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A B S T R A C T

Oxysterols (OHC) are biologically active cholesterol metabolites circulating in plasma that may be formed en-
zymatically (e.g. 24S-OHC, 25-OHC and 27-OHC) or by autoxidative mechanisms (e.g. 7-ketocholesterol, 7β-
OHC and 25-OHC). Oxysterols are more soluble than cholesterol and are reported to exert inflammatory, cy-
toprotective and apoptotic effects according to concentration and species. Esterified oxysterols have been ana-
lysed in people with dementia and cardiovascular diseases although there is no consistent relationship between
oxysterol esters and disease. However, oxysterol esters are held in lipoprotein core and may not relate to the
concentration and activity of plasma free oxysterols. Methodological limitations have challenged the analysis of
free oxysterols to date.

We have developed a fast, sensitive and specific quantitative LC-MS/MS, multiple reaction monitoring (MRM)
method to target five oxysterols in human plasma with analyte recoveries between 72% and 82% and sensi-
tivities between 5 and 135 pg/ml. A novel method was used to investigate the hypothesis that simvastatin may
reduce the concentrations of specific plasma free oxysterols in hypercholesterolaemia.

Twenty healthy male volunteers were recruited (aged 41–63 years); ten were asymptomatic with high plasma
cholesterol > 6.5mM and ten were healthy with normal plasma cholesterol (< 6.5mM). Simvastatin (40 mg/
day) was prescribed to those with hypercholesterolaemia. Plasma samples were taken from both groups at
baseline and after three months. Simvastatin reduced plasma cholesterol by ~35% (p < 0.05) at the end of
three months.

Oxysterols generated by autoxidation (but not enzymatically) were elevated up to 45 fold in hypercholes-
terolaemic midlife men. Plasma oxysterols were restored to those of healthy controls after simvastatin inter-
vention suggesting that autoxidation is either prevented by simvastatin directly or that autoxidation is less
prevalent when plasma cholesterol concentrations are within the normal range.

1. Introduction

The epsilon 4 allele of apolipoprotein E (ApoE) remains the stron-
gest genetic risk factor for dementia [1,2]; it is the lowest affinity ApoE
isoform for cholesterol uptake by the lipoprotein receptor. Several
modifiable vascular risk factors in midlife are also associated with the
development of dementia decades later, including smoking and

hypercholesterolaemia [3–5]. In addition, independent studies have
confirmed that statins are effective at reducing the risk for dementia in
later life by 25–50% [6,7]. These observations have led to the sugges-
tion that modification of cholesterol metabolism in midlife may reduce
later risk for dementia. However, plasma cholesterol is frequently not
elevated in dementia. Instead oxidised lipids have been proposed to be
more pathogenic molecules. In support of this, we have previously
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shown that oxidised low density lipoprotein (oxLDL) is associated with
impaired cognition in Alzheimer's disease (AD), the most common form
of dementia [8,9]. Furthermore, lipids extracted from oxLDL are pro-
oxidant, neurotoxic and pro-inflammatory in a blood-brain barrier
model [10,11].

Oxysterols are oxygenated derivatives of cholesterol formed by en-
dogenous enzymatic reaction or non-enzymatic auto-oxidation caused
by free radicals [12]. These 27-carbon oxidised derivatives are present
in very low concentrations in plasma, tissues and cells compared to
cholesterol. All oxysterols have a similar chemical structure; a tetra-
cyclic cyclopentaphenanthrene with an isooctyl side-chain at C17 and a
hydroxyl group at C3 - the difference between distinct oxysterols lies in
the addition of an extra hydroxyl, oxo, keto or epoxy group into the ring
structure or to the side chain [12]. These characteristics make it chal-
lenging to analyse low concentrations of oxysterols. However, advances
in mass spectrometry (MS)-based approaches have enabled the identi-
fication and quantification of oxysterols in biological samples.

24S-hydroxycholesterol (24S-OHC) is formed enzymatically in a
subset of neurons in the brain by cholesterol 24-hydroxylase, a cyto-
chrome P450 (CYP46A1) enzyme that convert cholesterol to 24S-OHC
[13]. 24S-OHC regulates cholesterol homeostasis and supports neuronal
function through activation of liver X receptors [14]. The increase in
plasma 24S-OHC in plasma during dementia is thought to reflect loss of
neurones and increased transport to the periphery. 27-hydro-
xycholesterol (27-OHC) is formed in the liver by the sterol 27-hydro-
xylase CYP27A1 and may be exported into the brain. In vitro studies
suggest that 27-OHC has concentration-dependent neurotoxic and
neuroprotective properties [11,14,15]. Investigations into variations in
plasma 27-OHC concentrations with dementia have proved incon-
clusive [11]. However, recent studies report an increase in plasma 27-
OHC during mild cognitive impairment [16] and peripheral artery
disease [17].

