1. Case study: isolated cube, cross ventilation

During the isolated cube cross-ventilated case study (21/05/2015)
the mean reference wind speed (Uref) is 5.3m s−1 (standard deviation
σUref=0.24m s−1) and wind direction (θref) is 6° (σθref=19°). The
total time when the tracer gas was well-mixed within the cube was
9min. The decay curves (Fig. 5) are only for the 9min well-mixed data.
There is a gap in the pressure difference ventilation rate data (Fig. 6)
linked to the system calibration, meaning it zeroes itself every half hour
(Section 3.3).

For the tracer gas results, the “Low” sensor (Fig. 3, L) has the
greatest ventilation rate (Fig. 5c, Table 4). This sensor position ex-
periences flow exiting from both the back opening and a small gap at
the base of the cube. This suggests that infiltration may reinforce cross
ventilation within the cube for this wind direction. However, the re-
corded average infiltration rate of the cube (0.034m3 s−1) is ∼5% of
the measured ventilation rates (Fig. 5b). The East and Mid [CO2] sen-
sors have similar results (Fig. 5a, c) with the Low sensor being affected
by the infiltration rate, leading to faster decay rates in comparison

Fig. 4. Location of the pressure taps on each face (T top, B base) of the cube
with distance between taps (black) and the opening (white rectangles). Internal
taps 15 and 16 are not shown. (drawing not to scale). Front and back faces are
symmetrical as are the side faces [17].
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(Fig. 5d). For all tracer gas releases, the error is presented as the
standard deviation of the measured, maximum and minimum ventila-
tion rates for all sensors. The infiltration rate of the cube may act
against or reinforce the ventilation rate and as such is also included as
an error on each ventilation rate (Table 4).

Comparison of the pressure-based normalised ventilation rate (QNP)
for different averaging times (1,5, 10, and 30-min) with QNT mostly
agrees within error the bounds for this case (Fig. 6). Within the release
period, the pressure measurements were calibrated (gap in in-
stantaneous results, Fig. 6).

Most of the 1-min average QP values are within the QT range. As
expected, the variability of instantaneous QP measurements is not en-
tirely captured by these. The 5- and 10-min averages also lie within the
QT range. The 30-min mean QP is close to the lowest QT rate as the
instantaneous QP values decrease after the decay period. Overall, the
averaged QP values are closer to the lower estimate of QT, but shorter
averaging times capture the variability of the ventilation rate. This case
study suggests the pressure method tends to under-predict compared to
the tracer gas method, in line with [52]. However, the missing data
complicates this result. This conclusion is tested across all array, ven-
tilation and meteorological conditions in the following sections.

4.2. Comparison of tracer gas and pressure-based ventilation rates

The normalised ventilation rates calculated from pressure (QNP) and

tracer gas (QNT) data are compared for all the tracer gas release times,
for both isolated and array cube cases in single-sided ventilation
(Fig. 7a) and cross (Fig. 7b) configurations. There is no obvious linear
relation between QNP and QNT (Table 5). However consistent with
Fig. 6, both normalised ventilation rates (Fig. 7) have a similar order of
magnitude. The lack of correlation between the two methods suggests
that they are affected by different parameters in dissimilar ways. Straw
et al. [59] used a larger (1 m2) opening and found the pressure based
method were 21% of the tracer gas ventilation rate. Across the con-
figurations analysed, and consistent with [10] and [52]; the pressure
difference method is an unreliable predictor of the ventilation rate
measured through tracer gas decay.

The poor agreement for individual periods for the single-sided
ventilation cases (Fig. 7a) may be caused by bi-directional flow across
the opening. This process is not captured by the pressure measurements
surrounding the opening. For the cross-ventilation array case (Fig. 7b),
there may be improved internal mixing due to the enhanced un-
steadiness of the flow with the array enhancing the effectiveness of the
tracer gas measurement. However, the assumptions required for the
orifice equation may not hold for cross ventilation. Some of the error for
the pressure-based method may arise from the discharge coefficient
used not being valid for all wind directions [29].

It must also be acknowledged that the tracer gas derived ventilation
rate may not be representative of the entire cube and rather a local
ventilation measurement (e.g. large errors Table 5), causing differences

Fig. 5. Example of tracer gas decay measurements
(points) with linear fits of Eqn. (3) (dashed lines) for
(a) measured values from all sensors with (b–d)
showing error analysis for each instrument (see Fig. 3
for positions) with equations (same colour) in the
key. Max (min) error: measured value plus (minus)
the maximum instrument error. (For interpretation
of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 6. Normalised tracer gas (QT) and pressure-based (QP)
ventilation rates for the 21/05/2015 case study. QP averages
for 1,5,10 and 30min periods (black line) and for the 9min
gas release (magenta). This case study had lower errors
compared to the average (Fig. 7 has more examples). Dashed
lines denote the range of tracer gas ventilation rates.
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between the two methods. The representatively of the tracer gas ven-
tilation rate for each experiment is difficult to quantify and the cube
itself may not remain well-mixed throughout the decay, as evident in
deviations from the exponential decay (Fig. 5).

