

University of Birmingham

Short links and tiny keyboards:
Gould, Sandy; Cox, Anna L.; Brumby, Duncan P.; Wiseman, Sarah

DOI:
10.1016/j.ijhcs.2016.07.009

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Gould, S, Cox, AL, Brumby, DP & Wiseman, S 2016, 'Short links and tiny keyboards: A systematic exploration of
design trade-offs in link shortening services', International Journal of Human-Computer Studies, vol. 96, pp. 38-
53. https://doi.org/10.1016/j.ijhcs.2016.07.009

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Published in International Journal of Human-Computer Studies on 28/07/2016

DOI: 10.1016/j.ijhcs.2016.07.009

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1016/j.ijhcs.2016.07.009
https://doi.org/10.1016/j.ijhcs.2016.07.009
https://birmingham.elsevierpure.com/en/publications/a32db7ef-d130-44e0-bf6b-b858e88559dc

Int. J. Human-Computer Studies 96 (2016) 38–53
Contents lists available at ScienceDirect
Int. J. Human-Computer Studies
http://d
1071-58

n Corr
E-m
journal homepage: www.elsevier.com/locate/ijhcs
Short links and tiny keyboards: A systematic exploration of design
trade-offs in link shortening services

Sandy J.J. Gould a,n, Anna L. Cox a, Duncan P. Brumby a, Sarah Wiseman b

a UCL Interaction Centre, University College London, 66-72 Gower Street, WC1E 6BT, United Kingdom
b Department of Computing, Goldsmiths, University of London, London SE14 6NW, United Kingdom
a r t i c l e i n f o

Article history:
Received 7 March 2016
Received in revised form
23 July 2016
Accepted 25 July 2016
Available online 28 July 2016

Keywords:
Link shortening
Short links
Keyboard
Optimization
Typing
Data entry
Mobile
Touchscreen
x.doi.org/10.1016/j.ijhcs.2016.07.009
19/& 2016 The Authors. Published by Elsevie

esponding author.
ail address: s.gould@cs.ucl.ac.uk (S.J.J. Gould).
a b s t r a c t

Link-shortening services save space and make the manual entry of URLs less onerous. Short links are
often included on printed materials so that people using mobile devices can quickly enter URLs. Although
mobile transcription is a common use-case, link-shortening services generate output that is poorly suited
to entry on mobile devices: links often contain numbers and capital letters that require time consuming
mode switches on touch screen keyboards. With the aid of computational modeling, we identified
problems with the output of a link-shortening service, bit.ly. Based on the results of this modeling, we
hypothesized that longer links that are optimized for input on mobile keyboards would improve link
entry speeds compared to shorter links that required keyboard mode switches. We conducted a human
performance study that confirmed this hypothesis. Finally, we applied our method to a selection of
different non-word mobile data-entry tasks. This work illustrates the need for service design to fit the
constraints of the devices people use to consume services.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Semantically meaningful URLs are often long. This makes them
tedious to transcribe. QR codes obviate the need to type, but are
not human-readable and have a number of issues with usability
(Shin et al., 2012) and security (Vidas et al., 2013). Link shortening
services like bit.ly provide a compromise: the process of typing
complex and lengthy URLs is accelerated and human readability is
preserved. Unfortunately, many shortening services exhibit little
consideration for how links might be made quick and easy to type.
The outputs of shortening services usually contain a mix of num-
bers and mixed-case letters. On space-constrained mobile devices,
entering these characters requires changing the keyboard from
lowercase mode to number mode or uppercase mode. Making
these mode switches to access different characters is particularly
time consuming and error prone (Greene et al., 2014). Shorter
links, therefore, may not necessarily be faster to type.

Generating short links that do not require keyboard mode
switches necessarily means using a smaller selection of characters.
For a given link length this means fewer unique links can be
generated. This reduction in the number of options for each
character of a link can be mitigated by increasing the length of
r Ltd. This is an open access article
links. But how much longer would such a link need to be? In this
paper we model the process of text entry on three widely-used
mobile platforms. We use simulations to systematically explore
the output of a popular shortening service, bit.ly. To see whether
the predictions we make based on our model hold true in reality
we test them in a game-like human performance study.

We found that link shorteners trade-off link length and entry
difficulty. Most shorteners optimize too aggressively for link
length; their output is awkward to transcribe. We show that links
can be made easier to type with only a modest increase in their
length. Given the increasingly limited functional utility of ultra-
short links on services like Twitter, link shortening services should
prioritize making links easier to type.

1.1. Related work

Efforts to make text entry easier for people have mostly focused
on improving entry interfaces, like keyboards (e.g., Cheng et al.,
2013; Leiva et al., 2015; Oulasvirta et al., 2013). Another way to
improve text entry is to adapt input interfaces to accommodate the
kinds of input that they are most likely to receive. Wiseman et al.
(2013) showed that in hospitals the distribution of digits entered
into devices is not random. Input interfaces that are designed for a
particular set of possible inputs perform better than standard in-
terfaces that do not take account of the strings that are likely to be
entered (Wiseman et al., 2013). The preponderance of third-party
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

www.sciencedirect.com/science/journal/10715819
www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2016.07.009
http://dx.doi.org/10.1016/j.ijhcs.2016.07.009
http://dx.doi.org/10.1016/j.ijhcs.2016.07.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2016.07.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2016.07.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2016.07.009&domain=pdf
mailto:s.gould@cs.ucl.ac.uk
http://dx.doi.org/10.1016/j.ijhcs.2016.07.009

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–53 39
mobile keyboards designed specifically for entering emoji char-
acters or calendar events also reflects this kind of thinking: make
the interface fit the input.

Unfortunately, implementing bespoke data-entry interfaces is a
luxury that is rarely available to designers. People do not have
custom keyboards installed for every input use case. More often
than not, the design of input interfaces is entirely out of the con-
trol of service designers. In most circumstances input values
should instead fit interfaces (see, e.g., Wiseman et al., 2016).

The entry of certain types of input can be suboptimal when
keyboard designs have had to make trade-offs. This is especially
the case for keyboards on phone-sized touchscreen devices. To
save space, one of the concessions the designers of touchscreen
keyboards make is to only show lowercase characters. Accessing
uppercase letters and numbers requires multiple taps to change a
keyboard's mode.

Gallagher and Byrne (2015) modeled the effect of having to
switch modes on touchscreen keyboards in the context of pass-
word entry. They found that the interval between typing two
lowercase letters was around 500 ms. The interval between typing
a lowercase letter and an uppercase letter was approximately
1500 ms, a three-fold increase. Mode switching on small
touchscreen keyboards is costly, but implementing a custom
keyboard solely for entering passwords is impractical: touchsc-
reens don’t have the space to display the full set of numbers, let-
ters and special characters in a single keyboard pane.

If input interfaces are fixed constraints in a system, we should
consider how a service might be adjusted so as to better fit those
constraints in likely contexts of use. This is not always possible, but
there are scenarios in which target information can be substituted
or altered without compromising a service. We focus on a parti-
cular example that exhibits this property: link shortening services.

1.2. Link shortening services

Link shortening services like bit.ly, ow.ly or goo.gl act as inter-
mediaries between users and websites. Users provide a target link, for
instance, https://www.elsevier.com/journals/international-journal-of-
human-computer-studies/1071-5819/guide-for-authors. A shortening
service generates a much shorter link, in this case, http://bit.ly/
1OT4BPc. A mapping between these long and short links is stored by
the shortening service. When a short URL is requested users are re-
directed to the original long URL.

Shorter links come at a cost: semantic information is lost from
a URL. In the example above, a user reading the long link has a
good idea that they’ll end up on an Elsevier page. The short link,
Fig. 1. Short links often appear on print advertising. Here the
however, might just lead to Rick Astley's Never Gonna Give You Up
(http://bit.ly/e4Rt5rr). A user would not know until they had fol-
lowed it. The loss of semantic information has made shortening
services a vector for phishing attacks (Chhabra et al., 2011; Klien
and Strohmaier, 2012). Despite these shortcomings, shortening
services have a number of benefits.

Short links are useful when space is limited or when characters
are restricted. Shortening services also offer social media users
methods for tracking engagement. Short links are often easier to
copy and paste because they are more compact and generally do
not cover multiple lines. Short links can also ease transcription
from physical artefacts to digital devices. Short links feature on
print advertising (see Fig. 1) and on slides during talks. By using
shortened links, labyrinthine directions to a slide deck on a uni-
versity server can be shortened to a few quick keystrokes.

1.3. Improving link shorteners

How well do existing link shortening services meet the re-
quirements of the use cases we have discussed so far? RFC 3986
(Berners-Lee et al., 2005), which defines how URLs work, specifi-
cally discusses the tension between the digital and physical use of
URLs: “[URL] design considerations,” it says, “are not always in
alignment”. Given that trade-offs are required, do shortening ser-
vices make reasonable ones?

One of the constraints on link shortening schemas is the need
to be able to address a large potential set of links so that each short
link can be guaranteed to be unique. Shorteners like bit.ly produce
seven-character identifiers comprising numbers and mixed-case
characters. In this scheme, each character can be any of 62 options:
26 uppercase letters, 26 lowercase letters or 10 digits. This yields a
large space of possible identifiers, (26þ26þ10) 7, or around
3.5 trillion.

In the digital domain, unique identifiers could be made much
shorter by allowing more than 62 options for each character. Many
modern browsers (but not all services) support percent encoded
URLs. UTF-8, a method of encoding Unicode characters, supports
up to 1,112,064 characters. Using the full array of UTF-8 characters,
a link shortening schema could exceed the size of the bit.ly pool of
possible identifiers by orders of magnitude using only three
characters (i.e., 1,112,0643c627). This yields links that are physi-
cally smaller and use fewer characters. Additionally, a link like bit.
ly/-∴♣ is no more or less meaningful than a link like bit.ly/
E5tF68G. In the digital domain, where links are clicked and their
composition after shortening is immaterial, shorteners could in-
crease their effective compression ratio by using expanded
link contains numbers, capitals and lowercase characters.

http://https://www.elsevier.com/journals/international-journal-of-human-computer-studies/1071-5819/guide-for-authors
http://https://www.elsevier.com/journals/international-journal-of-human-computer-studies/1071-5819/guide-for-authors
http://bit.ly/1OT4BPc
http://bit.ly/1OT4BPc
http://bit.ly/e4Rt5rr

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–5340
character sets. Despite being short in length, expanded character
sets become a problem if links need to be manually transcribed.
Special characters can be difficult to identify in target links and
hard to locate and enter on mobile devices.

