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Abstract

We have analyzed the elastic scattering angular distributions data of the α+12C reaction over a

wide energy range (Elab=28.2 to 35.5 MeV) within the framework of the Optical Model formalism.

A double folding (DF) type real potential was used with a phenomenological Woods-Saxon-squared

(WS2) type imaginary potential. Good agreement between the calculations and experimental data

was obtained. By using the real DF potential we have calculated the properties of the α-cluster

states in 16O by using the Gamow code as well as the α-decay widths by using the WKB method.

We implemented a 12C+α cluster framework for the calculation of the excitation energies and

decay widths of 16O as a function of the orientation of the planar 12C nucleus with respect to the

α-particle. These calculations showed strong sensitivity of the widths and excitation energies to the

orientation. Branching ratios were also calculated and though less sensitive to the 12C orientation,

it was found that 12Cgs+α structure, with the α-particle orbiting the 12C in its ground state, is

dominant. This work demonstrates that deformation, and the orientation, of 12C at plays a crucial

role in the understanding the nature of the α-cluster states in 16O.
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I. INTRODUCTION

The nucleus is a complicated many-body system which requires the interaction between

the many nucleon constituents to be deduced. This is challenging as it includes not only

two-body, but also three-body interactions. However, in a certain class of nuclei the nucleons

cluster to form sub units and then to first order the interaction is reduced to that between

clusters. Such states of nuclear matter greatly simplify the complexity and in turn reveal

important detail regarding the nature of the nuclear force which precipitates the clusters.

In a simplifying approach such nuclei may then be explained in terms of a clustering model.

In its simplest form the cluster model describes the nucleus as a binary cluster in which the

cluster, composed of a few nucleons, orbits a core containing the remaining nucleons [1, 2].

In this way, the problem is reduced to two-body problem. This sort of the model has been

used by several authors to describe the structure of light nuclei [3–6] and applied to heavier

nuclei is proposed by the observed α and exotic cluster decays of these nuclei [7]. Moreover,

in α-cluster studies, a unified description of nuclear structure and scattering has been useful

since the nuclear interaction potential can be determined from elastic scattering data. In the

literature, a unified study of structure and scattering of the α+16O and α+40Ca system was

used to obtain information about the α-cluster structures in 20Ne and 44Ti, respectively [8–

11]. Understanding of the alpha-decay mechanism of the light, heavy and superheavy nuclei

is an crucial and important phenomena in terms of the cluster model both theoretically and

experimentally [12–21]. The α-decay is considered conventionally in the framework of the

Gamow model in which the α-particle is assumed to quantum mechanical tunneling through

a Coulomb barrier between the cluster and the daughter nucleus [22]. In this instance, the

α-particle exists already in the parent nucleus before the decay and it penetrates the barrier.

Hence the formula of α-decay width can be written as the product between the frequency

of the potential-wall collisions and the barrier penetrability P which is calculated by using

WKB method [22–24]. The semiclassical WKB method is very popular in nuclear physics,

for example, fusion of heavy ions, fission theory and alpha decay etc. Furthermore, the

half-lives calculations of alpha-decay with and without considering the deformation of the

nuclei have been performed [25–42].

There has been renewed interest considering the α-particle structure of light nuclei re-

cently. It is known that both the ground-state of 8Be and the second excited state of 12C
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have a well developed α-cluster structure. Progress in identifying similar, highly clustered,

states in 16O is less advanced. In particular, the structure of oxygen nuclei above the 4α-

decay threshold is still an open problem [43–52]. Numerous studies have been conducted in

order to investigate the alpha-cluster structure of 16O [53–61]. Buck et. al used a simple

cluster model to explain the properties of a number of states in light nuclei including 16O

[53]. In the model, such states were considered as bound levels and resonances of a cluster-

core system, e.g. α + 12C in the case of 16O. They calculated the energies and widths for

the states of two rotational bands in 16O by using the potential that is very similar in shape

that which would be obtained from to the double-folding (DF) model [54]. In Ref. [58], the

elastic cross sections for α + 12C elastic scattering data in the energy region of Ec.m.= 21.15

to 26.625 MeV were analyzed with the optical model to investigate the unknown 8+ and

9− states for rotational bands of 16O by Katsuma [58]. He determined the total quantum

number, N, of the α + 12C rotational bands and showed that the 0+ state has N = 8 [58].