The most abundant free radical-dependent autoxidation products in
plasma, plaques and tissues are 7-ketocholesterol (7-KC) and 7β-hy-
droxycholesterol (7β-OHC) [12]. Autoxidised sterols have been shown
to modify gene expression in endothelial cells, affect angiogenesis, in-
flammation and are present in high concentrations in atheromatous
plaques [18,19]. 25-hydroxycholesterol (25-OHC) may be formed by
the enzyme cholesterol 25-hydroxylase (CH25H), induced by lipopo-
lysaccharide or type I interferon after bacterial or viral infection and by
autoxidation [20]. It is found at elevated concentrations in plaques and
in plasma during vascular disease, is pro-inflammatory via activation of

Toll-like receptors and modulates sterol metabolism via SREBP2
[17,21–23].

Hypercholesterolaemia in midlife is a risk factor for dementia in
later life, associates with increased oxysterol concentration, and is
ameliorated by statins. Statins have been reported to lower plasma
esterfied oxysterol concentration [24], as (non-specifically) analysed
using gas chromatography (GC) or by non-specific enzyme linked im-
munosorbent assay (ELISA) [25]. Therefore, we have developed a more
specific and sensitive MS-based method for quantification of five bio-
logically active, non-esterfied oxysterols namely 24S-OHC, 25-OHC, 27-
OHC, 7-KC and 7β-OHC in plasma in a single analytical run. Using this
advanced method, we have investigated the hypothesis that simvastatin
treatment in hypercholesterolaemia may reduce the concentrations of
specific plasma oxysterols.

2. Materials and methods

2.1. Chemicals

Authentic standards (24(S)-hydroxycholesterol, 27-hydro-
xycholesterol, 25-hydroxycholesterol, 7ß-hydroxycholesterol) and
deuterated (24(R/S)-hydroxycholesterol-d7, 25-hydroxycholesterol-d6,
27-hydroxycholesterol-d6, 7ß-hydroxycholesterol-d7, 7-ketocholes-
terol-d7) were purchased from Avanti polar lipids, Alabama. Authentic
standard 7 keto cholesterol was purchased from Cayman chemicals, MI,
USA. Butylacetate, hexane, isopropanol, methanol and formic acid
(HPLC/MS grade) were purchased from Fisher Scientific, UK. Butylated
hydroxytoluene (BHT) and Discovery DSC18 cartridges were from
Sigma-Aldrich, UK. Oasis HLB Prime and Oasis HLB cartridges were
purchased from Waters.

2.2. Plasma sample preparation

Twenty midlife, cardiovascular symptom-free male adults (40–60
years old, mean age 46.9 years) were recruited from general medical
practices in the Birmingham area with (total cholesterol> 6.5 mM
measured; n=10) and without (n=10) hypercholesterolaemia as
described in our previous publication [10]. The patient demographics
are described in Table 1. All ten statin-naïve, hypercholesterolaemic
subjects were prescribed simvastatin intervention (40mg/day),
whereas normolipidaemic subjects maintained habitual diets and life-
styles without intervention. Patients were re-sampled after 3 months.

Table 1
Demographics of healthy control and hypercholesterolaemic patients at baseline and 3 month follow up visit. Lipid profiles were determined on the plasma and values are mean±
standard error of mean (SEM); medians and ranges are indicated in parentheses. BMI: body mass index; LDLc: low density lipoprotein cholesterol; HDLc: high density lipoprotein
cholesterol. Statistical analysis was performed by two way ANOVA followed by Sidak's comparison: ** and *** indicate statistically significant differences (P < 0.001, P < 0.0001
respectively) between healthy control versus hypercholesterolaemic subjects at baseline.