If entering special characters is difficult, what about the capital
letters and numbers used by services like bit.ly? On mobile key-
boards these require mode switches. Is entering bit.ly/lqexieb ea-
sier than entering bit.ly/S9T7R4B? Shorteners use capital letters
and numbers to maintain the size of their unique identifier pool.
With an identifier of seven characters, using lowercase letters
yields a set of possible links three orders of magnitude smaller
(267o627, �8 billion vs �3.5 trillion). For the ambitious, running
out of links might be a concern.

How long would a lowercase-only link need to be in order to
offer a sufficiently large set of available links? Due to the nature of
exponents, the answer is that only two more characters are re-
quired. Nine lowercase letters (269) afford almost two trillion
more permutations than seven mixed-case characters (627). This
might be a design improvement for link shortening services.
Longer lowercase-only links might be quicker and easier to enter
than shorter ones that use a variety of characters. Of course, a
seven-character link from bit.ly that happens to be all lowercase
will be faster and easier to enter than a nine-character all-lower-
case link. But given the huge number of possible links, we need to
know, on average, which shortening schema we should expect to
enable quicker and easier transcription of links.
2. Systematic analysis

2.1. General modeling approach

We developed Monte Carlo models1 that simulate the keypresses
required to enter links. Our target strings were the link IDs at the end
of a shortened URL (e.g., S9T7R4B or T6� 54RS). The space of all
possible permutations for a bit.ly-like link shortening schema is large,
627, so we used a smaller sample of one hundred million (108) link
IDs that we generated stochastically. The link IDs were generated by
randomly and independently picking seven characters from the 62
options (A-Z, a-z, 0-9); repeats were permissible.

We developed two kinds of model. One predicts the number of
taps required to type a given link ID. The other predicts how many
milliseconds a given link ID will take to type. In our models we
assume an ideal performer (see Gray et al., 2006). For the tap-op-
timizing models we assume that the user always uses the fewest
number of taps to enter a link ID. This means we assume that the
user has perfect knowledge of the taps required to move between
character modes and knows how to minimize mode switches
across a whole string before typing begins. Our ideal performer
does not make errors (but see Banovic et al., 2013; Wobbrock et al.,
2008 for details on how pointing errors can be modeled). Likewise,
for the time-optimizing model we assume an ideal performer with
perfect knowledge. The ideal performer always types a link in the
shortest possible time.

We developed both tap- and time-optimizing models because
they have complementary strengths and limitations. Tap-based
models are straightforward to construct given a description of the
keypresses required to enter a string. They do not require the
empirical fitting of human performance data (e.g., typing speed).
Time-based models are more complex but are better able to cap-
ture subtle differences in the time costs of keyboard interactions
(e.g., making a double-tap vs. a single long keypress to change
between keyboard modes).
1 Models available from https://www.sjjg.uk/short-links-models/.
Mobile platforms have different keyboards. Each of these works
differently. We wanted to know whether our proposal for a nine-
character lowercase schema would be superior across a range of
platforms. To this end we model the iOS 8 (‘iOS’), Android 5.0
(‘Android’) and Windows Phone 8.1 (‘Windows’) keyboards.

2.2. Tap-optimizing model

Keystrokes per character (KSPC) is a measure of typing per-
formance that affords simple comparisons of keyboards (MacK-
enzie, 2002; Varcholik et al., 2012). This metric maps well to taps
on touchscreen keyboards. The model for our proposed design
solution is simple. Any given link ID formed of nine lowercase
characters will take nine taps to enter if starting in lowercase
mode (see the bottom row of Table 1). This is because there is no
mode switching required for entering a string of lowercase char-
acters when starting in lowercase mode.

Developing a model for seven-character link IDs containing
mixed-case letters and numbers is more challenging. Typing
numbers and capital letters requires extra taps to make mode
switches. Links with runs of characters from a particular mode
(e.g., bit.ly/ABCD123) can be entered more quickly than links that
require a mode change for every character (e.g., bit.ly/A1B2C3D).

Each keyboard operates differently. For instance, to access ca-
pital letters on the three keyboards that we consider in this paper,
users can tap the shift key once. If several capital letters in a row
are required keyboards can be switched to the caps-lock mode. On
the iOS keyboard this is achieved with a double tap of the shift key.
On Android and Windows keyboards a long press also enables
caps-lock mode. The tap-optimizing model attempts to minimize
the number of taps. It chooses single long presses over quick
double taps.

To access number-mode users must first tap the ‘123’ key. Once
in number mode, users have to tap the ‘ABC’ key to get back to the
lowercase keyboard. Therefore, to enter a number and return to
the lowercase keyboard requires three taps. On the iOS keyboard,
activating number mode deactivates caps-lock. Conversely, on the
Android and Windows keyboards caps-lock remains active even
after number mode has been activated. We made every effort to
model all keyboard idiosyncrasies of this kind.

The accessibility of particular symbols varies across the plat-
forms. In iOS and Windows the forward slash character (i.e., /) is
accessed through the number mode. This means at the moment of
entering the first character of a link, a mode switch is required in
order to enter any non-number character. To enter our lowercase
links, an additional mode switch is required at the start. We ran
the iOS and Windows models both with this additional mode
switch and without it. We found no practical difference in the
results. We therefore keep with the simpler analysis as it provides
a consistent baseline for comparison across keyboards. In other
words, all models make the assumption that the starting position
for entering the link IDs (i.e., the part of the URL after the forward
slash) is in the lowercase mode.

The number of mode switches (and therefore taps) required to
enter a randomly generated link ID varies. This means that, unlike
lowercase links, the number of taps required to enter a mixed-
character link is defined by a distribution, rather than a single
value. The bit.ly schema will produce links that require anywhere
between seven taps to enter for a link all in lowercase characters
(e.g., bit.ly/lqexieb) to seventeen taps for a combination of capitals
and numbers (e.g., bit.ly/S9T7R4B).

For our proposed nine-character lowercase schema, all possible
links take nine characters to enter. Whether the link is bit.ly/ops-
nebzms or bit.ly/xvcbsdneu we would expect the link ID to always
take nine taps to enter, assuming an ideal performer. We wanted
to know how the seven-character mixed-case schema compared.

https://www.sjjg.uk/short-links-models/

Table 1
Three examples of the patterns of taps required to enter the ID portions of the links on the default iOS 8 keyboard. Total tap counts are only for the link IDs and exclude the
‘Go’ tap and the domain name.

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–53 41
2.2.1. Results
The results reflect favorably on our nine-character lowercase

schema when compared to the seven-character mixed-case sche-
ma. Given a randomly generated link ID, we would expect more
taps (top row, Table 2) to be required for a mixed-case link ID even
though it comprises fewer characters (7 vs 9). Our intuition was
that longer lowercase link IDs would require fewer taps. Our
modeling allows us to quantify this advantage. Depending on the
keyboard, the chance of a seven character mixed-case link ID
needing more than nine taps to enter is 42-92%; across the plat-
forms a link generated by the mixed-case schema is more likely
than not to need more than the nine taps required to enter nine
lowercase letters.

How often will the mixed-case schema generate a link that
requires fewer taps than a nine-character lowercase link? As can
be seen in the bottom row of Table 2: unlikely. On the Android
keyboard, which is superior by virtue of having numbers acces-
sible from the QWERTY keyboard through a long press, the mixed-
case schema will require fewer than nine taps (i.e., the number of
taps to enter a nine-character lowercase ID) on one in five occa-
sions (19%). On the iOS keyboard this is a one-in-one-hundred
event (1%).

To summarize, a link produced from the lowercase schema is
very likely to require fewer taps than a link generated by the
mixed-case schema. This is despite being two characters longer.
Measured by taps alone, our nine-character schema is clearly su-
perior to a bit.ly-style link.

2.3. Time-optimizing model

The tap-optimizing model we developed is easy to build and
generalize. It affords simple comparisons. It also makes several
assumptions that might hinder its reliability. One is that double
taps count as two taps even though the execution of a double tap
is faster than two independent single taps. This means that the tap
models overestimate the difficulty of entering strings involving
double taps. Thus, the tap-based model for the iOS keyboard might
make the keyboard appear more onerous to use than it might
actually be.
Table 2
Mean, standard deviation, range and lowercase model comparisons for results of
tap-optimizing model. Nine-character lowercase links are modeled as requiring
nine taps to enter.

iOS Android Windows

E(X) of taps 12 9 11
s of taps 2 1 2
Range of taps 7–17 7–12 7–1
P 49 taps 92% 42% 87%
P o9 taps 1% 19% 3%
Consider, for instance, the final two characters of the link ID
2e45pRF. If double taps are treated as two independent taps, then
entering Shift-Shift-R-F using the caps-lock mode uses as
many taps as Shift-R-Shift-F, where caps-lock is not used. But
we would expect that entering the caps-lock mode with a quick
double tap would be faster than having to tap shift before each of
the characters.

The second assumption that the tap-optimizing model
makes is that long presses are equivalent to normal taps. This
makes keyboards that use long presses appear quicker to use
than they might actually be. In the case of the Android key-
board, long presses can be used to activate caps-lock or use
the numbers on the top row of the keyboard (see Fig. 2). These
are modeled as single taps, despite being longer in duration.
This means that the tap-optimizing model will prefer long
presses over double taps. Consider, for instance, the link ID
2345ERF. To enter the first four characters, the tap-optimizing
model will choose to enter 2-3-4-5 by long pressing the
w,e,r and t keys on the keyboard. This comes to four taps. The
alternative –and likely faster– option is to change the mode of
the keyboard and then enter the numbers, i.e., ?123-2-3-
4-5-ABC. This sequence comprises six taps and so is ig-
nored by the tap-optimizing model. To overcome some of the
limitations of the tap-optimizing model, we developed a
time-optimizing model. Using timing parameters from the
literature gave us estimates for the transitions between keys
and modes. Critically, the parameters we use are for typing
non-word strings like passwords (e.g., Gallagher and Byrne,
2015; Greene et al., 2015; Greene et al., 2014; Jakobsson and
Akavipat, 2012) that map well to our problem domain. Our
timing estimates are from Gallagher and Byrne (2015) unless
otherwise stated.

In the time-optimizing model we model double taps and long
presses individually. To model long presses we added 500 ms to
the duration of a keystroke. This value was obtained from the
Android 5.0 source code (DEFAULT_LONG_PRESS_TIMEOUT).
Double taps were modeled by adding half of the upper time limit
for a double tap (i.e., half of 300 ms) to a keystroke. This upper
limit was also obtained from the Android 5.0 source
(DOUBLE_TAP_TIMEOUT).