In Ref. [59], the authors analyzed the elastic and inelastic α + 12C scattering, and they

obtained the states with the α + 12C cluster structure in a unified way by using the double

folding (DF) model in the coupled channel method by considering the excited states of 12C.

In the present study the motivation is to be able to find out the effects of the deformation

of 12C on the observable of 16O such as the excitation energies, the decay widths, preforma-

tion factors and branching ratios. Therefore, firstly we have analyzed the elastic α + 12C

scattering experimental data by using DF potential in the Optical Model. We have used

same real DF potential to calculate the resonant energy states in 16O and the alpha-decay

widths in the framework of the WKB method and Bohr-Sommerfeld quantization. In order

to be able to consider the deformation effects in 12C nucleus, the deformed Woods-Saxon-

squared (WS2) potential which its parameters were obtained by fitting with DF potential

have been used. We have used the WS2 in order to obtain the alpha-decay widths of 16O

for a spherical case, at different angles and over all angles. The same potential was used to

obtain resonant energy states with Gamow code [62].

In Sec. II, the theoretical background and formulas for the calculations of the Optical

Model and Double Folding potential together with the WKB model is presented. The

obtained numerical results are given in Sec. III. In Sec. IV, discussion on study and

conclusion on the obtained results are presented in detailed.
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II. THEORETICAL APPROACH

A. The Optical Model and Double Folding Potential

In the optical model, the effective potential Veff (r) between the projectile and target

nuclei is given by

Veff (r) = VNuclear(r) + VCoulomb(r) + VCentrifugal(r), (1)

In Eq. 1, the forms of the Coulomb and centrifugal potentials are well-known. Owing to a

charge ZP e interacting with a charge ZT e distributed uniformly over a sphere of radius Rc,

the Coulomb potential is as follows

VCoulomb(r) = 1
4πε0

ZP ZT e2

r
, r ≥ RC

= 1
4πε0

ZP ZT e2

2RC
(3 − r2

R2
C
), r < RC ,

(2)

where Rc is the Coulomb radius, and ZP and ZT denote the charges of the projectile P and

the target nuclei T, respectively. The final term in Eq. 1 is the centrifugal potential

VCentrifugal(r) =
~2

2µ

l(l + 1)

r2
, (3)

where µ is the reduced mass of the colliding pair [63–68]. The only unknown term is the

nuclear potential term in the effective potential in Eq. (1). We use the microscopic Double

Folding model potential for the real part of the nuclear potential in the optical model.

The real part of the nuclear potential was derived using a Double-Folding model with a

realistic nucleon-nucleon interaction folded with the nuclear densities of projectile and target

[69]. In the present case this describes the nuclear interaction between an alpha-particle and

12C nucleus. The potential is given by the form

VDF (R) = NR

∫
dr1

∫
dr2ρα(r1)ρ12C(r2)g(E, |s|), (4)

where ρα and ρ12C are the density distributions of alpha-particle and 12C and NR is the

normalization factor. s=R+r2-r1 and |s| is the distance between a nucleon in the α-particle

and a nucleon in the 12C core. The density distribution form of the α-particle is a standard

Gaussian coming from the scattering measurements

ρα(r1) = 0.4299 exp(−0.7024r2
1).
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The density distribution of the 12C nucleus used in the present study has the form

ρ12C(r2) = Cexp(−αr2
2),

where C and α parameters can be deduced from the rms value of the radius 12C that is

2.314 fm. In the present case we have used C=0.32 fm−3 and α=0.28 fm−2. The M3Y

nucleon-nucleon interaction, used in the double folding model, is given by two direct terms

with different ranges, and by an exchange term with a delta interaction

g(E, |s|) = 7999
exp(−4s)

4s
−2134

exp(−2.5s)

2.5
+J00δ(s).

The exchange term, J00, is introduced to the M3Y interaction in order to guarantee the

antisymmetrization of identical particles in the alpha cluster and in the 12C core. Here it is

given by the form J00= −276(1 − 0.005 Eα/mα) [69, 70].

B. WKB Calculations

Since the 12C nucleus does not have spherical shape, rather being oblate, deformation

effects should also be included in the calculations. In the case of deformation, the effective

potential between the α and 12C nucleus can be constructed as

Veff (r, θ) = VN(r, θ) + VL(r) + VC(r, θ), (5)

where θ is the deformation angle of the 12C nucleus. Even if the Coulomb and centrifugal

terms have the known forms in Eq.(5) there is a need to determine the shape of the nuclear

potential [71, 72]. One notes that the form of the potential between α and core is very

crucial to explain theoretical observables which are the excitation energies, electromagnetic

transition rates, resonances [62] and the decay half lives of the nuclei [73, 74]. In the

literature, different types potentials have been applied to obtain the interaction between the

α and core. These include; the square well [2], Cosh potential [75], the optical potential

derived from the experimental data [76], double folded potential based on M3Y [77, 78].

