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Hightlights 

 Wall effects for spherical particle in shear-thickening fluids were studied. 

 Drag coefficient decreases with increase in Reynolds number. 

 Relation between drag coefficient and flow behaviour index was studied and explained. 

 Length of recirculation wakes under various conditions was given. 

 Influence may be neglected if wall is far enough from the particle 
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Abstract 

Flow past rigid sphere in cylindrical tubes filled with shear-thickening power law fluids is simulated by 

Computational Fluid Dynamic (CFD) model in steady-state mode with fixed computational domain.  The CFD 

model is validated with previous researchers‟ work for Newtonian and shear-thinning power law rheologies in 

both bounded and unbounded mediums.  New simulations are executed over flow conditions of Reynolds 

number, Re: 010Re001.0  , diameter ratio,  (diameter of tube to that of particle,  = D/d): 502   , and 

flow behaviour index, n: 8.11  n .  Wall effects on flow patterns and drag phenomena are investigated and 

found to be functions of Reynolds number, diameter ratio and flow behaviour index.  Numerical results reveal 

that drag coefficient decreases with the increase in Reynolds number.  Contribution on the drag coefficient from 

pressure force drops with increasing flow behaviour index, and is generally smaller than that from friction force.  

Length of recirculation wake increases with enhancement in flow behaviour index in the case of less severe wall 

effects.  Wall effects on flow can be neglected if the wall is far enough from the particle. 

 

Keywords:  CFD; wall effects; shear-thickening fluids; drag coefficient 
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1. Introduction 

The sedimentation motion of particles in liquids or flow past rigid bodies is of great interest in theoretical and 

experimental studies due to its high demand in a wide range of applications, such as gravity-based solid-liquid 

separator, transportation of particles in slurry, falling ball viscometer and fluidized bed [1, 2].  In these studies, 

the simplest case of single spherical particle is always providing fundamental and essential understanding on 

more complex cases.  Typical intricate examples include those of particles with non-spherical shape (e.g. cubes 

[3], cylinders [4], oblates [5]); multi-particles system [6, 7] or surrounding fluids with unsteady motion [8-10].  

For single particle cases, the interaction between particle and fluid is determined by a large number of variables, 

including size and density of the particle, density and rheological properties of fluids, as well as the diameter of 

the tube in the case of bounded flow.  However, the drag force, FD (or in dimensionless forms, such as drag 

coefficient, CD or its correction factor, Y) obtains the most attention from researchers. 

 

Considerable work has been devoted to revealing the standard drag curve for over one century and abundant 

results are available in literatures with infinite mediums.  Stokes [11] solved the partial differential equation by 

ignoring inertial effects and obtained the analytical solution for solid sphere in Newtonian fluids under creeping 

flow condition (i.e. Re << 1).  However, for flow at large distance from the sphere or at high Reynolds number, 

creeping flow approximation is not satisfied.  Oseen [12] simplified, rather than neglected, the inertial terms 

and achieved analytical solution with an additional term on Stokes‟ form.  Furthermore, by fully taking into 

account the inertia, solutions were given in series expansion (e.g. second order by Proudman and Pearson [13]; 

third order by Chester and Breach [14]) at low Reynolds number region (< ~ 4).  Later, Liao [15] utilized 

“Homotopy Analysis Method” to deal with the non-linear term in N-S equations and achieved solution for flow 

with Re up to 30.  Due to the difficulty of solving partial differential equations, numerical approaches were 

employed for this problem as well.  LeClair, et al. [16] worked out the drag on sphere for Re = 0.01 – 400 using 

finite difference method.  Later, Fornberg [17] assessed recirculation wake structure and calculated the drag 

coefficient with Newton‟s method for a much larger range of Re (up to 5000).   