The Android and Windows keyboards give the option of a long
press or a double tap to activate caps-lock. With the parameters
we used, a double tap is always faster than a long press for acti-
vating caps-lock. Therefore, caps-lock was modeled as a double tap
for all three keyboards. Long presses are only incorporated into the
model for entering numbers on Android using the top row of the
QWERTY keyboard (Fig. 2). We model long presses as taking
(550 ms þ 500 ms), which is quicker than the time to change to
the number keyboard (modeled as 1500 ms).

We modeled the inter-key interval between keystrokes in the
same mode (e.g., a number followed by a number or a lowercase

Fig. 2. iOS, Android and Windows Phone keyboards with respective distributions of tap counts required in order to enter seven-character link IDs (e.g., 2345eRF or S9T7R4B)
using numbers and uppercase and lowercase characters. No link IDs required more than 12 taps on the Android keyboard. The iOS and Windows Phone keyboards required
between seven and seventeen taps.

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–5342
letter followed by a lowercase letter) as taking 550 ms. Due to the
change of keyboard mode required, entering or leaving the num-
ber mode and entering a letter takes 1500 ms. When moving be-
tween uppercase and lowercase modes, users may use caps-lock
or shift depending on which type of characters follow. Gallagher
and Byrne's (2015) data for these transitions are not broken-down
by strategy, so we must infer some of the transition times. The
time to switch between cases is shorter than the transition time
for the changing to the number mode because the keyboard layout
does not change when moving between uppercase and lowercase
keyboards. We model using the shift key and tapping the target
character as two 550 ms taps for a total of 1100 ms. Entering caps-
lock requires a further 150 ms for the double tap of the shift key
(1250 ms) to engage the mode, plus a further 550 ms to exit it. On
the iOS keyboard if caps-lock is enabled and a user changes to the
number mode, caps-lock is also removed. On Android and Win-
dows keyboards caps-lock remains turned on until it is turned off
again by a user. The models account for these idiosyncrasies and
look ahead through the target strings to minimize time costs.

The models assume perfect knowledge of the keyboard and the
keystrokes and mode transitions required to minimize typing
duration. Human performance would, of course, vary. Our model
used a bracketing-like heuristic (Brumby et al., 2007; Kieras and
Meyer, 2000), but we only consider the minimum (i.e., fastest)
bracket. This represents a particularly aggressive pruning of the
strategy space; more nuanced approaches exist (Dayan, 2014;
Howes et al., 2009; Zhang and Hornof, 2014). But our model is
intended to be indicative of the suitability of competing link ID
schema options, rather than a complete exploration of the strategy
space. Our approach is broadly consistent with several KLM-like
models that have been developed for modeling touch input (El
Batran and Dunlop, 2014; Greene et al., 2013; Li et al., 2010; Rice
and Lartigue, 2014), except that we do not specify generalizable
basic operations. Instead we focus just on the combinations of
transition times between modes and characters.
2.3.1. Results
The results for our nine-character model are very simple. The

time to enter a lowercase letter from the lowercase mode is
550 ms. Nine consecutive lowercase letters yields a model esti-
mate for 4950 ms for any permutation.

The lowercase schema again yields better performance. The
distributions of entry times for each of the three keyboards are
shown in Fig. 3. The expected time to enter a link generated using
the mixed schema is shown in Table 3. Overall the results mirror
those of the tap-optimizing model, but are even more weighted in
favor of the lowercase schema. Across all keyboards approximately
90% of seven-character mixed-case IDs are expected to be slower
to enter than nine-character lowercase IDs.

The fastest possible input is estimated to be 3850 ms for all
three keyboards. This is for the entry of seven lowercase char-
acters. This interaction is particularly fast because no mode
switches are required. These results are congruent with those of
the tap-optimizing models, which showed entering seven lower-
case characters requires the fewest taps (i.e., seven). Approxi-
mately one-in-a-thousand links generated by the seven mixed
character schema are of this variety.

2.4. Conclusions from models

The models show that link IDs from commonly used link-
shortening services have large input overheads. Depending on the
keyboard, we can expect a given bit.ly link to take between one and
three (i.e., 11–33%, see E(X), Table 2) more taps to enter than a nine-
character lowercase link. These extra taps and mode switching
translate to average entry being between 777 ms and 1938 ms (i.e.,
16–39%, see E(X), Table 3) slower than a nine-character lowercase
link. In other words, the output of existing link shortening services,
like bit.ly, are likely to require more taps and more time to enter
than a service that used solely lowercase characters, even if those
links have to be longer to maintain the size of the set of links. To
corroborate the inferences drawn from our ideal performer models,

Fig. 3. iOS, Android and Windows time distributions for the entry of seven-character link IDs (e.g., 2345eRF or S9T7R4B) using numbers and mixed-case characters. For
plotting model output was rounded and binned in 500 ms buckets.

Table 3
Mean, standard deviation and range for results of time-optimizing model. The
fastest model is entering seven consecutive lowercase letters (3850 ms). The esti-
mate for entering nine lowercase letters is 4950 ms.

Keyboard iOS Android Windows

E(X) 6888 ms 5727 ms 6868 ms
s 1289 ms 547 ms 1264 ms
Fastest 3850 ms 3850 ms 3850 ms
Slowest 12150 ms 9250 ms 11600 ms
P 44950 ms 93% 89% 93%
P o4950 ms 3% 3% 3%

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–53 43
we ran an experiment in which users typed URLs on smartphones.
3. Experiment

Conducting an experiment in which users type links on their
smartphones allowed us to investigate additional aspects of be-
havior not captured by our models. In particular, people usually
interleave their attention between the device they are typing on
and the target link they are copying. Memory limitations mean
that target information is often broken-up and copied in smaller
chunks (Howes et al., 2015; Janssen et al., 2010, 2012; Payne and
Howes, 2013). Longer strings require more chunks (Salthouse,
1986; Smith et al., 2008). It seems reasonable, therefore, to assume
that copying a longer nine-character link might require more
chunks than copying seven-character links. In practice this might
mean entering nine-character links is slower, because each chunk
requires attention to be shifted from device to target. We did not
model chunking behavior, so our models do not account for po-
tential differences in time spent interleaving as a function of
schema type.

Our models were also ideal performer models. They never
made mistakes. They were able to look ahead through the links
and treat them holistically. Because the models never erred and
always knew the optimal combination of keystrokes to enter, they
accounted poorly for the costs of switching keyboard modes.
Making mode switches involves changes of context that, for in-
stance, increase the chances of errors being made (Gallagher, 2015,
p. 62). Given these factors, it is likely that our models also un-
derestimated the costs of entering seven-character links composed
of mixed-case letters and numbers.

We ran an experiment to determine whether longer links that
are easier to enter provide a meaningful improvement in response
speed over more complex but shorter links. We also solicited
participants’ subjective experiences of entering different links. To
help us focus on the effects of link type on performance, the
experimental procedure allows us to closely examine the entry of
the seven- or nine-digit link IDs.

3.1. Gamification

Typing involves a speed-accuracy trade-off. Going quickly in-
creases the likelihood that mistakes are made. Going slowly means
spending unnecessary time on a task. A traditional laboratory
study would need to incentivize participants to type accurately
without inducing them to be unrealistically fastidious. Finding the
equilibrium that encourages participants to work quickly while
still avoiding typos can be difficult. Indeed, characterizing these
trade-offs is itself an area of research (e.g., Healy et al., 2004).

Our focus here is not on exploring speed-accuracy trade-offs.
We only wanted an effective way of encouraging participants to
reach a satisfactory equilibrium. The study we present here places
participants in a competitive situation involving points and lea-
derboards (i.e., gamification). By making the game competitive,
participants are motivated to try to work quickly. High penalties
for errors moderate this impulse, though; there is a balance to be
struck. This encourages participants to find an equilibrium in the
speed-accuracy trade-off that does not put too much emphasis on
either (Trommershäuser et al., 2005).

3.2. Method

3.2.1. Participants
Nineteen participants (nine male) took part in the study. Par-

ticipants’ ages ranged between 23 and 42 (M¼30 years, SD¼5
years). Participants were recruited opportunistically from staff at a
research laboratory. We were not concerned about participant
non-naïvety: knowing the aims of the study would not have im-
proved participants’ performance, which is largely a function of
individuals’ pre-existing typing ability.

Data were collected over a six-week period. Over this period
points were accumulated in each round of the study. A round
consisted of the display of one short link that was entered by two
or more participants. Scores were awarded for response speed and
accuracy. Cash prizes were awarded to the participants with the
six highest cumulative scores. Snacks were also made available
during each session to encourage participation.

3.2.2. Design
The experiment had one within-subjects factor, link type. There

were two conditions, mixed and lowercase. In the mixed condition
participants were asked to enter seven-character links containing
numbers and mixed-case letters. In the lowercase condition par-
ticipants were asked to enter nine-character links containing only
lowercase characters.

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–5344
There were two dependent variables. The first was response
speed. We measured the time from the target link being shown on
the television to the moment that the request from participants’
phones got to our server. The second measure was response ac-
curacy. All requests made to the server after the target link ap-
peared were recorded as responses, whether they matched the
target link or not.

3.2.3. Materials
The experimental procedure was inspired by classroom re-

sponse systems like Kahoot! (Wang, 2015; Wang et al., 2008).
These platforms allow several people to participate simultaneously
while competing in a lighthearted way that maintains attention.

Participants brought their own phone. The only requirements
were that it had a touchscreen keyboard and a browser. Device
platform, for example Android or iOS, was recorded. The browser
used in the study was also recorded.

As part of the setup of the experiment, we asked participants to
tap the address bar in their preferred browser and provide a
screenshot of the keyboard that popped up. The screenshot was
uploaded as part of the consent process. The experimenter was on
hand to aid participants who did not know how to create
screenshots on their device.

Target links in the study were entered directly into browser
address bars. We chose this approach over using a field in a form
because it retains important features. For instance, address bars
can invoke browser-specific custom keyboards that are not avail-
able in forms. Modern mobile browsers also display potentially
distracting autocomplete suggestions when typing URLs. We
wanted to emulate the process of opening a blank tab and entering
a short link –say, during a lecture– as closely as possible within
constraints of an experimental setting.

Three different displays were used in the study. The first was
private and gave the experimenter control over the study. The
second was a large wall-mounted television (see Fig. 4). This
showed the target link during trials and scores between trials. The
third kind of output was sent to participants’ devices when they
navigated to the home page of the experiment. This on-device
output controlled participants’ progress through the study,
showed their scores for each round, and allowed for links to be
rated.