Recently, mean field type potentials have also been used to explain such systems [79], for

example in the context of nuclear molecular structures [80]. In the present study, the Woods-

Saxon-squared (WS2) potential for describing the α-12C nuclear interaction is used with

deformed a radius form is given by

VN(r, θ) = −λ(θ)
V0

[1 + e
r−R(θ)

a ]2
, (6)
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FIG. 1: The shape of Woods-Saxon-squared (WS2) potential versus radius at different angles. The

resulting WS2 potential and the DF potential versus radius.

where V0, λ(θ), R(θ) and a are the depth of the nuclear potential, the angle dependent

normalization parameter, nuclear radius and diffuseness parameters, respectively. λ(θ) nor-

malization paramater can be obtained with the Bohr-Sommerfeld quantization [41]. If one

considers the quadrupole deformations, the nuclear radius in terms of the deformations is

given by

R(θ) = r0A
1/3
α + r0A

1/3
12C(1 + β2Y20(θ)), (7)

where A12C , β2 and Ylm are the atomic mass number of the 12C nucleus, quadrupole defor-

mation parameter that is taken from Ref. [81] and the spherical harmonic, respectively.
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FIG. 2: The obtained turning points, Q value and Veff (r, θ) at 900 together for 4+ alpha decay of

16O. Schematic illustration of the alpha and 12C nucleus. It is noted that a cross section through

an oblate nucleus looks prolate shape and COB is the axial symmetry axis of the 12C.

The Langer modified centrifugal potential is used in the following form

VL(r) =
~2(L + 1

2
)2

2µr2
, (8)

where L is the orbital angular momentum and µ is the reduced mass of the α and 12C [82].

The Coulomb potential for deformation case in Eq. (2) is used with that RC is taken

as RC(θ), in which RC(θ) = R(θ) is the Coulomb radius. Furthermore, the deformed

form for Coulomb has a discontinuity at r = RC(θ). To solve the problem, the following

approximation is used [83],

ṼC(r, θ) =
ZαZ12C e2

r
(1 − e−φ(θ)r− 1

2
(φ(θ)r)2−0.35(φ(θ)r)3), (9)

φ(θ)R(θ) =
3

2
.

There are three turning points for α decay energy: r1(θ), r2(θ) and r3(θ), respectively.

These can be calculated from the roots of Veff (r, θ) = Qα depending on the deformation

angle.

It should be noted that the alpha-decay energy from an excited state can be modified, e.g.

by Q∗
L = E∗

J + Q0, where Q0 is the decay energy from the 12C ground state, and E∗
J is the
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excitation energy of a given state with the spin of J [80]. The turning points and λ(θ) are

computed for each θ value in the the Bohr-Sommerfeld quantization as follows [25, 74, 84]:

∫ r2(θ)

r1(θ)

dr

√
2µ

~2
[Qα − Veff (r, θ)] = (2n + 1)

π

2
= (G − L + 1)

π

2
, (10)

where Qα and n are the α-decay energy and the radial node quantum number explaining the

interaction of the α-12C, respectively. G is the global quantum number [85], coming from

the Wildermuth rule given by

G = 2n + L =
4∑

i=1

(2ni + ℓi) =
4∑

i=1

gi, (11)

where gi are the oscillator quantum numbers. In this prescription, G=8 and 9 are used for

16O.

The alpha-decay width is given by [2, 25, 37, 84],

Γα = PF
~2

4µ
S, (12)

where P is the preformation factor probability, F is the normalization factor and S is the

transition probability of cluster nuclei, respectively. For simplicity, the preformation factor

is used P =1.0 in the calculations [86]. The normalization factor F is obtained by [23, 24, 87]

F (θ)

∫ r2(θ)

r1(θ)

dr
1

2k(r, θ)
= 1, (13)

where k(r, θ) is the wave number and it can be given by k(r, θ) =
√

2µ
~2 (Q − Veff (r, θ)). The

transition probabilities can be calculated from

S(θ) = exp

[
− 2

∫ r3(θ)

r2(θ)

drκ(r, θ)