 

Invesitigations with non-Newtonian power law rheologies can be categorized into shear-thinning and 

shear-thickening.  For pseudoplastic types, Wasserman and Slattery [18] obtained the upper and lower 
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predictions on the drag coefficient correction factor with the application of variational principle.  Subsequently, 

Cho and Hartnett [19] improved Wasserman and Slattery‟s solution by providing a closer upper-lower bound at 

low values of flow behaviour index, n (< ~ 0.8).  The drag in power law fluids was also estimated by different 

numerical techniques, such as finite-element method [20, 21]; finite-volume based method [22].  Studies on 

dilatants fluids are not so much as those on shear-thinning fluids, Tripathi and Chhabra [23] numerically 

estimated the values of CD for Re from 0.001 to 100 and n from 1.0 to 1.8.  However, their work was proven to 

be inaccurate at high Reynolds number and has been improved in following extensive numerical study of Dhole, 

et al. [22].  More complete review can be found in books [24-26]. 

 

In contrast to the unbounded fluids in the theoretical studies, practical problems in engineering applications are 

always investigated in finite-size containers.  With the presence of confining walls, the motion of particle is 

retarded, i.e. CD decreases comparing with that in unbounded fluids.  Considering a tube with cylindrical 

boundary, retardation effect of the wall results from the flow flux in the opposite direction to the motion of 

particle along the axis.  In the literatures, for Newtonian fluids, wall effects were analytically studied in the 

creeping flow region for 0.81/0    [27, 28].  Beyond creeping flow region, Wham, et al. [29] utilized 

finite element method to treat the flow and developed a drag correlation for Re up to 100 and 1/ from 0.08 to 

0.7.  Wham et al.‟s work was subsequently extended to Re = 200 by Kishore and Gu [30] for 302   .  

They employed commercial CFD software and obtained a correlation for drag coefficient with an average error 

of ± 9.2%.  For power law fluids, Gu and Tanner [20] simulated the flow with n from 0.1 to 1 and concluded 

that wall effects could be negligible for 0.5n  under creeping flow condition.  Missirlis, et al. [31] studied 

the wall effects and listed drag coefficient correction factor Y over wide ranges of n from 0 to 1, and  from 2 to 

50 using both finite-element and finite-volume methods.  Song, et al. [32] provided detailed documentation on 

wake characteristics and drag coefficient under the influence of tube wall with the help of COMSOL.   

 

Unlike abundance of work with Newtonian and shear-thinning power law fluids, focus on the wall effects in 

shear-thickening fluids is very rare.  Recently, Rajasekhar and Kishore [33] reported their work on confined 

spherical particle in shear-thickening fluids of n = 1.0  1.8.  Although an excellent agreement with literatures 

was claimed, as incorrect calculation was used to validate the model, some inaccuracies were shown in their 

results.  For example, drag coefficient differed by a factor of ~ 2 with Newtonian fluids, comparing with other 
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peers‟ work [29, 31].  In present study, new results on the wall effects for a spherical particle in 

shear-thickening fluids are reported, showing ~200%  ~400% differences on the drag coefficient from those 

reported by Rajasekhar and Kishore [33].  Meanwhile, flow conditions considered here are  = 2  50 and Re = 

0.001  100, greatly extended those,  = 2  5 and Re = 1  100 used by Rajasekhar and Kishore [33]. 

 

2. Theory 

2.1. Rheological model 

The fluids used in this study are assumed to be incompressible with constant density of 
F
 and rheologically 

time-independent.  The non-Newtonian power law model is described by Eq. (1): 

 

nk   (1) 

 

where ?? is the shear stress and k is the fluid consistency index.  Thus, the apparent viscosity  is given by: 

 

1-nk   (2) 

 

For shear-thinning (pseudoplastic) fluids, n < 1, and for shear-thickening (dilatant) fluids, n > 1.  For n = 1, the 

model corresponds to Newtonian behaviour with a shear-independent viscosity  (i.e.  = ). 

 

2.2. Reynolds number 

For a spherical particle in power law fluids, the Reynolds number is given by 

 

k

dV nn
F




2

Re


 (3) 

 

where V is the relative velocity between particle and tube wall, d is the diameter of particle. 