After entering each link, participants rated it on a slider. The
slider handle started in the middle of the screen (50). The left side
was labelled Easy (0) and the right side labelled Hard (100). Only
the position of the handle –and not its value– was visible. Fig. 5
illustrates the rating interface.

Links were pseudo–randomly generated for the mixed condi-
tion. The objective was to evenly sample simple link IDs (e.g.,
utisbnd) and complex links (e.g., E9b5T3e). To do this we used the
tap-based iOS model to generate links that would need between
Fig. 4. Location of experiment. Participation was in ad-h
seven taps (i.e., simple) and seventeen taps (i.e. complex). When a
mixed trial was requested the condition allocator examined all
mixed rounds. It computed the complexity (7–17) that had ap-
peared the fewest times. It then produced a link of that com-
plexity. This approach generated analyzable numbers of trials for
all 11 complexities. If we had generated mixed links at random,
links with uncommon complexities (e.g., 7, 17; see Fig. 2) would
have been unlikely to appear in the study.

For the lowercase condition, links could only have one com-
plexity: nine taps. Links for the lowercase condition were thus
generated randomly. Whether a round was lowercase or mixed was
determined by counting which type had been run in the fewest
rounds. That type was run next.

The speed and accuracy of participants’ responses were used to
calculate scores for each round. If participants entered the link
incorrectly they scored zero for the round. The first participant to
correctly enter the link scored 1000 for the round. Other partici-
pants started at 900 points and had one point deducted for every
20 ms they were behind the fastest player on that round. There
was a floor for correct answers of 100 points.

3.2.4. Procedure
Participation was in ad-hoc groups of 2-7. Groups were formed

opportunistically at short notice. Participants sat in the testing
room with a view of the screen (see Fig. 4).

First-time participants were given an introduction, gave con-
sent and entered their demographic information. Participants
picked a username of their choice. They were told that it would be
visible to others. A cookie was stored on the participant's device;
returning participants’ details were loaded automatically. Chan-
ging devices did not disqualify participants, but data obtained after
a change of device were discarded from analysis. If a participant
deleted the cookies on their device they would be sent back to the
sign-up page. The need to retain cookies for the duration of the
study was explained to participants. No participants deleted the
cookies used by the task during the course of the study.

Before each round, a button appeared on each participant's
phone that opened a blank browser tab. Once participants were
ready, a link appeared on the large television. Participants had to
type this link into their browsers. After entering the link, the blank
tab closed and participants were informed whether they had en-
tered the link correctly. They were also given a score. This in-
formation was communicated in the tab still open on their device.

Once all participants in a round had entered the link, the target
link being displayed on the television was replaced with a lea-
derboard. This displayed all participants’ scores from the round
just completed along with cumulative scores for the whole ses-
sion. Sessions consistent of multiple rounds and ran until one
participant chose to leave.

Prior to target links appearing on the television, participants
oc groups. Links were shown on a television screen.

Fig. 5. The rating interface. Participants were shown their score and asked to rate
how hard or easy they thought the link was to enter. The slider's handle always
started in the center of the bar.

Fig. 6. Response times for all trials, correct and incorrect, by link type (lowercase vs
mixed).

Table 4
Linear mixed-effect modeling results. Parameters: T ¼ Time, C¼Complexity,
P¼Participant, D¼Device. Ds are AIC-corrected log-likelihood ratios. χ2 and p are
from the comparison of the null and alternative models and provided for reference.

Effect H0Model HaModel DAIC χ2 p

Complexity �
Device

T�(1þC|P)þ
CþD

T�(1þC|P)þ
CþDþCnD

�2.9 0.01 .94

Complexity T�(1þC|P)þD T�(1þC|P)þCþD 34.1 25.6 o .001
Device T�(1þC|P)þC T�(1þC|P)þCþD 4.4 5.0 .02

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–53 45
were asked to enter the first part of the domain (i.e., fbr.me/) into
the address bar of their browser. This gave an additional degree of
control to the experiment by limiting the scope for individual
differences in strategies. For example, some participants may have
tried to enter the whole link when it appeared, but other partici-
pants may have prepared for the appearance of the target link by
typing or copy-and-pasting the static fbr.me/ part (see Charman
and Howes, 2003). This approach also had the advantage of al-
lowing us to make direct comparisons between the models and
the empirical data. Removing the static parts of the links made the
differences between the most and least complex link IDs more
salient in the results.

3.3. Results

3.3.1. Participation
Nineteen people participated in the study. A visual inspection

of keyboard screenshots revealed three participants using non-
English keyboard layouts such as QWERTZ or using keyboards
containing non-English characters on the default mode (e.g., Ø).
One participant used a custom keyboard with numbers on an extra
line above the QWERTY keyboard. As it was our intention that
participants use the keyboard they were most familiar with, the
use of ‘non-standard’ keyboards did not disqualify participants
from the study or inclusion in subsequent analyses. One partici-
pant changed devices during the study, but continued to partici-
pate. All data obtained after they switched devices were discarded.

Twenty-nine sessions were run. Sessions comprised 2-7 parti-
cipants with a mean and median of four (SD¼1). Sessions lasted
1-24 rounds with a mean of seven rounds and a median of six
(SD¼5). Each participant completed 4-148 rounds, with a mean of
44 and median of 31 rounds (SD¼41). Across the whole study, a
total of 828 individual trials were completed. Participants took
part in 1–16 sessions. Differences in degrees of participation are
accounted for in our analyses of data. The mean and median
number of sessions completed was six (SD¼4). Six participants
were Android users and contributed 337 rounds (40%). The rest of
the participants used iOS.

3.3.2. General performance and outliers
Participants submitted an incorrect link on 111 of the trials

(�13%). Across all 717 correctly completed trials, the mean re-
sponse time was 8407 ms (SD¼3885 ms). The distribution of
correct response times is illustrated in Fig. 6. Two trials were af-
fected by technical issues with participants’ devices that extended
their duration (to 55-s and 63-s, respectively). These trials were
labelled as outliers and were discarded from all analyses that ap-
pear from this point onward.

3.3.3. Effect of link complexity on performance
Our computational modeling showed that mixed-case links

require varying numbers of mode switches –and therefore taps– to
enter. Some links have low complexity and are simple to enter (e.
g., lqexieb requires seven taps). Others are more complex and re-
quire many mode switches (e.g., S9T7R4B requires seventeen taps
on an iOS keyboard). As part of the mixed condition, this experi-
ment presented links with complexities of 7–17. This range was a
prediction of our ideal performer model typing on the iOS key-
board. We wanted to confirm that the links that our model pre-
dicted would require more taps actually took participants longer
to enter.

We took a linear mixed effects modeling (LMEM) approach. We
used the response times from the mixed condition as the outcome
measure. (Recall the lowercase condition has no variations in
complexity.) We included complexity and device-type as fixed ef-
fects and participant-id as a random effect. The model accounted
for the possibility that participants’ performance may have varied
differentially with complexity of the links presented to them (see
Barr et al., 2013): poor typists might struggle more with complex
links. We included device type as a fixed effect because our
modeling suggested Android keyboards might be quicker, parti-
cularly for links with higher complexities (see Fig. 2).

The results of our modeling (Table 4) yielded no evidence of an
interaction between complexity and device type, so we focused on
the main effects. There was strong support for an effect of com-
plexity on response time and for an effect of device on response
time. The statistical modeling indicated two things. The first was
that link complexity (as determined by estimated tap counts) was
an excellent predictor of entry time (see Fig. 7). Tap-based models
are quicker and easier to derive than time-based models, so this
finding is of practical significance. The second was that keyboard
shortcuts might be largely unused. The Android keyboard offers a
few tap-saving shortcuts. Our modeling suggested that the An-
droid keyboard ought to be quicker to type on, particularly as links

0

5000

10000

15000

20000

25000

7 8 9 10 11 12 13 14 15 16 17
Complexity (taps)

Ti
m

e
to

 e
nt

er
 (m

s)
Device

iOS
Android

Fig. 7. Response time for data collected in the mixed condition. Trend is for the
effect of complexity.

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–5346
became more complex. In the experimental results there was a
main effect of device on response speed but, critically, no inter-
action. This suggests that participants using Android were just
naturally faster responders: the lack of an interaction implies that
there was no particular benefit of using Android keyboards for
more complex links. If participants were using shortcuts on the
Android keyboard, we would expect their advantage over iOS
users to grow with increasing link complexity. We did not observe
such an interaction effect (see Fig. 7).

3.3.4. Effect of link schema on response speed
More complex mixed links took longer to enter. We knew from

our modeling (Table 2) that most mixed links needed more taps to
enter than longer lowercase links. On an iOS keyboard, a tiny
minority (1%) of mixed links were less complex than lowercase
links. But which was faster in our experiment? Our modeling
suggested that nine-character lowercase links would be faster to
enter.

We could not directly compare response times from the mixed
condition with those from the lowercase condition because com-
plexities in the mixed condition were sampled uniformly: a link of
complexity seven was as likely to be generated as a link of com-
plexity fourteen. The underlying distribution is, however, not
uniform. As Fig. 2 shows, some complexities are far more likely
than others. If we had instead sampled from the underlying dis-
tribution, our 828 trials would likely only have had one trial with a
complexity of seven and no trials at all of complexity seventeen.

To make a fair comparison between the mixed and lowercase
conditions, the data had to reflect the underlying distribution of
complexities. There were two options. One was to use a sub-
sampling (or resampling) approach, the other was to use inter-
polation to estimate data that fits the underlying distribution.
Given the large differences between the sampling and underlying
distributions, a vast amount of interpolated data would be re-
quired. We therefore took the conservative approach of using
subsampling.

The first step of our analytic procedure was to compute mean
response times for correct trials in the lowercase condition for each
participant. Subsampling is only required on data from the mixed
condition. To perform the subsampling we used the discrete
probability distribution for iOS devices illustrated in Fig. 2. The
most frequent complexity in the underlying (iOS) distribution is
eleven: all 27 responses of complexity eleven were retained. For
the other complexities, responses were randomly sampled in
proportion to the underlying distribution. For instance, no samples
were drawn for complexities 7, 16 or 17. Eight samples were drawn
with complexities 9 and 14. These subsamples were then grouped
by participant and mean response times were calculated.
The result of our resampling was two sets of data: mean response
times for lowercase trials and subsampled mean response times for
mixed trials. Due to random sampling, not all participants had data
for mixed trials. Four participants were discarded for this reason,
leaving 15 participants. Mean response time for lowercase links was
8600 ms (SD¼1950 ms). Mean response time for mixed links was
9792 ms (SD¼2700 ms). A paired t-test was used to determine
whether average response times differed between the two condi-
tions. It showed that participants were significantly faster entering
lowercase links than they were mixed links, t(14)¼2.88, p¼ .012,
d¼0.75 95% CI [306, 2076]. This result indicates that given the likely
output of lowercase andmixed shortening schemas, we would expect
lowercase links to be faster to enter. This, despite lowercase links
containing two characters more than the mixed links.