]
. (14)

F̄ is the average value of the normalization factor integrated over the orientation angles

and it can be calculated by using the following equation

F̄ =
1

θmax − θmin

∫ θmax

θmin

dθF (θ), (15)

where θmax and θmin are maximum and minimum values of the orientation angles, and the

average value of the transmission probability S̄ are as follows [25, 41, 42]

S̄ =
1

θmax − θmin

∫ θmax

θmin

dθS(θ). (16)
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III. RESULTS

A. Optical Model Analysis; with no Deformation Dependence

The first set of baseline calculations that are presented in this section neglect any effects

of deformation in 12C. In these calculations, we use a nuclear potential that consists of a

real DF potential and a Woods-Saxon-squared (WS2) for the imaginary potential

VNuclear(r) = VDF (r) + i
−W0

[1 + e
r−RW

aW ]2
. (17)

Elab(MeV) W0(MeV) r0W (fm) aW (fm) NR

28.2 65.0 0.59 0.34 0.60

29.6 65.0 0.59 0.25 0.56

29.8 65.0 0.59 0.20 0.60

30.0 65.0 0.60 0.10 0.60

30.2 65.0 0.60 0.10 0.60

30.7 65.0 0.57 0.20 0.57

31.4 75.0 0.50 0.20 0.75

33.4 50.0 0.55 0.30 0.74

34.5 65.0 0.52 0.20 0.74

35.5 64.0 0.52 0.48 0.75

TABLE I: The parameters for WS2 imaginary potential and NR used in the optic model calcula-

tions.

This has been used to fit elastic scattering data for the α+12C reaction. In order to

obtain the best agreement with the experimental data, we optimized the normalization

factors in the Double Folding (DF) potential and the parameters in the WS2 imaginary

potentials. The potential parameters used to fit the elastic scattering cross-sections for

the α+12C reaction over the energy range 28.2 to 35.5 MeV within the framework of the

optical model formalism as shown in Table I, with fits in Fig. 3. The code DFPOT [88] was

used for the microscopic DF potential calculation and the code FRESCO [89] was used to

calculate the elastic scattering angular distributions. As can be seen in Fig. 3, there is a
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reasonably good agreement between the elastic scattering experimental data and the results

of the microscopic DF potential analysis for all energies. However, the microscopic potential

slightly overpredicts the elastic scattering experimental data at larger θcm for higher energies.
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FIG. 3: The differential cross-sections of α +12 C elastic scattering for Elab=28.2 MeV- 35.5 MeV

by analyzing DF potential and the deformed WS2 potential including the orientation angles. The

experimental data are extracted from Ref.[58]. Here, red circle shows experimental data, solid line

shows DF in blue, dotted line shows 0o case in green, em-dashed line shows 30o case in black,

dot-em dash line shows 60o case in cyan, dot-en-dot dash shows 90o case in magenta, en-dot-en

dash shows sph case in orange.

The present approach uses real part of the potential, which is DF potential, deduced from

the elastic scattering data to consistently produce the characteristic of resonances in that

same potential. Thus generating the resonance and elastic scattering spectrum on the same

basis.

We used the same Double folding potential with NR = 1.00 that reproduced the elastic
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scattering data to obtain α-cluster states in 16O by using Gamow code [62]. In these calcu-

lations, we have used G=8 and G=9 as global quantum numbers for positive and negative

parity states, respectively. Given the nature of the potential, naturally this procedure does

not exactly reproduce the experimental excitation energies. Hence, as a further step, we

determined the values of the NR normalization parameters that gave the known experimen-

tal excitation energy of 4+ of 16O state at Ex=10.356 MeV and 1− of 16O state at Ex=9.63

MeV. These were found to be NR = 0.9253 and NR = 0.97871 respectively. These values

were then fixed in the calculations, separately, for positive and negative parity states. The

Coulomb radius used here was r0C = 1.3 fm. The results can be found in Table II. The

excitation energies obtained with the Gamow code are in good agreement with experimental

energies for positive parity states (average deviation 270 keV) but they are larger than the

experimental values for negative parity states (average deviation 860 keV). In most part the

widths predicted by the Gamow calculations, are in reasonable agreement with experiment,

except at for the 5− and 7− states where the calculated excitation energies are at much

higher energy than the experimental counterparts and hence the widths larger. It is notable

that the Gamow code does not reproduce the width of the 4+ state even though the energy

of that state has been fixed. In order to better calculate the alpha decay widths using the

WKB method the energies were fixed at the known experimental values, as shown in the

last column of Table II. The width of the 4+ state is much more closely reproduced by the

WKB calculation. Overall the WKB method performed better with the average deviation

from experiment is 280 keV compared with the 660 keV for the Gamow. Clearly, calculating

the widths at the experimental energies is a large contributing factor.

