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Abstract: Weyl points are the crossings of linearly dispersing energy bands of three-

dimensional crystals, providing the opportunity to explore a variety of intriguing 

phenomena such as topologically protected surface states and chiral anomalies. However, 

the lack of an ideal Weyl system in which the Weyl points all exist at the same energy and 

are separated from any other bands, poses a serious limitation to the further development 

of Weyl physics and potential applications. By experimentally characterizing a microwave 

photonic crystal of saddle-shaped metallic coils, we observe ideal Weyl points that are 

related to each other through symmetry operations. Topological surface states exhibiting 

helicoidal structure have also been demonstrated. Our system provides a photonic platform 

for exploring ideal Weyl systems and developing possible topological devices. 

 

One Sentence Summary: An ideal Weyl system and helicoid surface states are observed in a 

designed microwave photonic crystal structure. 

 

 

 

 

  



Main Text: Topology is the mathematics of conserved properties under continuous deformations, 

and the recent study of band topologies is yielding a suite of fascinating interface transport 

phenomena that include one-way propagation of energy and novel relativistic behavior. The two-

dimensional honeycomb lattice is the most studied in the exploration of topological phenomena. 

Made famous by graphene (1), the energy-momentum dispersion in a honeycomb system is 

linear, and the crossings of bands in energy-momentum space are known as Dirac points. The 

transport of the quasi-particles around these points is massless, and this remarkable transport 

behavior is associated with the ‘hidden’ symmetry associated with its two identical sub-lattices. 

Weyl points are the characteristic of an analogous phenomenon when the lattice is extended to 

three dimensions (2-5). In electronic systems, materials exhibiting Weyl points are known as 

Weyl semimetals, and Weyl fermion is the solution to the massless Dirac equation. Each Weyl 

point can be assigned an integer 'charge' based of its chirality, known as the Chern number, and 

much like magnetic monopoles, Weyl points are only ever found in pairs of opposite charge. Just 

like Dirac points these Weyl points also exist in photonic systems, but unlike Dirac points, they 

can only exist once either (or both) time-reversal or space-inversion symmetry of the crystal is 

broken. To date, Weyl points of various forms have been proposed and realized in several boson 

or fermion systems (2-4, 6-13). Among them, the presence of surface state arcs as one of the 

fingerprints of Weyl systems has been observed. 

 

However, demonstration of more fundamental topological features of Weyl points, such as the 

helicoidal dispersion, which yield the open Fermi arcs of topological surface states (14), have 

been hindered by the complicated configuration of energy bands at the Weyl energy. Moreover, 

some realistic and innovative device applications critically depend on a simple embodiment of 



Weyl systems (5). Thus, an ideal Weyl system (15-17), has attracted much attention, because in 

such system all Weyl nodes are symmetry-related, residing at the same energy with a large 

momentum separation, and devoid of non-topological bands in a sufficiently large energy 

interval. 

While Weyl degeneracies can be readily found by breaking either time-reversal or inversion 

symmetry (5) (or both), the experimental realization of a truly ideal Weyl system has not yet 

been reported. Here, we explore the microwave response of a three-dimensional photonic crystal 

comprised of metallic inclusions (termed a ‘meta-crystal’) in order to realize ideal Weyl system 

protected by D2d point symmetry. Our meta-crystal exhibits four Weyl points at the same energy, 

the minimum number allowed in the presence of time-reversal symmetry. By placing an 

excitation point-source on one surface of the crystal, and scanning the near-fields on the opposite 

surface, we observe the intriguing helicoidal structure of topological surface states: a physical 

representation of Riemann surface generated by a multi-valued function (14).  

Our meta-crystal design offers an ideal platform for investigating various unconventional 

physics in Weyl systems. The symmetry of the studied meta-crystal belongs to the simple 

tetragonal lattice with symmorphic space group P4m2  (No. 115). The basis comprises of a 

saddle-shaped connective metallic coil (Fig. 1A and B) that possesses D2d (42m in Hermann-

Mauguin notation) point group symmetry. The system has no spatial inversion. These metallic 

elements support localized electromagnetic resonances with current distributions that can be 

expanded into multipolar modes (18). In an effective medium model [Sec. 4, Fig. S1, (19)], these 

resonances collectively exhibit bi-anisotropic effect, leading to a directionally dependent 

chirality response (20). Here, the unavoidable crossings between the longitudinal mode (LM) 

with negative dispersion and the transverse electric modes (TM) with positive dispersion along 



Γ–M result in the formation of a type-I Weyl point as shown in Fig. 1C [Fig. S2, (19)] (21). 