Baseline 3 months follow up

Control (n= 10) Hypercholesterolaemic (n=10) Control (n= 10) Hypercholesterolaemic (n= 10)

Weight (Kg) 62 ± 2.47 63.8 ± 2.69 61 ± 2.3 64 ± 2.7
BMI Kg/m2 24.88± 0.74 26.35± 1.1 24.7± 0.68 26.3 ± 1.2
Age (years) 46.4± 1.7 47.4±1.7 46.4± 1.7 47.4± 1.7
Cholesterol (mM) 4.08± 0.18 6.72±0.78 ** 3.8± 0.13 4.63± 0.31
HDLc (mM) 1.3 ± 0.1 1.01±0.07 1.3± 0.24 1.28± 0.07
LDLc (mM) 1.9±0.17 4.82±0.12 ** 1.69± 0.41 1.98± 0.25
Triglycerides (mM) 1.95± 0.3 1.88±0.21 1.67± 0.61 1.63± 0.18
24S-OHC (ng/ml) 31± 4 61±4 39±4 42±3

(26; 18–62) (62; 31–86) (44; 28–47) (39; 29–60)
25-OHC (ng/ml) 118±32 916±168 ** 136±13 120±14

(154; 76–374) (171; 46–1845) (133; 66–185) (117; 61–207)
27-OHC (ng/ml) 31± 2 47±3 39±2 41±2

(29; 23–43) (48; 36–60) (39; 33–51) (40; 31–49)
7β-OHC (ng/ml) 98± 28 4429±762 *** 34±14 23±3

(60; 14–206) (4462; 570–7857) (16; 12–160) (20; 11–48)
7-KC (ng/ml) 69± 18 2302±215 *** 24±9 18±1

(50; 15–195) (2343; 826–3176) (14; 12–104) (17; 13–27)
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All ten hypercholesterolaemic patients complied with the intervention
for the study duration of 3 months. The research was carried out in
accordance with the Declaration of Helsinki (2008) of the World
Medical Association and ethical approval was obtained from the Bir-
mingham and Black Country Local Research Ethics Committee (REC
09/H1202/87). Participants provided informed written consent.

Human blood was collected in the EDTA tubes from three healthy
individuals and blood plasma was separated by centrifugation for
10min at 3000×g at 4 °C, collected and pooled to make control for the
estimation of matrix effect, recovery and standard curve. Plasmas were
aliquoted in 0.5ml polypropylene tubes and stored at − 80 °C until
analysis. Once aliquots were thawed, they were analysed and then
discarded.

2.3. Extraction of free oxysterols from plasma

We tested enrichment efficiencies of three types of solid phase ex-
traction (SPE) cartridges; Oasis HLB Prime (bed wt. 30mg, 1ml vo-
lume, Waters), Oasis HLB (bed wt. 30mg, 1ml volume, Waters) and
Discovery DSC18 (bed wt. 30 mg, 1ml volume Sigma-Aldrich), for the
enrichment of oxysterols from 70 µl of human plasma, spiked with 1 ng
of internal standards. Plasmas were mixed with 430 µl methanol, vor-
texed and incubated on ice for 10min in the presence of 4mg/ml BHT
before centrifugation at 14,000× g for 10min.The methanolic super-
natant was diluted with acidified water up to 12.5 % of methanol for
loading onto an SPE cartridge.

SPE cartridges were activated by applying 0.8 ml methanol on the
dry bed, followed by the equilibration with 0.8 ml of 1% formic acid in
water (v/v, pH~2) using the consistent flow rate of 1 drop/sec. Samples
were applied on the wet bed followed by washing with 0.5 ml of 0.1%
formic acid in water (v/v, pH~2). The SPE bed was washed with 0.6 ml
of hexane to elute hydrophobic lipids. Finally, oxysterols were eluted
with 1.8ml of butyl acetate and collected in 2ml polypropylene tube.
Eluates were dried under vacuum, re-suspended in 20 µl of 50% aqu-
eous methanol containing 0.1% formic acid and analysed immediately.

Oxysterols from healthy and hypercholesterolaemic individuals
spiked with deuterated internal standards (1 ng 24-OHCd7, 0.25 ng 25-
OHCd6, 4 ng 27-OHCd6, 0.5 ng 7β-OHCd7, 15 ng 7-KCd7) were ana-
lysed as previously described. Oxysterols were enriched on Oasis HLB
Prime SPE plates (bed wt. 30mg, 1ml, 96-well) for a higher
throughput.