 

2.3. Drag coefficient 

For convenience, the drag of particle is assessed using its dimensionless form, drag coefficient, CD, expressed as 
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F

D
D





 (4) 

 

where FD is the drag force acting on the particle, r is the radius of particle.  For rigid particle, CD consists of 

two parts, Cf from friction and Cp from pressure [24], i.e. 

 

CD = Cf + Cp (5) 

 

Specially under creeping flow condition, drag force in Newtonian fluids can be worked out by Stokes‟ formula 

[11], 

 

FD = 6rV (6) 

 

In power law fluids, the drag force can be computed from Eq. (6) by introducing a dimensionless number, drag 

coefficient correction factor, Y, as 

 

FD = 6rVY (7) 

 

where  is calculated by assuming the characteristic shear rate around the sphere to be equal to V/d [24].  

Considering Eqs. (3) (4) (7), the drag coefficient correction factor, Y can be expressed in a simpler and more 

popular form: 

 

24

Re DC
Y   (8) 

 

By substituting Y = 1, Eq. (7) reduces to Stokes‟ formula (i.e. Eq. (6)), and Eq. (8) leads to relation of 
Re

24
DC  

for Newtonian rheologies in creeping flow region. 

 

2.4. Governing equations 
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The governing transport equations for this study are continuity and momentum equations which can be written in 

their general forms [34], as: 

 

Continuity:  0 U  (9) 

Momentum:    p
Dt

DU
F  (10) 

 

where p is fluid pressure, U is the velocity field and �̇� is the second invariant of the rate-of-strain tensor, 

defined as �̇� ≡ [
1

2
 (�̇�: �̇�)]

1

2
. 

 

3. CFD Simulations 

The commercial software package of ANSYS Workbench 16.0 was ultilised to set up and execute the 

simulations.  The flow geometries were generated and meshed in the software ICEM, while flow was specified, 

solved and post-processed using CFX 16.0.  The original geometries were a series of straight tubes with varying 

diameters, together with one sphere symmetrically placed at the tube centre.  By implementing axisymmetric 

configuration, original geometries were simplified to quasi two-dimensional model, achieved by sweeping 1° 

with a 2D mesh.  Each simplified geometry consists of five boundaries: inlet, outlet, symmetry, tube wall and 

particle wall, as depicted in Fig. 1.  The entrance length, Lin and exit length, Lout were chosen as Lin = Lout = 99r 

to eradicate inlet and outlet boundary effects.   

 

All geometries used here were meshed with hexahedral cells.  To optimise the mesh size, it is necessary to carry 

out a mesh-independence study for reliable results, meanwhile keeping computational loads as low as possible.  

This was done by performing a number of simulations with different mesh sizes, starting from a coarse mesh and 

refining it until results were no longer dependent on the mesh size.  For each mesh achieved with varying 

diameters, the mesh size near particle wall was progressively reduced down to 0.06r to enhance mesh resolution 

in this region where high velocity gradients exist (as depicted in Fig. 2).  The quality of every mesh, used in 

present study, measured by its orthogonality and warpage was over 0.85, well above the generally accepted 

minimum value of 0.4 for a good mesh. 

 

To discretise the governing transport Eqs. (9), (10), the CFX code uses a finite-volume-based method.  In this 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8 

method, the variable value, ip is calculated at an integration point, from the variable value at the upwind node, 

up , and the variable gradient,  , thus 

 

r  upip  (11) 

 

where β is a blend factor and r is the vector from the upwind node to the integration point.  First order accurate 

scheme is obtained with β = 0.  This scheme is robust, but may introduce discretisation error.  On the other 

hand, second order accurate scheme is obtained with β = 1.  This scheme is unbounded and may result in 

non-physical values.  A so-called „High Resolution Advection Scheme‟ was implemented in present study and 

the value of β is computed locally to be as close to 1 as possible, intending to satisfy the requirements of both 

accuracy and boundedness [35]. 

 

Model used in present work is with stationary flow domain and simulations were conducted in the steady-state 

mode.  Uniform velocities were specified at the inlet, and zero gauge pressure condition was set at the outlet.  In 

contrast to that used in most literatures [21-23, 33], the inlet velocities and no-slip condition were assigned at the 

tube wall, as work of Missirlis, et al. [31].  Particle wall was specified as stationary and no-slip. 