The results of the experiment differed considerably from the
predications of the time-based model. Time to enter lowercase links
was estimated by the model to be 4950 ms. Mean entry time for
lowercase links in the empirical study was 8600 ms. Time to enter
mixed links was estimated between 5727 ms and 6888 ms, but in
practice it was 9792 ms. One possible reason for the discrepancy
might be the model's failure to account for the time participants
spent glancing between the television and their devices. Another
possible factor in the differences might have been correction be-
havior: the model never made typing errors, but participants often
reported making typos that were then corrected before submission.
(Corrected errors were often salient to the experimenter by a par-
ticularly slow response from a participant.) These correction delays
would have increased average response time (Banovic et al., 2013).
Although the time-based model was inaccurate in predicting ab-
solute time required to type links, both the tap- and time-based
models were accurate in their predictions about the relative dif-
ferences between conditions and complexities.

3.3.5. Effect of link schema on accuracy
The results show that longer lowercase links are faster to enter

than shorter mixed-case links. Does this increase in response
speed come at the cost of accuracy? No. A response was counted as
an error when the URL a participant requested did not exactly (i.e.,
including case) match the one that they were supposed to enter.
Errors were made on a total of 111 trials, for an error rate of 13%. Of
the 412 lowercase trials, 54 (13%) were errors. Of the 416 mixed
trials, 57 were errors (14%). Put simply, there was no effect of link
type (mixed vs lowercase) on error rate.

3.3.6. Error types and magnitudes
Next, we considered the magnitude of errors. For incorrect

trials, how far were participants from entering the correct link?
We computed how many edits would be required to transform the
entered –incorrect– string into the correct string (e.g., hs4rfgS is
two edits from hr4rffS). A case-sensitive Damerau-Levenshtein
(DL) distance was used to compute the number of edits between
target links to entered links. The closer to the target input the
entered link was, the smaller the DL distance.

Of the 111 errors made, 100 (90%) had a DL distance of one. This
means that a single insertion, deletion, transposition, or sub-
stitution would have corrected the entry. The highest DL distance
was six, and was caused by inadvertent activation of caps-lock on
an iOS keyboard. The low DL distances are indicative of small slips
in typing (e.g., hitting adjacent keys) and suggest a high degree of
conformity with the demands of the experiment.

3.3.7. Subjective rating of difficulty
After each trial we asked participants to rate, using a slider,

whether they found the link hard or easy to enter. Did participants’
subjective experience of the different link types match their per-
formance? Were less complex links perceived as being easier to

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–53 47
enter?
Participants’ scores for a round were visible when they rated.

Subjectively harder links may have taken longer to enter, or par-
ticipants may have been influenced by their score and rated
rounds where they scored highly as being easier. Linear mixed
modeling suggested that after accounting for the random effects of
participant-id and round-score (i.e., after accounting for partici-
pants’ individual propensity to have rated higher-scoring re-
sponses as easier), the complexity of mixed links remains an ex-
cellent predictor of reported link difficulty (DAIC¼106.5, χ2¼75.8,
Fig. 8. Distribution of link ID widths in pixels for nine common fonts. With variable-wi
seven-character mixed-case IDs. Fonts are plotted from most space efficient (top) to lea
po .001). Participants found it harder to enter shorter, but more
complex links. Using lowercase links over mixed links enables
faster input and is likely to be less frustrating for users too.
4. Visual appearance

So far we have considered the practical advantages of typing
longer lowercase links over shorter mixed-case links. Despite
having more characters, longer lowercase links are objectively
dth fonts, the average increase in width of nine-character lowercase ID is 11% over
st space efficient (bottom).

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–5348
quicker and subjectively easier to enter. But the additional length
of nine-character link IDs has implications for the rendering of
links on screens. Nine-character lowercase link ID have two
characters more than seven-character mixed-case IDs. This is a
29% increase in length.

One might imagine that links with fewer characters might be
easier to fit into tight spaces on printed documents (see Fig. 1) or
on small screens. This intuition is not entirely accurate. Even
though the two additional characters in nine-character links re-
present a 29% increase over seven characters, far less physical
space is required. This is because most commonly used fonts are
‘variable width’. This means that each glyph (e.g., e, #, L, 9) has a
different width. A capital letter is typically wider than a lowercase
letter. Characters like ‘l’ take up less horizontal space than char-
acters like ‘m’. Most variable-width fonts also make use of kerning.
This means the gap between two consecutive characters is not
fixed and can vary.

How much of an effect does kerning and glyph-width have on
the physical size of link IDs when they are rendered? We again
turned to simulation to explore this question. We selected eight
common variable-width fonts (see Fig. 8). For each of these fonts
we looked at three types of link ID: seven- and nine-character
lowercase link IDs and seven-character mixed-case link IDs. For
each link ID type we generated 106 link IDs for each font and
rendered them in a browser. We then measured the width of the
link ID in pixels as they were rendered by a browser.

Fig. 8 plots the distribution of widths for each of the three link
ID types for each of the fonts. Two things should be clear from
these plots. The first is that some fonts (e.g., Garamond) are more
space efficient than others (e.g., Tahoma). The second is that the
distributions are highly variable. Local maxima and minima appear
for some fonts, but not for others. The idiosyncratic variation in
the distributions is the result of differences in kerning and glyph-
width for each font.

Our most salient finding was that across the eight variable-
width fonts sampled, nine-character lowercase link IDs are, on
average, only 11% wider than seven-character mixed-case links
(see Table 5). This is much less than the 29% increase one might
expect if only character counts were considered (i.e., seven char-
acters versus nine characters).

Our analysis shows that nine-character lowercase links are only
marginally wider than seven-character mixed-case links. Times
New Roman is only 6% wider, while Arial and Helvetica are 9%
wider. For most fonts, little extra space is needed for nine-char-
acter lowercase links compared to seven-character mixed-case
links. These results show that one of the potential drawbacks of
longer lowercase links –the fact they take up more space– is not as
serious as it might seem at first glance. This lends further support
Table 5
Mean widths of link IDs in pixels for seven- and nine-character lowercase link IDs
and seven-character mixed-case link IDs. The Difference column indicates the dif-
ference in rendered width between nine-character lowercase and seven-character
mixed-case links. All measures are in pixels and taken at 12 pt.

Font Seven-char-
acter
lowercase

Seven-char-
acter mixed
case

Nine-char-
acter
lowercase

Difference (%)

Garamond 49 60 63 5
Times New
Roman

51 62 66 6

Arial 55 65 71 9
Helvetica 55 65 71 9
Georgia 56 65 72 11
Palatino 57 65 74 14
Tahoma 55 61 70 15
Verdana 63 70 81 16
to our conclusion that nine-character lowercase links may be
better in practice then seven-character mixed-case links.
5. Conclusion: Link shortening

Using computational modeling and empirical investigation we
have shown that slightly longer lowercase links afford a sufficient
number of possible link IDs whilst being faster to enter than
shorter links with mixed characters. We compared seven-char-
acter mixed links, like those generated from services like bit.ly
with nine-character lowercase links. Our nine-character links were
faster to enter and our participants’ subjective reports of difficulty
seem to suggest a preference for longer lowercase links. It is im-
portant to note, however, that our method of obtaining subjective
ratings, with ratings collected after scores were allocated, means
that our evidence for this preference is indicative not definitive.

On the basis of these findings, we recommend that link
shortening services should switch to using lowercase links, or, at
least, should offer a checkbox that would allow users to generate
mobile-friendly links using the schema we have outlined in this
paper. There are two arguments against using lowercase links.
First, that moving from seven to nine characters represents a 29%
increase in link ID length. Perhaps in character constrained set-
tings this would be problem. Two characters is 1.5% of the total
space in a tweet. However, in practice short links rarely appear
verbatim. Twitter, for instance, makes all links take-up 23 char-
acters of a tweet, even if the original link was shorter. Soon,
Twitter will not count certain kinds of links as part of the character
count at all2. Using as few characters as possible may have little
practical benefit in digital scenarios. Second, moving from seven-
character to nine-character link IDs also has a smaller effect on the
visual display of links than one might expect. Using computational
simulations, we have shown that the 29% increase in character
count only translates to a 5-16% increase in link ID pixel width for
common variable-width fonts. This marginal increase suggests
that when printed or displayed on screens, nine-character lower-
case IDs will take up little extra room.
6. Generalizability of approach

Up until now we have focused on computationally and ex-
perimentally exploring improvements to link shortening services.
The claims we make in this work are primarily about this parti-
cular application domain. Our approach is flexible, though: it can
also be used for evaluating the design of unique identifiers in a
variety of scenarios. The only constraint is that the schema for
identifiers is systematic and well defined (i.e., it has a known al-
phabet and length).

In this section we use the simulations described previously to
model two other application domains where unique identifiers are
likely to be typed into mobile devices with small keyboards. We
outline the current schema for unique identifiers in each scenario,
report modeling results and evaluate the suitability of current ID
schemas given the results of the simulations. These additional
application domains serve to illustrate that transcription of unique
identifiers is a common use case and that their design can be
approached systemically.

6.1. Bus-stop identifiers

Transport for London (TfL), the organization that runs buses in
2 https://blog.twitter.com/2016/doing-more-with-140-characters.

https://blog.twitter.com/2016/doing-more-with-140-characters

Fig. 9. Unique identifiers on Transport for London bus-stops.

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–53 49
London, has five-digit numeric codes on many of their bus-stops
(see Fig. 9). Assuming that all ten digits (0–9) are used in these
codes, there are a total of 105 unique identifiers available for bus
stations. If the scheme omits the zero character (0 and O are easily
confused), TfL have 59,049 possible unique identifiers for their
bus-stops. In practice, TfL control 19,500 bus-stops. Of these, 2500
are labelled with these five-digit identifiers3.

These IDs are intended to be entered on mobile devices (see
Fig. 9, leftmost panel). Are five-digit numeric codes the best
choice? Based on the models we developed for the analysis of
short links, these codes take five long presses to enter on Android
keyboards. They take six taps to enter on iOS and Windows key-
boards because they require an initial mode switch that requires
an additional tap.