2.4. Estimation of recovery, stability and matrix effects for oxysterol
quantification

Pooled plasma from healthy volunteers (male and female) were
used for the estimation of oxysterol recovery and stability. Plasma
(70 µl) was used with and without spiking with methanolic solution of
all authentic and internal standards (0, 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5,
10 ng) in triplicate to calculate the intra- and inter- day recoveries.
Stability of the oxysterols during 1–4 freeze-thaw cycles were

investigated for one control plasma sample (Table S1). High percentage
recovery was observed for all five oxysterols with only one freeze-thaw
cycle; 24S-OHC: 75.3%, 25-OHC: 72.6%, 27-OHC: 71.8%, 7β-OHC:
68.2% and 7-KC: 72.7%, compared to 2 or more cycles.

2.5. Optimization of detection parameters

Optimization of multiple reactions monitoring (MRM) parameters
was performed on a ESI-QqLIT-MS (QTRAP 5500, AB Sciex UK Ltd.,
Warrington) operated in a positive ion mode with an ionisation voltage
of 5.5 kV, entrance potential of 10 V, and ion source temperature of
300 °C. Solutions of authentic and internal standards (100 pg/ml in
isopropanol: methanol:water 50:40:10 v/v/v/) with 0.1% formic acid
were used for the optimization of collision energy (CE), declustering
potential (DP), and exit quadrupole potential (CXP) for each Q1/Q3
(precursor ion/fragment ion) m/z transition (Table 2). Standard solu-
tions were directly infused into the mass spectrometer for the optimi-
zation of Q1/Q3 transition pairs using an integrated syringe pump
(Harvard Apparatus) at 10 µl/min flow rate. The final MRM (35 pairs)
adopted the three most intense structure specific transitions for each
analyte with a dwell time of 55ms.

2.6. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)

The analysis was done using liquid chromatography (LC, DIONEX
UltiMate 3000, Thermo Scientific UK Ltd., Hemel Hempstead) on-line
coupled to the ESI-QqLIT-MS/MS (QTRAP 5500, AB Sciex UK Ltd.,
Warrington). Samples (20 µl in 50% aqueous methanol with 1% formic
acid) were separated on the reverse phase C18 column: NUCLEOSIL®
C18, 100mm, 5 µm pore size (Macherey-Nagel, Germany) using mobile
phase (A) methanol: water:formic acid (70:30:0.1, v/v) and (B) iso-
propanol: methanol: formic acid (90:10:0.1, v/v) and a column tem-
perature at 45 °C. Flow rate was maintained at 200 µl/min with the
gradient as follows: 84% B from 0 to 7min, 84–76% B from 7 to 11min,
76–100% B from 11 to 25min, 100% B 25–30min, 100–84% B from 30
to 32min, 84% B 32–48min. Acquired data were processed using
Analyst Software (version 1.7, AB Sciex).

3. Results

3.1. Development of the LC-MS/MS quantification method

A reproducible and sensitive LC-MS/MS method for the simulta-
neous quantitation of free 24S-OHC, 25-OHC, 27-OHC, 7β-OHC and 7-
KC in plasma samples was developed in this study (Fig. 1). In contrast to
previous methods [26,27], a saponification step was not included. For
the estimation of the process recovery the peak areas of five internal
standards were compared before and after spiking to human plasma
(Table S2). Results showed that IS enrichment with Oasis HLB prime
cartridges gives the highest percentage recovery values for 24-OHCd7,
25-OHCd6, 27-OHCd6, 7β-OHCd7, and 7-KCd7 (77.60%, 81.80%,

Table 2
Selected Multiple reaction monitoring (MRM) parameters (Q1/Q3 transition pair; declustering potential (DP); collision energy (CE); exit quadrupole potential, (CXP), retention times)
used in the analysis.

Common name MRM transitions DP (V) CE (V) CXP (V) Dwell time (ms) Retention time (min)

Authentic Standards 24S hydroxycholesterol 385.3/161 166 27 24 55 11.43
25 hydroxycholesterol 385.3/147 161 33 20 55 11.93
27 hydroxycholesterol 385.4/161 181 33 14 55 12.88
7β-hydroxycholesterol 385.4/81 216 53 8 55 13.80
7-keto-cholesterol 401.4/95 196 41 16 55 14.79

Deuterated Standards 24(R/S)-hydroxycholesterol-d7 392.4/135 196 35 6 55 11.38
25-hydroxycholesterol-d6 391.6/161 121 33 18 55 11.98
27-hydroxycholesterol-d6 391.4/135 211 29 14 55 12.86
7β-hydroxycholesterol-d7 392.3/159 81 33 14 55 13.75
7-keto-cholesterol-d7 408.5/96 231 61 8 55 14.70
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80.65%, 72.04%, and 89.86% respectively) in plasma, compared to the
Oasis HLB (72.11%, 74.11%, 76.70%, 41.58%, and 79.10%) and C18
cartridges (10.16%, 8.11%, 20.50%, 12.12%, and 15.66%). Polymeric
chemistry with capabilities for both hydrophobic and polar retention
are better than C18 reversed phase when it comes to enrichment.