 

Numerical solutions were assumed when the root mean square (RMS) of both mass and momentum residuals 

reached a convergent target of 10
-6

 which is accepted as a good level of accuracy.  In fact, however, even lower 

RMS residual values were generally reached by most of the equations.  Special study has been done and it could 

be confirmed that the results reported below would not change with smaller specified target of RMS residual.  

Achieving this level of convergence typically required 50  200 iterations. 

 

4. Validation of CFD Model 

CFX is a widely used code and has been proven to be generally stable and reliable.  However, to maximize my 

confidence, validations were conducted here as much as possible by comparing present work with literatures.  

Two groups of validations, simulating flow with both unbounded and bounded fluids were carried out and 

described as below. 
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4.1. Validations in unbounded Newtonian and shear-thickening fluids. 

First group of validations were carried out by simulating flows with Re from 0.001 to 100, n from 1.0 to 1.8 and 

 from 2 to 50.  Then results for   , which corresponded to unbounded condition were worked out by 

extrapolating data collected from  = 2 to 50.  As drag coefficient listed in Table 1, in the region of Re = 0.001 

 1, present results show an excellent agreement in comparison with previous work [22, 23].  At Re = 10 and 

100, results still greatly agree with Finite-difference method (FDM) in Dhole et al. [22], but slightly deviate from 

Finite-volume method (FVM) with a maximum difference of ~ 6.2%, which is still at an acceptable level. 

 

4.2. Validations in bounded Newtonian and shear-thinning fluids. 

Second group of validations were with confined particle in Newtonian and shearing-thinning fluids for  from 2 

to 50.  Under creeping flow condition (Re = 0.001), a maximum difference of ~ 1.2% is shown in comparisons 

of drag correction factor, Y in Table 2 for both Newtonian and shear-thinning fluids.  At moderate Reynolds 

numbers, as shown in Table 3 for Newtonian fluid present results differ by ~ 15% from Wham et al. [29]‟s work 

while Re = 10 and  = 10.  However, the agreement is still great in comparisons with other combinations of Re 

and .  Results presented in the work of Rajasekhar and Kishore [33] with  = 5 are also cited in Table 3, 

showing differences of ~ 96% at Re = 1 and up to ~ 124% at Re = 100 from present work.  For a power law 

fluid of n = 0.4, predicted results were compared with literature [32] in term of normalised drag coefficient, 

which was normalised by the corresponding values in Newtonian fluids at same  and Re.  Good consistency is 

shown at Re = 1, 10 and 100, respectively, as indicated in Table 4. 

 

In summary, although some slight difference exists, given the generally excellent agreement in the validations 

above, it is believed that the present CFD model is sufficiently robust and reliable for the purpose of studying the 

wall effects for spherical particle in confined shear-thickening fluids. 

 

5. Results and discussion 

Flow patterns and drag phenomena are assessed in functions of Reynolds number, Re; diameter ratio,  and flow 

behaviour index, n. 

 

5.1. The effect of Reynolds number on flow patterns and drag phenomena. 

In Fig. 3, drag coefficient is plotted as a function of Reynolds number on log-log coordinate.  It can be seen that 
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CD is dependent on Re in a similar way for n from 1.0 to 1.8 and  from 2 to 50.  CD decreases with the increase 

in Re throughout the ranges of  and n.  With given n and , CD is inversely proportional to Re at small values 

of Reynolds number.  Take case of n = 1.8 and  = 50 as an example, inverse relation is satisfied by CD and Re 

for Re up to ~ 0.1, and it is generally interpreted as a feature of creeping flow [24].  Further insight into the 

effect of Reynolds number on flow is carried out by examining the streamline patterns.  Fig. 4 presents 

streamlines of flow past a spherical particle for shear-thickening fluid of n = 1.8 from Re = 0.001 to 100.  It can 

be observed that streamlines are almost symmetrical before and after the particle until Re = 0.1, corresponding to 

the inverse relation between CD and Re.  While Re is increasing, the drag is greatly affected by the inertial force.  