B. WKB Calculations Including the Deformation of 12C

This section describes a series of calculations in which the deformation of the 12C nucleus

is explicitly take into account. Here a Woods-Saxon-squared (WS2) potential form, Eq. (6),

was used for the α-decay widths calculations in the WKB method. We have chosen to use

a phenomenological Woods-Saxon-squared (WS2) potential since considering the deforma-

tions at different angles in microscopic DF potential is difficult. However, to maintain the

consistency with the potential that was used in the elastic scattering data analysis, we have

fitted the phenomenological WS2 potential to the DF potential and obtained the potential
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St. G Ex Γα Exp Ref. Ex (Gamow) Γα (Gamow) Γα(WKB)

[MeV] [keV] [MeV] [keV] [keV]

0+ 8 6.05 − [93] 5.03 − −

2+ 8 6.92 − [93] 6.54 0.05 −

4+ 8 10.35 27 ± 4 [93] 10.35 158 26.8

6+ 8 16.27 392 ± 20 [94] 16.24 367 448

8+ 8 − − 25.33 641 −

1− 9 9.63 400 ± 10 [93] 9.69 498 628

3− 9 11.6 800 ± 100 [93] 11.89 898 − − −

5− 9 14.66 632 ± 20 [94] 15.97 2220 1020

7− 9 20.86 540 ± 100 [94] 24.04 2550 1270

9− 9 − − 33.26 3364 −

TABLE II: Excitation energy (Gamow code) and the decay widths (WKB) results with the DF

model potential for 16O, results have been fixed 4+ and 1− states for positive and negative parity

states respectively. Here, Ex = E + Ethreshold, Ethreshold=7.162 MeV. The experimental values

for 0+, 2+, 8+ and 9− states could not be obtained (−) and decay width for 3− state was not

calculated in WKB (− − −).

parameters: V0 = 253 MeV, a = 1.13 fm and r0 = 0.73 fm in Eq. (6). We have used

β2 = 0.582 for the deformation of 12C [81]. The shape of Woods-Saxon-squared potential

versus radius at different angles is seen in Fig. 1. The WS2 potential with the parameters

that were obtained from fitting to the DF potential and the original DF potential, versus

radius, are shown in the inset of Fig. 1.

By using the resulting deformed WS2 potential, we have calculated the α-decay widths

in the framework of the WKB approach for (i) the spherical case, (ii) at different angles

and (iii) averaged over all angles, Table III. The decay widths of the 4+ state are different

between the two set of the calculations in Table II it was 158 keV with Gamow code and in

Table III closer to 30 keV with WKB method. It is noted that Gamow code is able to yield

both the excitation energies and decay widths of resonant states, while the WKB method

needs the decay energy as input and then gives the decay widths. Therefore the decay widths
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calculated with the WKB method are in better agreement with the experimental data. The

results presented here support the results of the study in Ref. [90].

In order to see the influence of deformations on the differential cross-sections of α+12C

elastic scattering, we have analyzed the differential cross-sections of α+12C elastic scattering

by using the deformed WS2 potential forms for different orientation angles. The deformed

forms of WS2 potential for different angles for real part and same potential and parameters

for imaginary part as the calculations in DF were directly used in the calculations. The

obtained results are given together the results of DF potential in Fig. 3. It should be noted

that as seen in this figure, the deformations with angles have also some influence on the

differential cross-sections of α+12C elastic scattering at different energies.

In order to illustrate the behavior of the turning points, we plot the turning points, Q

value and Veff (r, θ) at 900 for the 4+ alpha decay of 16O in Fig.2. It should be noted

that when the angle increases from 0 to 90 degrees, the radius of potential decreases as

seen in Fig. 1. For 90 degrees a more compact configuration is produced, similar to the

tetrahedral structure found in the lowest energy configurations in the alpha cluster model.

The 0 degree orientation, however, is associated with a more deformed, planar, alpha cluster

model structure [91].