The specificity and selectivity of the method was achieved by good
chromatographic separation prior to sensitive mass spectrometry de-
tection through careful design of Q1/Q3 m/z transition pairs (Table 2
and Table S3). Attention was given to chromatographic separation of
oxysterol isomers; 24-OHC, 25-OHC and 27-OHC. Specifically, the

identification of closely eluting 24S-OHC and 25-OHC have been
achieved by narrow chromatographic peaks and analyte specific de-
tection. An adequate separation was achieved using a multistep gra-
dient, mobile phase composition (variation of isopropanol percentage
in methanol) in combination with a careful selection of Q1/Q3 transi-
tion pairs.

3.2. Calibration curves, process recovery and reproducibility

Method validation was performed according to the “Center for
Drug Evaluation and Research (CDER) Guidance for Industry:
Bioanalytical Method Evaluation' (http://www.fda.gov/downloads/
Drugs/Guidances/ucm070107.pdf) guidance. The linear dynamic
range of the instrument was evaluated by measuring 17 different
standard concentrations (0, 1, 5 fg; 1, 10, 100, 250, 500, 750 pg; 1, 2.5,
5, 10, 25, 50, 100, 250 and 500 ng per injection) for pooled authentic
and deuterated standards (data not shown). Calibration curves used for
quantification were designed for the each analyte, from the triplicate
measurements of the control plasma and control plasma spiked with 10
different concentrations of standards (0.01, 0.1, 0.25, 0.5, 0.75, 1, 2.5,
5, 10 ng per injection). Linearity of the fit expressed by correlation
coefficient R2 ≥ 0.99 indicated linearity (Fig. S1).

Limits of detection (LOD) and Limit of quantification (LOQ) are
expressed as the analyte concentration corresponding to the sample
blank value plus three and ten standard deviations respectively
(Table 3). We determined intra- and inter- day precision and accuracy
for the each analyte for the three different concentrations within linear
dynamic range, namely for the concentrations corresponding to the
lower (LLOQ), upper limits of quantification (ULOQ), and one con-
centration in between LLOQ and ULOQ (Table 4). Intraday precision
was evaluated from the triplicate measurements of the mixture of au-
thentic and deuterated standards, and was calculated for the three
different standard concentrations within the linear dynamic range (1, 2
and 5 ng/ml). Calculated CVs for the each concentration point were
within required range (< 15% in accordance with FDA guidelines),
indicating proper precision for the intraday and interday reproduci-
bility measurements. Process recovery (PR) was calculated for the three
concentrations (from 0.5 to 5 ng/ml).

3.3. Quantification of oxysterols in hypercholesterolaemic patients

Plasma cholesterol levels were significantly different between the
two groups at baseline (control group=4.08 ± 0.18mM; hypercho-
lesterolaemic group= 6.72 ± 0.78mM; p < 0.001, Table 1). After
40mg simvastatin treatment per day for 3 months, the subjects with
hypercholesterolaemia showed a 35% reduction in cholesterol levels

Fig. 1. Chromatographic separation of oxysterols and cholesterol mixture (5 ng) in a
48min run time. 24-hydroxycholesterol (385/161: RT =11.43min); 25-hydro-
xycholesterol (385/147: RT=11.93min); 27-hydroxycholesterol (385/161:
RT=12.88min); 7β-hydroxycholesterol (385/81: RT=13.80min); 7keto-cholesterol
(401/196: RT=14.79min); cholesterol (369/81: RT=19.87min).

Table 3
Precision data, calibration curves, linear dynamic range, detection limit and
quantitation limit of the different sterols. Limit of detection (LOD) is defined as the
lowest detectable amount of analyte with a signal-to noise ratio (S/N) of 3:1, lower limit
of quantification (LLOQ) is defined as the lowest quantifiable amount of analyte with S/N
of 1:10 under experimental conditions, and both were determined for the each standard.
The process recovery (the percentage of analyte change compared to the intensity mea-
sured for the pool of standards in methanol) was calculated for 1 ng of each authentic
standard, and represented in percent with the relative standard deviation (SD).