The fore-and-aft symmetric characteristics of streamline patterns gradually disappears, and at Re = 100, clear 

recirculation wake can be seen after the particle.  Focus back to drag coefficient, as shown in Fig. 3, CD starts to 

deviate from the inverse relation with Re at Re = ~ 0.1, denoting the development from creeping flow to 

non-creeping flow.  The contributions of pressure drag coefficient Cp and friction drag coefficient Cf to total 

drag coefficient CD are also presented in Fig. 3 in form of Cp/Cf.  It can be concluded that Cf makes the 

dominate contribution from the fact that Cp/Cf is generally below unity.  In the region of Re = 0.001  ~ 1, Cp/Cf 

is independent of the value of Reynolds number.  However, with the increase in Re, Cp/Cf shows exponential 

growth and reaches its maximum value at Re = 100. 

 

5.2. The effect of diameter ratio on flow patterns and drag phenomena. 

Wall effects are yielded by the backward flux of the fluid displaced by the particle.  The diameter ratio indicates 

the extent of wall effects, the closer to unity the diameter ratio, the severer is the influence from the wall.  Drag 

coefficient CD is depicted as a function of diameter ratio  at Re = 0.001 in Fig. 5 and Re = 100 in Fig. 6, 

respectively (values of drag correction factor Y are listed in Table 5 for quantitive examination).  Qualitatively 

similar trend is observed for curves with varying values of n.  As the diameter ratio is increasing, the effects 

from the wall diminish and finally disappear.  Starting from  = 2, CD decreases rapidly with the rise in  and 

starts to level off beyond  = ~ 20 under creeping flow condition (Re = 0.001), or  = ~ 10 under non-creeping 

flow condition (Re = 100).  Finally, drag coefficient converges to its values in unbound fluids respectively (i.e. 

CD reaches constant while   ).  Similar phenomena are observed in the comparison of wakes with varying 

diameter ratios.  As shown in Fig. 7, for both n = 1.0 and 1.8, the wakes progressively grow while the wall is 

moving outward to the particle.  At  = 10, length of recirculation wake (defined as the length along the axis of 

tube) reaches 1.72r for n = 1.0, and 1.94r for n = 1.8, respectively and does not change with further departure of 
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wall from particle beyond  = 10.  It is possibly worth to mention here that as the inaccuracy issue, 

recirculation wake could not be observed at Re = 100 with  = 2 by Rajasekhar and Kishore [33] and was 

attributed to the wall effects in their conclusion.  Ratio of flow rate recirculating in the envelope (QW) to the 

main flow rate at inlet (QB), expressed as a percentage, is also given in Fig. 7.  As expected, increasing  results 

in a rise in QB, thus, lowering the value of QW/QB (while   , QW/QB tends to be zero).  Length of 

recirculation wakes and percentage of recirculation flow rate at Re = 100 over ranges of n = 1.0  1.8 and  = 2 

 50 is summarised in Table 6 and Table 7, respectively. 

 

5.3. The effect of flow behavior index on flow patterns and drag phenomena. 

The flow behaviour index n is a measure of the degree of non-Newtonian behaviour; the greater the departure 

from unity, the more pronounced are the non-Newtonian properties of the fluid.  As shear rate increases, 

shear-thickening rheology behaves more viscous than Newtonian fluid.  While fluid flows past the particle, the 

additional shear yielded by the particle surface results in a rise in apparent viscosity, thus retarding the flow near 

the particle.  Fig. 8 displays ten contours of velocity field which is normalised by the uniform inlet velocity for 

n = 1.0  1.8 and  = 2; 15 under creeping flow condition (Re = 0.001).  Low normalised velocity field is 

formed around the particle, while high normalised velocity field is formed beside the particle.  From Fig. 5, it 

can be found that for a given combination of Re and , shear-thickening rheologies results in larger low 

normalised velocity field and greater velocity deviation over Newtonian medium.  In contrast to velocity field, 

comparison of recirculation wakes with different values of n looks more complex.  Generally, the formation and 

growth of wake is prompted by relatively low velocity behind particle and relatively high velocity beside particle.  