4.3. Effect of wind direction

When the data from Fig. 7 are analysed as a ratio (QNT/QNP) with
the reference wind direction (θref) it is evident that wind direction has
an influence (Fig. 8). Large errors occur in the ratios as these are now
combined across the two methods. For the single-sided case, the ratio is
generally below 1, suggesting that the pressure-based method over-
estimates ventilation rate. For the isolated single sided cube, QNT/QNP is
around 1 for θref=−100° to −145° and θref=150°, suggesting that
better agreement occurs between the methods when the flow is not
impacting on the front face of the cube (opening side). For the isolated
single-sided cube, as θref decreases from 150° towards 0°, QNT/QNP

tends towards 0.5, although for θref = 60°–70° a range of QNT/QNP of
0.4–0.7 is measured.

Other factors, such as wind speed fluctuations in separated flow
around the opening (causing mixing at the opening) may have an effect
alongside wind direction. It also might suggest that the thermal com-
ponent of the ventilation tends to act against the wind driven compo-
nent for flows perpendicular to the opening, leading to a lower

ventilation rate measured by the tracer gas. For the present study, in-
ternal-external temperature differences were mostly less than 5 °C,
meaning that the stack effect is small and is very rarely dominant for
both singled sided and cross ventilated configurations. It is unknown
how representative the internal-external temperature difference is
compared to the across opening difference. For both the single-sided
and cross-ventilated isolated cubes there are a few points with ra-
tios> 2, i.e. QNP « QNT. For the single-sided case this occurs when the
wind is impacting the cube back and is twice the ratio of measurements
for similar wind directions (Fig. 8a). For the cross ventilated cube, there
are insufficient data to determine the cause (Fig. 8b).

The cross ventilated isolated cube in general has higher values of
QNT/QNP than those measured for the single sided case. For the cross
ventilated isolated cube, when θref was perpendicular to the front
opening (θref=0°), QNT/QNP was approximately 0.6, increasing to 1 to
1.5 when θref∼ 45°, suggesting that it is important to note wind di-
rection when concluding whether the pressure difference method
overestimates (QNT/QNP = 0.6) or underestimates (QNT/QNP = 1.5) the
ventilation rate.

This may be influenced by the internal mixing state of the cube. CFD
simulations of the cube's internal flow [32,33]: a jet was present for
−45°< θref < 45° for the isolated cube; and for the array case internal
flow was too unsteady for a jet to be sustained. For similar wind di-
rections (e.g. θref=0°) the jet was also seen via smoke visualisation for

Table 4
Tracer gas ventilation rate (QT, m3 s−1) for the cross ventilated isolated cube case study on 21/05/2015 with air changes per hour (λ, h−1). All calculated air change
rates for the measured data have a linear fit with R2 > 0.97. East, Low and Mid sensor locations shown in Fig. 3. “Measured” indicates the results from the sensor
readings. “Maximum” and “minimum” are derived from the errors in the curve fit (Fig. 5). The QT errors are the average infiltration rate for the cube which may act
against or reinforce the ventilation rate.

East Low Mid

QT

(m3 s−1)
λ (h−1) QT

(m3 s−1)
λ (h−1) QT

(m3 s−1)
λ (h−1)

Measured 1.320 ± 0.034 22.0 1.464 ± 0.034 24.4 1.212 ± 0.034 20.2
Maximum fit 1.098 ± 0.034 18.3 1.158 ± 0.034 19.3 1.044 ± 0.034 17.4
Minimum fit 1.740 ± 0.034 29.0 1.860 ± 0.034 31.0 1.566 ± 0.034 26.1

Table 5
Analysis of the relationship between QNP and QNT as shown in Fig. 7. Analysis of the relation between QNP and QNT as shown in Fig. 7. Number of cases (#),
Correlation Coefficient (R), the linear fit, R2, P-value and errors on the measurements are listed. None of the relations are considered statistically significant.

Setup # R Linear fit QNP= R2 P-Value Error QT (%) Error Qp (%) Fig

Isolated Single sided 17 −0.02 0.47–0.026QNT 0.00 0.95 6–65 5–20 Fig. 7a
Isolated Cross ventilated 23 0.01 0.46QNT+0.4 0.06 0.27 1–37 5–20 Fig. 7b
Array Single sided 8 0.09 0.26QNT+0.3 0.00 0.84 8.3–300 5–20 Fig. 7a
Array Cross ventilated 12 0.42 0.24QNT+0.3 0.17 0.17 2.8–40.3 5–20 Fig. 7b

Fig. 7. Comparison of the normalised ventilation
rates for pressure method (QNP) and tracer gas decay
(QNT) for a) single-sided and b) cross-ventilated
cases. Pressure data are averaged for the period of
each tracer gas experiment. Error bars are the mea-
surement error of the instruments propagated
through equation (5) for the pressure difference
method, and the standard deviation of the measured,
maximum and minimum rates for the tracer gas
decay (Table 4).
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both single sided and cross ventilated cases but was often disrupted by
fluctuations in wind direction. There may be better agreement between
the ventilation methods when there is not a strong internal jet, and
instead unsteady mixing dominates, though more data are required to
confirm this. Another possible reason is the variation of Cd with wind
direction, which is given one of two values in this study.