Three lowercase letters (263) would provide a sufficient set size
to provide unique identifiers to each of the 2500 bus-stops that
currently have codes. Even dropping out potentially confused
characters (o, i, l, s), four lowercase characters would yield almost
a quarter of a million (224) unique identifiers for TfL to use. Pre-
sumably this would be a sufficient quantity to keep-up with TfL's
bus-stop building for the foreseeable future. Entering four lower-
case characters requires only four taps on all three keyboards. This
is a 30% saving for iOS and Windows phones. On Android phones
five long presses becomes four quick taps.

Could even fewer taps be required by using a combination of
uppercase and lowercase letters together with numbers? We
modeled the number of taps required to enter three-character IDs
made up of mixed-case letters and numbers (excluding o, i, l, s; 0,
1, 5; O,I,L,S). The results of our modeling, illustrated in Fig. 10 and
Table 6, show that reducing the length of the identifier but in-
creasing the number of possible characters is not a good trade-off.
On the iOS keyboard, for example, 65% of three character codes
made up of numbers and mixed-case letters would require more
than five taps to enter. Even using the Android keyboard, three
character IDs with numbers and mixed-case letters will, at best,
not outperform four lowercase letters. In conclusion, for optimal
ease of entry, TfL bus-stops should be identified with four-char-
acter strings made up of lowercase letters.

6.2. ‘Win codes’

A more complex example of a unique identifier is ‘win codes’.
These are IDs used in ‘buy and win’ promotions. They typically
3 https://tfl.gov.uk/corporate/about-tfl/what-we-do/buses.
appear on bottles of fizzy drinks or packets of snacks. The codes
are typed into apps or web-pages and entrants are told whether
they have won a prize. One of the key design constraints for these
codes is maintaining a sufficiently large set of possible codes that
guessing is not worthwhile. The codes in Fig. 11 are ten characters
long and formed of uppercase letters and numbers. Assuming that
easily confused characters are omitted (I,L,1,O,0,S,5), the total set
size afforded by this scheme is 2910 (over 400 trillion).

Using the same computational models described previously, we
can estimate how many taps these codes will take to enter on
three mobile keyboards. The modeling shows that these ten-
character codes take between 11 and 25 taps, depending on the
keyboards (see Fig. 12 and Table 7).

To prevent guessing, a large set of possible permutations is
required for this application. Including lowercase letters would
increase the possible set size for a given number of characters.
Adding lowercase letters (excluding l, i, o and s) gives a possible
set size of 5110. This is a vastly larger set than just using capital
letters and numbers. Indeed, we can maintain a set several orders
of magnitude larger if one character is dropped (519c2910). In-
troducing another case means more potential for mode switching,
however. Does dropping a character while adding more com-
plexity yield a greater or lesser tap requirement, on average? In-
troducing the lowercase letter reduced the number of taps re-
quired across all keyboards compared to a code containing only
uppercase letters and numbers (see Fig. 13 and c.f., Tables 7 and 8).

An alternative strategy would be to just print the win codes
entirely in lowercase letters. Omitting potentially confused char-
acters (o,i,l,s), a string of eleven lowercase characters would ex-
ceed (221142910) the possible set size of mixed numbers and
capital letters (again, omitting easily confused glyphs). The ex-
pected number of taps to enter eleven lowercase letters is eleven
on all keyboards. On average, a win code made up of eleven
lowercase characters can be entered with fewer taps than one
made up of nine mixed-case letters and numbers (see bottom two
rows, Table 8) or one made up of uppercase letters and numbers
(see bottom two rows, Table 7).

The findings of the two examples modeled in this section re-
plicate the findings of our analysis of short links: even slightly
longer lowercase IDs maintain the size of the set of possible inputs
while requiring few taps (and therefore less time) to enter. On
mobile devices mode switching is onerous. The design of IDs for
entry on mobile devices should account for this and use lower-
case-only IDs.

https://tfl.gov.uk/corporate/about-tfl/what-we-do/buses

iOS

0%

20%

40%

60%

3 5 7
Total taps required

P
ro

ba
bi

lit
y

Android

0%

20%

40%

60%

3 5 7
Total taps required

P
ro

ba
bi

lit
y

Windows

0%

20%

40%

60%

3 5 7
Total taps required

P
ro

ba
bi

lit
y

Fig. 10. Tap model results for three-character bus-stop identifiers using mixed-case letters and numbers.

Table 6
Mean, standard deviation, range and lowercase model comparisons for results of
tap-optimizing model. Four-character lowercase stop identifiers require four taps to
enter.

iOS Android Windows

E(X) of taps 5 4 5
s of taps 1 1 1
Range of taps 3-7 3-5 3-7
P 44 taps 65% 19% 49%
P o4 taps 7% 18% 7%

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–5350
7. General discussion

We have developed a systematic, quantified understanding of a
specific problem: the design of mobile-friendly unique identifiers.
But our results also apply to the design of other text-based ser-
vices. There has been a trend toward bespoke and adaptive key-
boards (e.g., Dunlop and Levine, 2012; Karrenbauer and Oulasvirta,
2014; Leiva et al., 2015; Wiseman et al., 2013). More often than
not, though, input devices are a fixed constraint in the design of a
service. Most users are typing on the keyboard that came with
their phone. Those keyboards have advantages, limitations and
quirks. The mode-switching that most touchscreen keyboards re-
quire to reach numbers and capital letters is at the root of design
improvements we propose in this paper. When designing services,
it is vital to be aware of the fixed constraints of a system and to
then focus on the aspects of a service's design that can be con-
trolled. Making changes to input data in this way is a cheap, quick
and easy way to improve user experience.
Fig. 11. Example win codes on bottle c
Our data suggest that tap-based models are entirely sufficient
for making practically useful predictions about text-entry perfor-
mance on touchscreen keyboards. For exploring the design space
for text-entry tasks like ours, a tap-based model is far easier to
derive than a time-based model: parameters can be obtained by
any individual with a touchscreen phone. This makes them ac-
cessible to engineers. Our methods are of particular relevance to
finite-state systems like shortening services, confirmation codes or
bus-stop signs. Settings where likely values are known a priori, for
example in medicine (Wiseman et al., 2013), would also benefit
from systematic exploration in the manner we have described in
this paper.

7.1. Limitations

Participants typed URLs into their preferred browser with the
keyboard that they normally used. No software was installed. This
meant certain measures were unavailable. For instance, without
direct access to our participants’ keyboards our study could not
record inter-keystroke interval (IKI) data. This paper has focused
on comparing two design solutions, so the omission of IKI data
does not compromise the conclusions we draw from our results. It
does, however, limit the degree to which we are able to explore
transcription strategies including chunking, interleaving, checking
and correcting. Each of these factors is important in determining
how quickly people can type characters strings (Brumby et al.,
2007; Janssen et al., 2010; Smith et al., 2008). Furthermore, our
timing data may have been affected by factors outside our control,
such as network latency. Caution should therefore be exercised
when considering the timing data in absolute terms.
aps. Source: http://bit.ly/1WbY7LI.

http://bit.ly/1WbY7LI

iOS

0%

20%

40%

60%

80%

9 11 13 15 17 19 21 23 25
Total taps required

P
ro

ba
bi

lit
y

Android

0%

20%

40%

60%

80%

9 11 13 15 17 19 21 23 25
Total taps required

P
ro

ba
bi

lit
y

Windows

0%

20%

40%

60%

80%

9 11 13 15 17 19 21 23 25
Total taps required

P
ro

ba
bi

lit
y

Fig. 12. Tap distribution for ten-character ‘win codes’. Based on uppercase letters and numbers, excluding potentially confused characters (O,I,L,S,0,1,5).

Table 7
Mean, standard deviation, range and lowercase model comparisons for results of
tap-optimizing model. Eleven-character lowercase win codes require eleven taps to
enter.

iOS Android Windows

E(X) of taps 17 11 15
s of taps 3 1 2
Range of taps 12–25 11–15 11–25
P 411 taps 100% 24% 97%
P o11 taps 0% 0% 0%

Table 8
Mean, standard deviation, range and lowercase model comparisons for results of
tap-optimizing model. Eleven-character lowercase win codes require eleven taps to
enter.

iOS Android Windows

E(X) of taps 14 12 14
s of taps 3 1 2
Range of taps 9–22 9–15 9–22
P 411 taps 87% 71% 96%
P o11 taps 8% 6% o1%

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–53 51
The sample for our experiment was not broadly representative
of the general population. Our sample consisted of technically
proficient staff and students at a HCI research laboratory. Although
the biases inherent in our sample might limit broad general-
izability, it is likely that our particular sample provided the most
conservative test of our design recommendations. As proficient
users of mobile technology, our participants are likely to have been
more experienced with making keyboard mode switches on their
devices. As efficient mode switching is a practiced behavior,
among less experienced users mixed-case links would likely be
even slower to input than our proposed nine-character lowercase
design.

Our simulations of visual appearance only considered the size
of the representations, not their legibility. How easy link IDs are to
discern when printed or projected is an important consideration
for our target use case. The fonts we used in our simulations are
some of the most commonly used in operating systems and online,
so we are confident that the results of our simulations are of
practical relevance. Font legibility should be considered alongside
chunking in any work looking in detail at the perceptual and
iOS

0%

20%

40%

60%

80%

9 11 13 15 17 19 21 23 25
Total taps required

P
ro

ba
bi

lit
y

0%

20%

40%

60%

80%

9 11 13 1
Total t

P
ro

ba
bi

lit
y

Fig. 13. Tap distribution for nine-character ‘win codes’ if lowercas
cognitive components of link transcription.
We also elected not to explore the wider design space in this

work. Other approaches to making links more digestible might
prove to be quicker or more meaningful. Some services (e.g.,
what3words) have used strings of words (e.g., http://map.what3
words.com/research.hard.work). Links on what3words are not
meaningful, but these approaches might be adapted to trade set
size and brevity for meaning and readability. This design problem
offers ample space for exploration; conceptually, computationally
and empirically.