As shown in Fig. 9, for  = 15, at Re = 100, flow with n = 1.8 contributes the longest recirculation wake length, 

which is in accordance with previous peers‟ work [24].  However, for  = 2, opposite phenomenon is observed 

that the length of the wake tends to be shorter due to the dilatant properties of the fluid.  This counterintuitive 

phenomenon may be attributed to the strong impact of the wall: 1, additional shear is imposed by the relative 

motion between fluid and the wall, then retards the side flow; 2, high radial velocity of fluid is generated from 

the dramatic change in cross-section, and then affects the formation of wake behind the particle.  Such high 

radial velocity also influences recirculation flow rate.  As indicated in Fig. 9, for  = 2, under severe wall 

effects, QW/QB with Newtonian fluid is ~ 6.2 times larger than that with shear-thickening fluids (n = 1.8).  

However, rate of recirculation flow tends to be independent of flow behaviour index with increase in , e.g. for  

= 50, percentage of recirculating flow rate is identically 0.0009% over range of n = 1.0  1.8 (shown in Table 7).  
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Conclusions on the comparison of drag coefficient with different values of n are not explicit.  As shown in Fig. 

3, for  = 2, throughout the range of Re, Newtonian fluid yields the smallest CD, comparing with 

shear-thickening types; for  = 5, all these five curves converge and it is difficult to distinguish which rheology 

contributes the largest drag; for each case of  > 5, a crossover of CD could be seen between Re = 1 and 10, and 

on the two sides of this point, opposite results are obtained.  Under creeping flow condition (Re = 0.001), the 

crossover of CD is at  = ~5 (shown in Fig. 5), which is consistent with that for shear-thinning power law fluids 

[31].  With the increase in Reynolds number, as shown in Fig. 10, the corresponding diameter ratio of crossover 

of CD shifts from  = ~5 at Re = 1 to  = ~10 at Re = 7, and finally disappears at Re = 10 (depicted in Fig. 3).  

As the flow condition of  > 5 was not covered, such intricate phenomenon was not observed in the work of 

Rajasekhar and Kishore [33], and is believed to result from the quantitative values of dimensionless shear rate 

(  dV ) around the particle surface.  At a given Reynolds number, Newtonian rheology leads to a larger 

value of CD (Y) if dimensionless shear rate is smaller than 1, or a smaller value of CD (Y) if  dV  is larger 

than 1, comparing with shear-thickening fluids.  In present study, under the condition(s) of Re is high enough 

or/and additional shear from wall is sufficient (i.e.  is small), dimensionless shear rate is greater than 1 in most 

area.  Therefore, CD is larger for shear-thickening fluids than Newtonian fluids.  On the other hand, at small 

values of Re and with large , flow is more likely to be less sheared by the particle, thus leading to a low drag 

coefficient by shear-thickening properties.  In Fig. 3, Cp/Cf displays qualitatively similar trend for all diameter 

ratios throughout the range of Re.  As the value of n increases, friction force acting on particle increases, thus 

resulting less contribution from pressure drag. 

 

6. Conclusions 

Flow past spherical particle in cylindrical tubes filled with shear-thickening power law fluids was simulated 

by CFX with validated CFD model for wide ranges of Reynolds number, diameter ratio and flow behahiour 

index.  Total drag coefficient is determined by Re,  and n in following relations: 1, CD decreases with the 

increase in Re thoroughly; 2, CD declines with increasing  until the wall effects are negligible; 3, CD drops 

with increasing n under condition of small Re and large , but increases under condition(s) of large Re 

or/and small .  While Re is increasing from 0.001, Cp/Cf keeps constant and goes up exponentially 

beyond Re = ~ 1.  In most cases of this study, friction offers more drag than pressure for Newtonian fluids, 

however, even more for shear-thickening fluids.  At high Reynolds number, recirculation wake may form 

after the particle.  Length of wake increases as diameter ratio rises until wall effects disappear.  Generally, 
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shear-thickening properties tend to shorten the wake length.  This conclusion, however, may vary under 

severe wall effects. 
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Nomenclature 