Analyte LLOQ, pg/ml LOD, pg/ml Process recovery± SD, %

24 hydroxycholesterol 253 135 77.60 ± 10.5
25 hydroxycholesterol 122 24 81.80 ± 8.6
27 hydroxycholesterol 115 44 80.65± 10.4
7β-hydroxycholesterol 18 5 72.04± 11.6
7keto-cholesterol 39 12 79.86± 14.3

Table 4
Intraday, interday precision and CV of developed analytical procedure for quantification of 5 authentic standards (n= 3).

Analyte Concentration (ng/ml) Inter day Intraday

Measured (ng/ml) CV % % error Measured (ng/ml) CV % % error

24S hydroxycholesterol 0.1 0.092 12.8 8.70 0.11 2.7 9.09
1 0.93 4 7.53 0.98 8.1 2.04
50 45 6.4 11.11 51 3.8 1.96

25 hydroxycholesterol 0.1 0.11 12 9.09 0.11 15 9.09
1 1.08 10 7.41 1.01 3.4 0.99
50 53 4.5 5.66 49 8.6 2.04

27 hydroxycholesterol 0.1 0.096 7.0 4.17 0.1 5.3 0.00
1 1.05 5.2 4.76 0.99 6.1 1.01
50 48 3.7 4.17 51 0.7 1.96

7β-hydroxycholesterol 0.1 0.11 8.1 9.09 0.98 10.3 2.04
1 1.1 5.7 9.09 1.2 2.7 16.67
50 52 1.2 3.85 48 0.8 4.17

7keto-cholesterol 0.1 0.097 10.4 3.09 0.099 6.3 1.01
1 1.03 7.1 2.91 1.01 4.1 0.99
50 51 6.4 1.96 51 1.2 1.96
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and there was no significant difference observed in other measurements
between the two groups.

All five oxysterols measured in this study were higher in statin-naive
hypercholesterolaemic men compared to age-matched control subjects
at baseline; 24S-OHC, 25-OHC, 7β-OHC and 7-KC were 2, 8, 1.5, 45 and
33 fold higher (Table 1). Absolute concentrations of free radical de-
pendent oxysterols, 7β-OHC and 7-KC were significantly increased
(P < 0.0001) in hypercholesterolaemic men at baseline and after 3
months intervention with simvastatin, oxysterol concentrations in
plasma were similar to those of healthy subjects.

Owing to the reduction in total cholesterol with intervention we
normalised the calculated oxysterol measurements (nM) to total plasma
cholesterol concentration (mM) and the data has been expressed as a

ratio, nM of oxysterols: mM of total cholesterol. Levels of enzymatically
produced 24S-OHC and 27-OHC were not significantly different be-
tween any groups irrespective of statin intervention (Fig. 2). 25-OHC,
7β-OHC and 7-KC levels are significantly higher in men with hy-
percholesterolaemia even after correcting for cholesterol. Intake of
40mg simvastatin for 3 months reduced the level of these oxysterols to
the levels recorded in healthy control subjects.

4. Discussion

The method described here for the simultaneous detection of five
oxysterols has been optimised for analysis of non-esterified plasma
oxysterols through a simple solid phase preparative procedure. The

Fig. 2. Free oxysterol concentrations adjusted to free cholesterol in plasma from hypercholesterolaemic patients before and after Simvastatin intervention (n= 10 in each group). Box
plots show the plasma oxysterols; (A) 24S-OHC (B) 25-OHC (C) 27-OHC (D) 7β-OHC (E) 7-KC. Data was analysed by Wilcoxon matched pair t-test.
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current method avoids derivatisation steps and uses Oasis HLB prime
cartridges for fast sample preparation. With excellent recovery, we have
been able to analyse oxysterols that normally circulate at concentra-
tions which are six orders of magnitude lower than the parent choles-
terol. For the first time, this method has been applied to study the ef-
fects of three months of statin intervention on plasma oxysterol
concentrations in midlife men with high plasma cholesterol. We showed
that the free radical-dependent oxysterols (7-KC, 7β-OHC and 25-OHC)
were circulating in people with asymptomatic hypercholesterolaemia at
up to 45 times the concentrations that could be observed in men with
normal plasma cholesterol and that the significance of the effect was
maintained either before or after correction for differences in plasma
cholesterol concentration. Simvastatin treatment for three months re-
duced oxysterol concentrations to those seen in healthy men with
normal lipid profiles.