Finally, in this paper we have focused solely on short links as a
means of advertising resources to users. Other mechanisms, such
as QR codes (a form of two dimensional barcodes) and NFC tags
(which use radio induction to wirelessly communicate information
at close range), also offer ways of advertising resources. Each
technology has advantages and limitations. Short links can be
entered on any phone with a browser. NFC tags yield information
wirelessly without user input but the technology to read the tags
is not yet ubiquitous on mobile devices. QR codes can store sig-
nificant information and can be read by any device with a camera.
Android

5 17 19 21 23 25
aps required

Windows

0%

20%

40%

60%

80%

9 11 13 15 17 19 21 23 25
Total taps required

P
ro

ba
bi

lit
y

e letters are included along with numbers and capital letters.

http://map.what3words.com/research.hard.work
http://map.what3words.com/research.hard.work

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–5352
However, standalone applications are often required to read QR
codes and are limited by the quality of the camera being used to
read them (e.g., scanning might be difficult in low light). Each
technology has advantages and limitations. A complete empirical
assessment of the relative merits of each technology could be
made in future work.
Acknowledgements

This work was supported by the UK Engineering and Physical
Sciences Research Council grant EP/L504889/1. We would like
thank Keith Vertanen for his efficient handling of this paper. We
would like to also thank Mike Byrne and two anonymous re-
viewers for their insights and helpful suggestions. We would like
to acknowledge Frederik Brudy for the generous loan of his fbr.me
domain. Finally, we would like to thank our participants for
agreeing to give up their time to help us.
References

Banovic, N., Grossman, T., Fitzmaurice, G., 2013. The effect of time-based cost of
error in target-directed pointing tasks. In: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems. ACM, New York, NY, USA,
pp. 1373–1382. 〈http://doi.org/10.1145/2470654.2466181〉.

Barr, D.J., Levy, R., Scheepers, C., Tily, H.J., 2013. Random effects structure for con-
firmatory hypothesis testing: Keep it maximal. J. Mem. Lang. 68 (3), 255–278.
http://dx.doi.org/10.1016/j.jml.2012.11.001.

Berners-Lee, T., Fielding, R. T., Masinter, L., 2005. Uniform Resource Identifier (URI):
Generic Syntax. 〈http://doi.org/10.17487/RFC3986〉.

Brumby, D. P., Howes, A., Salvucci, D. D., 2007. A cognitive constraint model of dual-
task trade-offs in a highly dynamic driving task. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, New York, NY, USA.
pp. 233–242. 〈http://doi.org/10.1145/1240624.1240664〉.

Charman, S.C., Howes, A., 2003. The adaptive user: an investigation into the cog-
nitive and task constraints on the generation of new methods. J. Exp. Psychol.:
Appl. 9 (4), 236–248. http://dx.doi.org/10.1037/1076-898X.9.4.236.

Cheng, L.-P., Liang, H.-S., Wu, C.-Y., Chen, M. Y., 2013. iGrasp: grasp-based adaptive
keyboard for mobile devices. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems. ACM. New York, NY, USA. pp. 3037–3046.
〈http://doi.org/10.1145/2470654.2481422〉.

Chhabra, S., Aggarwal, A., Benevenuto, F., Kumaraguru, P., 2011. Phi.Sh/$oCiaL: the
phishing landscape through short URLs. In: Proceedings of the 8th Annual
Collaboration, Electronic Messaging, Anti-Abuse and Spam Conference. ACM.
New York, NY, USA. pp. 92–101. 〈http://doi.org/10.1145/2030376.2030387〉.

Dayan, P., 2014. Rationalizable Irrationalities of Choice. Top Cognit. Sci. 6 (2),
204–228. http://dx.doi.org/10.1111/tops.12082.

Dunlop, M., Levine, J. 2012. Multidimensional pareto optimization of touchscreen
keyboards for speed, familiarity and improved spell checking. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM, New
York, NY, USA. pp. 2669–2678. 〈http://doi.org/10.1145/2207676.2208659〉.

El Batran, K., Dunlop, M. D., 2014. Enhancing KLM (Keystroke-level Model) to Fit
Touch Screen Mobile Devices. In: Proceedings of the 16th International Con-
ference on Human-computer Interaction with Mobile Devices & Services. ACM.,
New York, NY, USA. pp. 283–286)〈http://doi.org/10.1145/2628363.2628385〉.

Gallagher, M.A., 2015. Modeling Password Entry on Mobile Devices: Please Check
Your Password and Try Again (Thesis). Rice University, Houston, Texas, Re-
trieved from https://scholarship.rice.edu/handle/1911/87877.

Gallagher, M.A., Byrne, M.D., 2015. Modeling Password Entry on a Mobile Device. In:
Proceedings of the International Conference on Cognitive Modeling. pp. 45–50.
(Retrieved from) 〈http://www.iccm2015.org/proceedings/papers/0009/pa
per0009.pdf〉.

Gray, W.D., Sims, C.R., Fu, W.-T., Schoelles, M.J., 2006. The Soft Constraints Hy-
pothesis: A Rational Analysis Approach to Resource Allocation for Interactive
Behavior. Psychol. Rev. 113 (3), 461–482. http://dx.doi.org/10.1037/
0033-295X.113.3.461.

Greene, K.K., Franklin, J., Kelsey, J., 2015. Tap on, Tap Off: Onscreen Keyboards and
Mobile Password Entry. Proc. ShmooCon.

Greene, K.K., Gallagher, M.A., Stanton, B.C., Lee, P.Y., 2014. I can’t type that! P@$
$w0rd entry on mobile devices. In: Tryfonas, T., Askoxylakis, I. (Eds.), Human
Aspects of Information Security, Privacy, and Trust. Springer International
Publishing, Cham, Switzerland,
pp. 160–171. http://dx.doi.org/10.1007/978-3-319-07620-1_15.

Greene, K.K., Tamborello, F.P., Micheals, R.J., 2013. Computational cognitive mod-
eling of touch and gesture on mobile multitouch devices: applications and
challenges for existing theory. In: Kurosu, M. (Ed.), Human-Computer Interac-
tion. Interaction Modalities and Techniques. Springer, Berlin Heidelberg,
pp. 449–455, Retrieved from http://link.springer.com/chapter/10.1007/978-3-
642-39330-3_47.
Healy, A.F., Kole, J.A., Buck-Gengler, C.J., Bourne, L.E., 2004. Effects of prolonged

work on data entry speed and accuracy. J. Exp. Psychol.: Appl. 10 (3), 188–199.
http://dx.doi.org/10.1037/1076-898X.10.3.188.

Howes, A., Duggan, G.B., Kalidindi, K., Tseng, Y.-C., Lewis, R.L., 2015. Predicting
short-term remembering as boundedly optimal strategy choice. Cognit. Sci. .
http://dx.doi.org/10.1111/cogs.12271

Howes, A., Lewis, R.L., Vera, A., 2009. Rational adaptation under task and processing
constraints: Implications for testing theories of cognition and action. Psychol.
Rev. 116 (4), 717–751. http://dx.doi.org/10.1037/a0017187.

Jakobsson, M., Akavipat, R., 2012. Rethinking passwords to adapt to constrained
keyboards. Proc. IEEE MoST.

Janssen, C.P., Brumby, D.P., Garnett, R., 2010. Natural Break Points: Utilizing Motor
Cues when Multitasking. Proc. Hum. Fact. Ergon. Soc. Annu. Meet. 54 (4),
482–486. http://dx.doi.org/10.1177/154193121005400444.

Janssen, C.P., Brumby, D.P., Garnett, R., 2012. Natural break points: the influence of
priorities and cognitive and motor cues on dual-task interleaving. J. Cognit. Eng.
Decis. Mak. 6 (1), 5–29. http://dx.doi.org/10.1177/1555343411432339.

Karrenbauer, A., Oulasvirta, A., 2014. Improvements to keyboard optimization with
integer programming. In: Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology. ACM. New York, NY, USA. pp. 621–626.
〈http://doi.org/10.1145/2642918.2647382〉.

Kieras, D.E., Meyer, D.E., 2000. The role of cognitive task analysis in the application
of predictive models of human performance. In: Schraagen, J.M., Chipman, S.F.,
Shalin, V.L. (Eds.), Cognitive Task Analysis. Lawrence Erlbaum Associates, Ma-
wah, New Jersey, pp. 237–260.

Klien, F., Strohmaier, M., 2012. Short links under attack: geographical analysis of
spam in a URL shortener network. In: Proceedings of the 23rd ACM Conference
on Hypertext and Social Media. New York, NY, USA: ACM. pp. 83–88. 〈http://doi.
org/10.1145/2309996.2310010〉.

Leiva, L.A., Sahami, A., Catala, A., Henze, N., Schmidt, A., 2015. Text Entry on Tiny
QWERTY Soft Keyboards. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems. New York, NY, USA: ACM. pp. 669–
678. 〈http://doi.org/10.1145/2702123.2702388〉.

Li, H., Liu, Y., Liu, J., Wang, X., Li, Y., Rau, P.-L. P., 2010. Extended KLM for mobile
phone interaction: a user study result. In CHI ’10 Extended Abstracts on Human
Factors in Computing Systems. ACM. New York, NY, USA. pp. 3517–3522. 〈http://
doi.org/10.1145/1753846.1754011〉.

MacKenzie, I.S., 2002. KSPC (Keystrokes per Character) as a characteristic of text
entry techniques. In: Paternò, F. (Ed.), Human Computer Interaction with Mo-
bile Devices. Springer, Berlin Heidelberg,
pp. 195–210. http://dx.doi.org/10.1007/3-540-45756-9_16.

Oulasvirta, A., Reichel, A., Li, W., Zhang, Y., Bachynskyi, M., Vertanen, K., Kristensson,
P.O., 2013. Improving two-thumb text entry on touchscreen devices. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems
New York, NY, USA: ACM. 〈http://doi.org/10.1145/2470654.2481383〉.

Payne, S.J., Howes, A., 2013. Adaptive interaction: a utility maximization approach
to understanding human interaction with technology. Synth. Lect. Hum.
Cent. Inform. 6 (1), 1–111. http://dx.doi.org/10.2200/
S00479ED1V01Y201302HCI016.

Rice, A. D., Lartigue, J.W., 2014. Touch-level Model (TLM): Evolving KLM-GOMS for
touchscreen and mobile devices. In: Proceedings of the 2014 ACM Southeast
Regional Conference. ACM, New York, NY, USA. pp. 53:1–53:6. 〈http://doi.org/
10.1145/2638404.2638532〉.

Salthouse, T.A., 1986. Perceptual, cognitive, and motoric aspects of transcription
typing. Psychol. Bull. 99 (3), 303–319. http://dx.doi.org/10.1037/
0033-2909.99.3.303.

Shin, D.-H., Jung, J., Chang, B.-H., 2012. The psychology behind QR codes: User
experience perspective. Comput. Hum. Behav. 28 (4), 1417–1426. http://dx.doi.
org/10.1016/j.chb.2012.03.004.