CD Total drag coefficient, - 

Cf Friction drag coefficient, - 

Cp Pressure drag coefficient, - 

d Particle diameter, m 

D Tube diameter, m 

FD Total drag force, N 

k Fluid consistency index, Pa s
n 

n Flow behavior index, - 

r Particle radius, m 

R Tube radius, m 

Re Reynolds number, - 

t Time, s 

V Relative velocity between particle and tube wall, m s
-1 

Y Drag coefficient correction factor, - 

 

Greek symbols 

  Shear rate, s
-1 

 Apparent viscosity, Pa s 

 Diameter ratio or radius ratio, D/d or R/r, - 

µ Viscosity for Newtonian fluid, Pa s 


F
 Density of fluid, kg m

-3
 


P
 Density of particle, kg m

-3 
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τ Shear stress, Pa 
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Fig. 1.  Schematic representation of simplified model with boundary conditions. 
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Fig. 2.  Schematic of the mesh used in simulations with = 5. 
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Fig. 3.  Effects of Re and n on CD and Cp/Cf with different values of . 
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Fig. 4.  Streamline patterns around the particle at Re = 0.001; 0.01; 0.1; 1; 10; 100 for shear-thickening fluid: n 

= 1.8 with  
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Fig. 5.  Comparison of CD with different values of  at Re = 0.001 for Newtonian and shear-thickening power 

law fluids. 
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Fig. 6.  Comparison of CD with different values of  at Re = 100 for Newtonian and shear-thickening power law 

fluids. 
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 n = 1.0 n = 1.8 

 = 2 

  

 = 5 

  

 = 10 

  

 = 15 

  

 = 20 

  

 = 50 

  

Fig. 7.  Comparison of streamline patterns after the particle with different values of  for n = 1.0 and 1.8 at Re 

= 100. 
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Fig. 8.  Comparison of normalized velocity fields with different values of n for  = 2 and 15 at Re = 0.001. 
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Fig. 9.  Comparison of streamline patterns after the particle with different values of n for  = 2 and 15 at Re = 

100 
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Fig. 10.  Comparisons of CD with different values of  for Newtonian and shear-thickening power law fluids at Re = 1, 4 and 7.  
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Table 1.  Comparisons of CD at different values of Re in unbounded Newtonian and shear-thickening fluids. 

n 

Re = 0.001 Re = 0.01 Re = 1 Re = 10 Re = 100 

Tripathi and 

Chhabra [23] 
Present* Tripathi and 

Chhabra [23] 
Present* Dhole, et 

al. [22] 
Present* 

Dhole, et al. [22] 
Present* 

Dhole, et al. [22] 
Present* 

FVM FDM FVM FDM 

1 24001.03 23890 2400.19 2389 27.15 27.47 4.28 4.34 4.31 1.06 1.09 1.09 

1.2 19845.41 19580 1984.55 1959 24.16 24.24 4.52 4.42 4.41 1.26 1.25 1.24 

1.4 13665.79 13640 1366.58 1366 21.27 21.49 4.62 4.47 4.48 1.41 1.40 1.37 

1.6 9367.53 9287 936.76 935.3 19.43 19.21 4.72 4.52 4.52 1.57 1.55 1.50 

1.8 6275.69 6201 627.57 627.5 17.08 17.34 4.85 N/A 4.55 1.69 N/A 1.62 

*Extrapolation 
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Table 2.  Comparisons of Y with different values of  in bounded Newtonian and shear-thinning fluids for creeping flow. 

n  2 5 10 15 20 50 

1.0 

Haberman and Sayre [28] 5.8700 1.6797 1.2633 1.1624 1.1173 1.0439 

Missirlis, et al. [31] 5.9471 1.6827 1.2672 1.1665* 1.1194 1.0464 

Present 5.9278 1.6799 1.2629 1.1627 1.1188 1.0425 

0.5 
Missirlis, et al. [31] 2.7411 1.5931 1.4923 1.4778* 1.4754 1.4738 

Present 2.7752 1.6086 1.5085 1.4965 1.4877 1.4847 

*Interpolation 
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Table 3.  Comparison of CD with different values of  in bounded Newtonian fluid at moderate values of Re. 