The enzymatically produced oxysterols, 24S- and 27-OHC were not
different between the population who presented with statin-naïve hy-
percholesterolaemia and the age-matched control subjects.
Furthermore, there was no effect of statins on 24S- and 27-OHC in
hypercholesterolaemic subjects over three months either before or after
correction for a reduction in plasma cholesterol concentration. In con-
trast, a previous study in patients with coronary artery stenosis reported
that statins reduced total oxysterol concentrations from 24 nM to
15 nM; these authors used an ELISA method that did not specify which
of the oxysterols was being analysed [25].

Also, Vega et al., showed that plasma concentrations of 24-OHC and
7-OHC but not 27-OHC were higher in dementia than in healthy con-
trols and may be reduced by simvastatin [28–31]. They reported levels
of 60 ng/ml of 24-OHC in dementia patients whereas we detected levels
that were 50% lower in midlife men without overt disease. The pre-
vious studies used a method that measured both free and esterified
oxysterols, whereas our method focussed on free oxysterols. In the
present study, we wished to focus on free oxysterols that are exposed in
plasma rather than being held in the core of lipoproteins. Free oxy-
sterols are biologically active and have been shown to bind to cysteine
rich domains of Smoothened and enable maximal activation of the
hedgehog signalling pathway by specific receptor ligands [32]. This
pathway is emerging as an important target for cardiovascular disease
and cancer [33].

Autoxidised cholesterols, including 7-KC and 7β-OHC have been
shown to affect the bioavailability of other reactive oxygen and ni-
trogen species, by chemical interaction with nitric oxide. In addition,
oxysterols easily diffuse into membranes where they affect receptor and
enzyme function [34]; furthermore, 7-KC promotes translocation of
cytosolic NADPH oxidase components to the membrane in neutrophils
and enhances rapid reactive oxygen species production [35] are well-
known activators of NADPH oxidase.

To maintain cell homeostasis, cholesterol concentrations are tightly
regulated. Oxysterols play a role in maintaining cholesterol homeostasis
acting as ligands for SREBP2 and downregulating endogenous choles-
terol synthesis via decreased expression of HMG CoA reductase in a
similar way to the mechanism of statin actions. The fact that both
cholesterol and autoxidised oxysterols were reduced by statins in
people with hypercholesterolaemia but not oxysterols themselves,
suggests an inability of the homeostatic mechanism to manage ex-
cessive cholesterol arising from dietary intake although the pharma-
cological action of statins on HMG CoA reductase was effective.

Vascular risk factors and comorbidities are extremely frequent in
cognitive impairment with and without dementia, but it is difficult to
assess the causal role of cardiometabolic factors in dementia onset. This
is due to the fact that the pathophysiological mechanisms that are likely
to confer chronological primacy in neurodegeneration occur decades
prior to the clinical onset of overt symptoms of cognitive decline.
Therefore, the main focus of the present study was evaluating men with
high cholesterol in midlife but without any overt signs of disease, in
order to understand whether any of the differences in plasma oxysterols

observed in AD patients are already present in hypercholesterolaemic
men in midlife and constitute therefore a risk for dementia develop-
ment. The link between high cholesterol and later development of de-
mentia is less strong in women [36]. It is known that oestrogenic hor-
mones can themselves affect sterol metabolism and this may in part
explain the protection that women experience from vascular disease.

To further understand any mechanistic relationship between plasma
cholesterol and later development of dementia, others have in-
vestigated the effect of simvastatin on levels of the toxic protein
phospho-tau in the cerebrospinal fluid of cognitively normal adults
aged 45–60 years and a positive relationship between tau and plasma
LDL was observed [36]. This suggests that there is a relationship be-
tween neurotoxic peptides and cholesterol in midlife. However, when
statins were prescribed to patients with pre-existing dementia, there
was no benefit for cognition [37]. Taken together, this evidence sug-
gests that modification of cholesterol metabolism in mid- rather than
later life may reduce risk for dementia.

In conclusion, our simple method for determining five oxysterols in
plasma has shown that autoxidation products of cholesterol are up to 45
times greater in the plasma of asymptomatic, hypercholesterolaemic
men and that within 3 months, autoxidised oxysterol concentration was
normalised by simvastatin treatment.
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