To understand the effect of the changing orientation, θ, we have examined P = T cal
1/2/T

exp
1/2

[92]. In addition, we have also calculated the preformation factors Psph = Γexp
α /Γsph

α and

Pall = Γexp
α /Γall

α , Table III. Here, Γall
α shows the calculated α-decay widths integrated over

the all angles. Correspondingly, Psph is the preformation factor for spherical case without

deformation, whilst Pall represents the preformation factor for deformed system integrated

over all angles. As seen in Table III, when the deformation of 12C is taken into account

in the calculations, the alpha decay widths change, clearly deformation plays a role. The

variation of these WKB widths in terms of θ is shown in Fig. 4 for the 4+ and 6+ states.

What is observed is that there is a systematic trend for the positive parity states (4+ and

6+) in which the width decreases towards θ = 90 degrees. On the other hand, the proximity

of the negative parity states to the top of the barrier leads to less robust results and in some

cases no solution exists (as indicated by the − − − in the table).

Importantly, the variation of angle, θ, corresponds to a change in the 12C-α structure,

with θ=0 corresponding to a planar structure and θ = 90 a compact structure. From the

behaviour of the 4+ and 6+ states, and a comparison with the experimental data (Fig. 4),
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State G Ex[MeV] Γexp
α [keV] Γsph

α Γα (0o) Γα (30o) Γα (60o) Γα (90o) Γall
α Psph. Pall

4+ 8 10.35 27 ± 4 23.2 46.5 36.0 21.3 16.3 27.8 1.17 0.96

6+ 8 16.27 392 ± 20 362 826 623 322 226 452 0.34 0.87

1− 9 9.63 400 ± 10 621 545 626 612 580 617 0.65 0.65

3− 9 11.6 800 ± 100 749 − − − − − − 795 906 963 1.07 0.83

5− 9 14.66 632 ± 20 966 − − − 810 910 734 937 0.65 0.67

7− 9 20.86 540 ± 100 1167 − − − − − − 1059 749 1272 0.91 0.42

TABLE III: The α-decay widths (WKB) results in terms of keV with deformed Woods-Saxon

squared (WS2) potential for different angles and over the all angles for 16O. − − − shows that the

reasonable value could not obtained for the related states.

one would conclude that these states are more closely associated with the compact rather

than planar structure.

C. Gamow Calculations

The conclusions reached in the WKB calculations can also be explored in the Gamow

approach. Here we used potential sets that were obtained from WKB analysis in Section

III B, but as before, to constrain the potential, the calculations were fixed by the excitation

energy of 4+ state and 1− for positive and negative parity states, respectively. As described

earlier this requires the potential to be re-normalized (Ex=10.35 and Ex=9.63 MeV). Here

we have used the λ(θ) values (in Eq. 6) determined for each cases: λ(θ) = 0.886, 0.9297 for

sph. case, λ(θ) = 0.601, 0.6332 for 00, λ(θ) = 0.690, 0.7197 is for 300, λ(θ) = 0.934, 0.9765

is for 600, λ(θ) = 1.107, 1.1376 is for 900. We have then calculated resonant state energies

using the Gamow code with the WS2 potential at different angles for 16O as can be seen in

Table IV.

We have plotted the corresponding excitation energies of 16O versus J(J + 1) for G=8,

positive parity states, and G=9, negative parity states, as seen in Fig. 5 and Fig. 6,

respectively. Moreover, by calculating the average rotational slope, we have obtained the

corresponding values of the rotational gradient, ~2/2I. As seen from both figures the values

for ~2/2I, the gradient increases when the angle is changed from 0 to 90 degrees and the
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FIG. 4: The calculated alpha decay widths with Gamow and WKB in terms of keV versus angles.

Here the straight line shows the experimental values with error bars, the dashed line shows Gamow

results, the dotted line shows WKB results for positive parity states. All results were fixed by the

excitation energy of 4+ state.

biggest values are at 90 degree both for positive and and negative parity states. Since a

large gradient means a small moment of inertia, this would correspond to a more compact

structure for 16O. Consequently, this result is consistent with the expectation that θ = 90

degrees should be the most compact configuration.