For the isolated case, θref is similar to θlocal (Fig. 1) and little dif-
ference in relation with wind direction can be seen when Figs. 8 and 9
are compared. Except when the reference flow is coming from behind
the cube (θref=180°) and θlocal is 45°–135° and −45° to −135°, in-
dicating that the local mast is in the recirculation region in front of the
cube. This is related to the non-linear relation between θref and θlocal
(for detail see [17]). Fig. 9a shows that the wide range of θref for the
single sided array corresponds to a narrow range in θlocal=0°–45°,
suggesting that the array “channels” the flow for these reference wind
directions. QNT/QNP is approximately 0.3, suggesting for when flow is
not quite perpendicular to the opening, the pressure difference method
consistently overestimates the ventilation rate. For the cross ventilated
array case there is a wider range of θlocal than θref, suggesting that the
local mast is located within overlapping wakes from neighbouring
cubes, and the wide spread in QNT/QNP is visible across the range in
θlocal. Some of this spread, such as for θlocal=90°, could be associated

with the flow across the opening being caused by turbulent effects.
Fig. 9b indicates that local wind direction alone is not enough to ex-
plain the difference in the two methods. Determining which parameters
have the largest effect on the ratio between the two methods is difficult,
although it is shown to be dependent on wind direction for all cases.

5. Conclusions

The large data set measured during the REFRESH Cube Campaign
has enabled a detailed evaluation of two ventilation rate measurement
methods (tracer gas decay, pressure-based) for a simplified building
across a wide range of conditions: wind speed and direction, single-
sided and cross-ventilated configurations, and isolated and staggered
building array. This provides a substantial contribution to the under-
standing of the relative performance of the two methods under realistic
meteorological conditions for a simplified built environment.

Errors in the tracer gas measurements are carefully considered.
Results demonstrated that a single sensor does not necessarily give a
ventilation rate representative of the whole space, and that some wind
conditions led to more spatial variability and thus higher errors.
Maximum and minimum fits of a decay curve to concentration data
within margins of measurement error are used to estimate the error for

Fig. 8. Ratio of normalised ventilation rates for the two methods with reference wind direction for (a) single-sided and (b) cross ventilated cases for the array and the
isolated cube.

Fig. 9. As Fig. 8 but for the local wind direction (θlocal).
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the ventilation rate at each measurement location; then all estimates
are averaged across all three sensors.

Assessment of pressure method averaging times, suggests 10 min or
greater is needed to obtain a reliable measure of the average ventilation
rate within the cube. Shorter periods are too variable compared to
tracer gas results. However, shorter timescales show the variability with
external conditions. Agreement between the two normalised ventilation
rates (tracer gas (QNT) and pressure methods (QNP)) for the four con-
figurations (single-sided and cross ventilated, isolated and array) is
poor. The pressure difference method does not capture similar venti-
lation rates to the tracer gas methodology.

Both ventilation rate methods have their shortcomings: tracer gas -
requiring a well-mixed internal environment and minimal infiltration;
and pressure difference - needing knowledge of Cd and how it changes
with wind direction alongside several assumptions which are unlikely
to always hold in realistic outdoor flow.

The ratio QNT/QNP changes with reference wind direction. For
single-sided ventilation it approached 1 when the opening was on the
leeward side of the cube in the wake, and otherwise was small for
windward flows, suggesting that the pressure method was an over-
estimate. For cross ventilation, the ratio was closer to 1 although there
was more scatter. There was a slight trend for the ratio to approach 1
when the flow was not directly perpendicular to the front face for the
isolated case. There may be better agreement when the internal mixing
state is less dominated by a single jet, i.e. for oblique wind directions for
the isolated case, and in general for the array case where external flows
are highly unsteady. Sheltering may also reduce the flushing rate of the
tracer gas from the cube relative to internal mixing rate.

The work could be extended by comparing the methods within
controlled environments where the true ventilation rate is known, e.g.
wind tunnel experiments. CFD modelling of the internal flow and tracer
gas dispersion would aid sensor positioning and allow either stagnant
or jet areas to be avoided or actively focused on. Whilst some of the
differences between methods may be explained by changing wind di-
rections, more work is required to explore simultaneous thermal effects,
effects of sensor positioning and variations in the internal flow.
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