 

 5 10 

n=1 

Re=1 

Wham, et al. [29] 40.476 30.599 

Rajasekhar and Kishore [33] 79.467 N/A 

Present 40.499 30.933 

Re=10 

Wham, et al. [29] 4.794 3.853 

Rajasekhar and Kishore [33] 11.001 N/A 

Present 4.979 4.420 

Re=100 

Wham, et al. [29] 1.087 1.016 

Rajasekhar and Kishore [33] ~2.6 N/A 

Present 1.162 1.101 
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Table 4.  Comparison of normalised CD with different values of  in bounded shear-thinning fluid at moderate values of Re. 

 2 5 10 

n=0.4 

Re=1 
Song, et al. [32] 0.40 0.93 1.17 

Present 0.41 0.94 1.18 

Re=10 
Song, et al. [32] 0.41 0.82 0.88 

Present 0.42 0.83 0.89 

Re=100 
Song, et al. [32] 0.47 0.58 0.59 

Present 0.50 0.61 0.62 
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Table 5.  Drag correction factor Y at Re = 0.001 and 100 with different values of  and n. 

 n  = 2  = 5  = 10  = 15  = 20  = 50  = * 

Re = 0.001 

1.0 5.9278 1.6799 1.2629 1.1627 1.1188 1.0425 0.9954 

1.2 7.9984 1.6718 1.1196 0.9807 0.9165 0.7994 0.7888 

1.4 10.8681 1.6495 0.9722 0.8030 0.7239 0.5749 0.5683 

1.6 14.8101 1.6160 0.8302 0.6424 0.5555 0.3934 0.3870 

1.8 20.2386 1.5748 0.7002 0.5050 0.4170 0.2592 0.2584 

Re = 100 

1.0 9.6277 4.8433 4.5856 4.5541 4.5499 4.5423 4.5440 

1.2 12.1204 5.5285 5.1951 5.1521 5.1492 5.1389 5.1320 

1.4 15.2345 6.1998 5.7791 5.7237 5.7193 5.7064 5.7010 

1.6 19.2287 6.8496 6.3317 6.2628 6.2564 6.2395 6.2430 

1.8 24.5192 7.4741 6.8505 6.7666 6.7579 6.7371 6.7391 

*Extrapolation 
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Table 6.  Length of recirculation wakes at Re = 100 with different values of  and n. 

n  = 2  = 5  = 10  = 15  = 20  = 50  = * 

1.0 1.59r 1.66r 1.72r 1.71r 1.72r 1.72r 1.72r 

1.2 1.35r 1.66r 1.73r 1.74r 1.74r 1.74r 1.74r 

1.4 1.11r 1.68r 1.77r 1.75r 1.78r 1.78r 1.78r 

1.6 0.88r 1.70r 1.81r 1.82r 1.83r 1.83r 1.83r 

1.8 0.67r 1.78r 1.93r 1.94r 1.93r 1.94r 1.94r 

*Extrapolation 
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Table 7.  Percentage of recirculation flow rate at Re = 100 with different values of  and n. 

n  = 2  = 5  = 10  = 15  = 20  = 50 

1.0 0.7456% 0.0974% 0.0241% 0.0107% 0.0057% 0.0009% 

1.2 0.5094% 0.0918% 0.0231% 0.0104% 0.0056% 0.0009% 

1.4 0.3379% 0.0880% 0.0227% 0.0102% 0.0056% 0.0009% 

1.6 0.2137% 0.0856% 0.0226% 0.0102% 0.0056% 0.0009% 

1.8 0.1199% 0.0838% 0.0227% 0.0102% 0.0056% 0.0009% 

 