In addition, as observed in the calculations for the 4+ state (Fig. 4), the width is also

sensitive to the potential shape, with a reduction in width for the more compact case; 90

degrees. This is consistent with the WKB calculations, though for the Gamow calculations

the width is consistently under predicted. The systematic reduction in the width with angle

is not seen for the Gamow calculations of the 6+ state as its excitation energy is not fixed and

varies with θ. Since different centrifugal and Coulomb potentials are used for the Gamow

and WKB calculations this clearly causes some difference in the results. Even though the

Gamow results for decay widths are better in principle, when widths are small computational

difficulties arise and in such cases the WKB method is preferable.
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Ex[MeV ],Γα[keV ](Gamow code)

St. G Ex[MeV] Γexp
α [keV] sph. 0o 30o 60o 90o

0+ 8 6.05 − 5.31 6.89 6.37 5.06 4.23

2+ 8 6.92 − 6.90 7.94, 8 7.60 6.72 6.17

4+ 8 10.35 27 ± 4 10.35, 18 10.37, 22 10.33, 20 10.34, 12 10.34, 6

6+ 8 16.27 392 ± 20 15.86, 242 14.20, 206 14.79, 154 16.13, 310 16.95, 260

8+ 8 − − 24.08, 348 19.64, 106 21.15, 222 24.72, 492 26.78, 512

1− 9 9.63 400 ± 10 9.63, 326 9.63, 236 9.63, 309 9.63, 186 9.63, 107

3− 9 11.6 800 ± 100 12.62, 662 11.49, 1055 12.58, 938 12.63, 646 12.72, 694

5− 9 14.66 632 ± 20 16.62, 1421 15.03, 933 16.88, 2094 16.66, 1225 16.96, 1097

7− 9 20.86 540 ± 100 24.94, 2514 21.32, 2042 22.16, 1538 25.06, 2252 25.76, 2052

9− 9 − − 35.81, 2882 27.86, 1569 31.08, 2018 36.20, 2416 41.63, 1958

TABLE IV: Resonant State energies (Gamow) in terms of MeV and alpha decay widths in terms

of keV with WS2 potential for 16O. Here Ex = E + Ethreshold, Ethreshold = 7.162MeV . While −

shows that the experimental values do not exist for these states, results were fixed by the excitation

energy of 4+ state and 1− for positive and negative parity states, respectively.

D. Branching Ratios

Finally, in order to use the experimentally measured branching ratios of decay of 16O [48],

we have calculated alpha decay widths for the decay to the 2+ excited state of 12C for

spherical case and different angles in the WKB method as seen in Table V. When combined

with the decay to the ground state of 12C (Table III) this would give the total width for each

state. Here, the excitation energy of the 2+ state is 4.438 MeV which is added to Q-value

for g.s is 7.1619 MeV in the calculation of the threshold for the decay process. As before the

proximity of the 7− state to the barrier resulted in non convergence for the calculations. For

other states marked with a “−” the decay was below threshold for the 12C(2+) decay; 11.6

MeV. The calculations for the branching ratios indicate that there is not a strong sensitivity

to the angle, θ, in that the ratio between ground state and excited state does not vary

significantly.
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FIG. 5: Excitation energy spectrum of 16O versus J(J+1) for G=8, + ve parity states. All results

were fixed by the excitation energy of 4+ state.

However, in Ref. [48], high resolution measurements of absolute alpha decay widths in

16O have been performed and they extracted information about branching ratios of different

decay modes. These experiments indicate a strong preference for the decay to the 12C ground

state with close to 100% branching ratios. The present calculations indicate that there should

be a significant component for the 5− and 6+ states to decay to the 12C(2+) state. Given

that this is not observed experimentally, it indicates that the underlying structure of the

states in 16O resembles 12Cgs+α in which the spin of the 16O nucleus arises from the orbital

motion of the α-particle around the 12C “core”.

IV. DISCUSSION AND CONCLUSIONS

The calculations presented explore the effect of the angular orientation of the 12C nucleus

with respect to the axis connecting the α-particle on the properties of the states of 16O. The

aim was to determine if this approach reveals useful structural information which may, for

example, be linked to Alpha Cluster Model (ACM) calculations such as those in Ref. [91]. In

these ACM calculations, the set of states associated with the experimental band heads at 6.05
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FIG. 6: Excitation energy spectrum of 16O versus J(J+1) for G=9, - ve parity states. All results

were fixed by the excitation energy of 1− state.