Smith, M.R., Lewis, R.L., Howes, A., Chu, A., Green, C., Vera, A., 2008. More than 8,192
ways to skin a cat: Modeling behavior in multidimensional strategy spaces. In:
Proceedings of the 30th annual conference of the Cognitive Science Society.
pp. 1441–1446. Retrieved from 〈https://msu.edu/course/lin/892/rick-stuff/
smith-et-al-cogsci-2008-submitted.pdf〉.

Trommershäuser, J., Gepshtein, S., Maloney, L.T., Landy, M.S., Banks, M.S., 2005.
Optimal compensation for changes in task-relevant movement variability. J.
Neurosci. 25 (31), 7169–7178. http://dx.doi.org/10.1523/
JNEUROSCI.1906-05.2005.

Varcholik, P.D., LaViola Jr., J.J., Hughes, C.E., 2012. Establishing a baseline for text
entry for a multi-touch virtual keyboard. Int. J. Hum. Comput. Stud. 70 (10),
657–672. http://dx.doi.org/10.1016/j.ijhcs.2012.05.007.

Vidas, T., Owusu, E., Wang, S., Zeng, C., Cranor, L.F., Christin, N., 2013. QRishing: The
susceptibility of smartphone users to QR code phishing attacks. In: Adams, A.A.,
Brenner, M., Smith, M. (Eds.), Financial Cryptography and Data Security.
Springer Berlin Heidelberg,
pp. 52–69, Retrieved from 〈http://link.springer.com/chapter/10.1007/978-3-
642-41320-9_4〉.

Wang, A.I., 2015. The wear out effect of a game-based student response system.
Comput. Educ. 82, 217–227. http://dx.doi.org/10.1016/j.compedu.2014.11.004.

Wang, A.I., Øfsdahl, T., Mørch-Storstein, O.K., 2008. An evaluation of a mobile game
concept for lectures. In: Proceedings of IEEE 21st Conference on Software En-
gineering Education and Training. CSEET ’08. pp. 197–204. 〈http://doi.org/10.
1109/CSEET.2008.15〉.

Wiseman, S., Brumby, D.P., Cox, A.L., Hennessy, O., 2013. Tailoring Number Entry
Interfaces To The Task of Programming Medical Infusion Pumps. Proc. Hum.

http://doi.org/10.1145/2470654.2466181
http://dx.doi.org/10.1016/j.jml.2012.11.001
http://dx.doi.org/10.1016/j.jml.2012.11.001
http://dx.doi.org/10.1016/j.jml.2012.11.001
http://doi.org/10.17487/RFC3986
http://doi.org/10.1145/1240624.1240664
http://dx.doi.org/10.1037/1076-898X.9.4.236
http://dx.doi.org/10.1037/1076-898X.9.4.236
http://dx.doi.org/10.1037/1076-898X.9.4.236
http://doi.org/10.1145/2470654.2481422
http://doi.org/10.1145/2030376.2030387
http://dx.doi.org/10.1111/tops.12082
http://dx.doi.org/10.1111/tops.12082
http://dx.doi.org/10.1111/tops.12082
http://doi.org/10.1145/2207676.2208659
https://scholarship.rice.edu/handle/1911/87877
http://www.iccm2015.org/proceedings/papers/0009/paper0009.pdf
http://www.iccm2015.org/proceedings/papers/0009/paper0009.pdf
http://dx.doi.org/10.1037/0033-295X.113.3.461
http://dx.doi.org/10.1037/0033-295X.113.3.461
http://dx.doi.org/10.1037/0033-295X.113.3.461
http://dx.doi.org/10.1037/0033-295X.113.3.461
http://refhub.elsevier.com/S1071-5819(16)30085-4/sbref6
http://refhub.elsevier.com/S1071-5819(16)30085-4/sbref6
http://dx.doi.org/10.1007/978-3-319-07620-1_15
http://dx.doi.org/10.1007/978-3-319-07620-1_15
http://dx.doi.org/10.1007/978-3-319-07620-1_15
http://link.springer.com/chapter/10.1007/978-3-642-39330-3_47
http://link.springer.com/chapter/10.1007/978-3-642-39330-3_47
http://dx.doi.org/10.1037/1076-898X.10.3.188
http://dx.doi.org/10.1037/1076-898X.10.3.188
http://dx.doi.org/10.1037/1076-898X.10.3.188
http://dx.doi.org/10.1111/cogs.12271
http://dx.doi.org/10.1111/cogs.12271
http://dx.doi.org/10.1111/cogs.12271
http://dx.doi.org/10.1037/a0017187
http://dx.doi.org/10.1037/a0017187
http://dx.doi.org/10.1037/a0017187
http://refhub.elsevier.com/S1071-5819(16)30085-4/sbref12
http://refhub.elsevier.com/S1071-5819(16)30085-4/sbref12
http://dx.doi.org/10.1177/154193121005400444
http://dx.doi.org/10.1177/154193121005400444
http://dx.doi.org/10.1177/154193121005400444
http://dx.doi.org/10.1177/1555343411432339
http://dx.doi.org/10.1177/1555343411432339
http://dx.doi.org/10.1177/1555343411432339
http://doi.org/10.1145/2642918.2647382
http://refhub.elsevier.com/S1071-5819(16)30085-4/sbref15
http://refhub.elsevier.com/S1071-5819(16)30085-4/sbref15
http://refhub.elsevier.com/S1071-5819(16)30085-4/sbref15
http://refhub.elsevier.com/S1071-5819(16)30085-4/sbref15
http://refhub.elsevier.com/S1071-5819(16)30085-4/sbref15
http://doi.org/10.1145/2309996.2310010
http://doi.org/10.1145/2309996.2310010
http://doi.org/10.1145/2702123.2702388
http://doi.org/10.1145/1753846.1754011
http://doi.org/10.1145/1753846.1754011
http://dx.doi.org/10.1007/3-540-45756-9_16
http://dx.doi.org/10.1007/3-540-45756-9_16
http://dx.doi.org/10.1007/3-540-45756-9_16
http://doi.org/10.1145/2470654.2481383
http://dx.doi.org/10.2200/S00479ED1V01Y201302HCI016
http://dx.doi.org/10.2200/S00479ED1V01Y201302HCI016
http://dx.doi.org/10.2200/S00479ED1V01Y201302HCI016
http://dx.doi.org/10.2200/S00479ED1V01Y201302HCI016
http://doi.org/10.1145/2638404.2638532
http://doi.org/10.1145/2638404.2638532
http://dx.doi.org/10.1037/0033-2909.99.3.303
http://dx.doi.org/10.1037/0033-2909.99.3.303
http://dx.doi.org/10.1037/0033-2909.99.3.303
http://dx.doi.org/10.1037/0033-2909.99.3.303
http://dx.doi.org/10.1016/j.chb.2012.03.004
http://dx.doi.org/10.1016/j.chb.2012.03.004
http://dx.doi.org/10.1016/j.chb.2012.03.004
http://dx.doi.org/10.1016/j.chb.2012.03.004
https://msu.edu/course/lin/892/rick-stuff/smith-et-al-cogsci-2008-submitted.pdf
https://msu.edu/course/lin/892/rick-stuff/smith-et-al-cogsci-2008-submitted.pdf
http://dx.doi.org/10.1523/JNEUROSCI.1906-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.1906-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.1906-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.1906-05.2005
http://dx.doi.org/10.1016/j.ijhcs.2012.05.007
http://dx.doi.org/10.1016/j.ijhcs.2012.05.007
http://dx.doi.org/10.1016/j.ijhcs.2012.05.007
http://link.springer.com/chapter/10.1007/978-3-642-41320-9_4
http://link.springer.com/chapter/10.1007/978-3-642-41320-9_4
http://dx.doi.org/10.1016/j.compedu.2014.11.004
http://dx.doi.org/10.1016/j.compedu.2014.11.004
http://dx.doi.org/10.1016/j.compedu.2014.11.004
http://doi.org/10.1109/CSEET.2008.15
http://doi.org/10.1109/CSEET.2008.15

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–53 53
Fact. Ergon. Soc. Annu. Meet. 57 (1), 683–687. http://dx.doi.org/10.1177/
1541931213571148.

Wiseman, S., Cox, A.L., Brumby, D.P., 2013. Designing Devices With the Task in
Mind: Which Numbers Are Really Used in Hospitals? Human Factors. J. Hum.
Fact. Ergon. Soc. 55 (1), 61–74. http://dx.doi.org/10.1177/0018720812471988.

Wiseman, S., Soto Miño, G., Cox, A.L., Gould, S.J.J., Moore, J., Needham, C., 2016. Use
your words: designing one-time pairing codes to improve user experience. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems. 〈http://doi.org/10.1145/2858036.2858377〉.
Wobbrock, J.O., Cutrell, E., Harada, S., MacKenzie, I.S., 2008. An error model for
pointing based on Fitts’ law. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems. New York, NY, USA: ACM. pp. 1613–1622.
〈http://doi.org/10.1145/1357054.1357306〉.

Zhang, Y., Hornof, A.J., 2014. Understanding multitasking through parallelized
strategy exploration and individualized cognitive modeling. In: Proceedings of
the 32nd Annual ACM Conference on Human Factors in Computing Systems.
ACM, New York, NY, USA. pp. 3885–3894. 〈http://doi.org/10.1145/2556288.
2557351〉.

http://dx.doi.org/10.1177/1541931213571148
http://dx.doi.org/10.1177/1541931213571148
http://dx.doi.org/10.1177/1541931213571148
http://dx.doi.org/10.1177/1541931213571148
http://dx.doi.org/10.1177/0018720812471988
http://dx.doi.org/10.1177/0018720812471988
http://dx.doi.org/10.1177/0018720812471988
http://doi.org/10.1145/2858036.2858377
http://doi.org/10.1145/1357054.1357306
http://doi.org/10.1145/2556288.2557351
http://doi.org/10.1145/2556288.2557351

	Short links and tiny keyboards: A systematic exploration of design trade-offs in link shortening services
	Introduction
	Related work
	Link shortening services
	Improving link shorteners

	Systematic analysis
	General modeling approach
	Tap-optimizing model
	Results

	Time-optimizing model
	Results

	Conclusions from models

	Experiment
	Gamification
	Method
	Participants
	Design
	Materials
	Procedure

	Results
	Participation
	General performance and outliers
	Effect of link complexity on performance
	Effect of link schema on response speed
	Effect of link schema on accuracy
	Error types and magnitudes
	Subjective rating of difficulty

	Visual appearance
	Conclusion: Link shortening
	Generalizability of approach
	Bus-stop identifiers
	‘Win codes’

	General discussion
	Limitations

	Acknowledgements
	References