Γexp [48] Γcalc
α (keV)

Γtot Γα/Γtot Sph. 0o 30o 60o 90o

State G Ex
12C(g.s.) 12C*(2+) g.s. 2+ g.s. 2+ g.s. 2+ g.s. 2+ g.s. 2+

0+ 8 6.05 Bound − − − − − − − − − − − −
2+ 8 6.92 Bound − − − − − − − − − − − −
4+ 8 10.35 26(3) 0.86(9) − 23.2 − 46.5 − 36 − 21.3 − 16.3 −
6+ 8 16.27 420(20) 0.982(48) − 362 302 826 525 623 432 322 281 226 223

1− 9 9.63 420(20) ∼ 1 − 620 − 545 − 626 − 612 − 580 −
3− 9 11.60 800(100) 1 − 749 − − − − − 795 − 906 −
5− 9 14.66 670(15) 1.002(42) − 966 298 − 298 810 252 910 176 734 147

7− 9 20.86 900(60) 1.16(23) − 1167 − − − − − 1059 1758 1272 1657

TABLE V: Comparison the experimental decay widths in Ref.[48] and the calculated ones with

WKB for 12C(g.s.) and 12C*(2+) decay modes of 16O.

MeV (0+) and 9.63 MeV (1−) produce positive and negative parity rotational bands. These

states are those shown in Table II and have been linked to planar-like structures in which the

oblate 12C nucleus is orientated such that the angle of rotation would be equivalent to 0◦ in

the present calculations. An angle of 90◦ corresponds to more compact structure closer to a
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tetrahedral arrangement of the α-particles. In the ACM this would be a structure which has

been linked to the 16O ground-state. However, the Algebraic Cluster Model [95] approach

appears to indicate that these excited states might also have a tetrahedral structure. There

is a clear contradiction between the Alpha and Algebraic Cluster Models.

In the present calculations the approach has been to constrain the nature of the interaction

potential through the reproduction of elastic scattering data and then through the WKB

and Gamow methods understand if the calculated excitation energies and widths reveal a

structural signature. In this instance, the widths are sensitive to the nature of the barrier

which has an angular dependence and the systematics of the excitation energies follow a

rotational-like behavior linked to the radial extent of the potential, which also has an angular

dependence.

In interpreting the present approach, the first thing to note is that the negative parity

states reside very close to the top of the barrier and hence the sensitivity of the widths

to the changes in the barrier with orientation of the 12C is minimal and hence no reliable

information may be extracted. For example, for the 9.63 MeV, 1−, the experimental width

is 400(10) keV as shown in Table III. This is broadly reproduced by all of the calculations

independent of angle. Clearly, the experimental width is dominated by the proximity to the

top of the barrier, rather than the details of the barrier.

On the other hand, the positive parity states, in some cases, show a sensitivity to the

barrier in both the WKB calculations, Table III, and Gamow calculations, Table IV. The

Gamow calculations show an angular dependence for the width of the 4+ state, but not

6+. This latter observation is due to the energy of the 4+ state being fixed in the Gamow

calculations and the model being used to predict the energy of the other states. It is

concluded that since in the WKB approach the energy is fixed at the experimental energy

a more reliable result is expected. Indeed the widths as a function of angle for both the

4+ and 6+ states span the experimental value. The analysis would indicate that of the two

limiting orientations, the 90◦ is preferred over the 0◦ possibility for the positive parity band.

Figures 5 and 6 showed the experimental energy-spin systematics for the two bands

compared with the systematics for the Gamow calculations for different angular orientations

of the 12C nucleus. In the case of the positive parity states, there is closer agreement with

larger angle orientations (θ=90 degrees), also consistent with the WKB conclusions. It is seen

for the negative parity states that the experimental sequence lies closer to the 0◦ possibility.
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However, as noted before, due to the proximity of the states to the top of the barrier, the

validity of the calculations for these states is questionable. The conclusion would appear

to be from the analysis of the positive parity states that more compact configurations, i.e.

tetrahedral, rather than planar, are favored.

The branching ratio for the decay of the 16O states to the ground and first excited state of

12C was calculated and although showed little sensitivity to the 12C orientation, did reveal

that the experimental decay to the 12Cgs channel is enhanced compared with calculation

indicating that the structure of 16O may be described in terms of an α-particle orbiting a

12C core.

The calculations demonstrate that deformation, and orientation, effects are extremely

important in determining the properties of the excited states in 16O and in principle the

technique developed here could be applied to other systems to develop a more systematic

understanding of how spectroscopic properties such as decay widths may be linked to the

underlying nuclear structure. This includes the important question as to how to decouple the

cluster preformation probability from the variation of the decay barrier with the deformed

core+α orientation.
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