Analysis via the irreducible representation of the point group shows that these two modes belong 

to two different classes, with eigenvalues ±1 of C2 rotation along Γ-M (Fig. 1D), where level 

repulsion is forbidden [Sec. 5, Fig. S3, (19)]. The other three Weyl points are obtained after 

application of the D2d symmetry operation. For instance, three two-fold rotation symmetries (C2 

and 2C2’) combined with time-reversal symmetry guarantee that these four Weyl nodes are 

located on the Γ–M at the same frequency, where application of two mirror symmetries (σx and 

σy) reverse the corresponding topological charges. Figure 1E shows the simulated band structure 

along high symmetry lines (as defined in Fig. 1D) in the Brillouin zone (BZ), where a pair of 

Weyl points reside at the same frequency. As such, these Weyl degeneracies appear in a 

relatively large energy window (~2.1 GHz around frequency of the Weyl point, cyan shadow 

region) that is also devoid of other bulk bands, and hence unequivocally facilitates their 

experimental identification. 

The linear band crossings of the surface states around the Weyl point are confirmed by 

angle resolved transmission measurements (9). In order to couple energy across the meta-crystal, 

the momentum of the surface states must be matched to the smaller in-plane momentum of an 

incident wave, a sample with special crystal-cutting is fabricated (Fig. 2A), where the crystal 

orientation forms an angle of 26.57° with one of the cutting boundaries. Compared with the 

global axis, xyz, a local coordinate, uvw, is defined. The length (along u), width (along v) and 

height (along w) of the sample are 300 mm, 100 mm and 300 mm, respectively. Two angles, θ 

and φ (Fig. 2A and B), are scanned to obtain the angle-resolved transmission spectrum. With this 

specific crystal cutting, when φ = 0 ̊ Weyl points in BZ are projected along the scan wavevector 

kp, which is related to θ as indicated in Fig. 2C. Obviously, two of the projected Weyl points are 



located within the light circle (magenta circle) at the Weyl frequency (13.5 GHz). Thus, even a 

plane wave illuminated directly from air onto the sample can address these two Weyl points. 

Comparisons between the simulation and experiment results are shown in Fig. 2D, E and F. In 

Fig. 2D, with φ = 0 ̊, a linear gapless energy dispersion is obtained and the density of states 

vanishes at the Weyl frequency due to the absence of other bulk states at the same frequency in 

an ideal Weyl system. After rotating the sample to φ = 30 ̊ and 60 ̊ around the v-axis, a complete 

gap is observed as expected. 

Another direct manifestation of the topological aspects of Weyl system is the exotic 

topological surface states taking the form of arcs connecting the topologically distinct bulk states. 

Following a closed contour around an end of the arcs, one moves between the lower ('valence’) 

and upper (‘conduction’) bands (14), which is a direct consequence of the chiral characteristic of 

Weyl nodes, as schematically shown in Fig. 3A. It is well known that the gapless surface states 

of Weyl crystals take the form of helicoid Riemann surfaces (14), where the bulk Weyl points 

correspond to the poles and zeros adopting the sign of their respective Chern numbers. Recently, 

it was shown that topological surface states of double Weyl systems can be analytically 

expressed, across the entire Brillouin zone, as the double-periodic Weierstrass elliptic function 

(22). Since the Weierstrass elliptic function has one second-order pole and one second-order 

zero, it is not the most fundamental expression of the Weyl surfaces states. Here, we show that 

our ideal-Weyl meta-crystal of four Weyl points has surface states whose dispersion is 

topologically equivalent to the imaginary part of Jacobi elliptic function cn(z,m) of two poles and 

two zeros on the complex plane. cn(z,m) is a meromorphic function with periods 4K(m) and 

4K(1-m), where K is the complete elliptic integrals of the first kind. For our system, the mapping 

is given by ω(kx,ky) ~ cn((kx-ky)/2+(kx+ky)i/2,1/2), as plotted in Fig. 3A. 



The helicoidal structure of the surface arcs were probed using the transmitted near-field 

scanning configuration with the excitation source located at the center of the bottom layer of the 

meta-crystal stack (Fig. 3B, setup ‘a’), where the detecting probe can raster-scan the top surface 

to map out both the bulk and surface modes. Another configuration (setup ‘b’ as shown in Fig. 

S4B), in which the excitation source is positioned at the edge or corner of the top surface, is also 

used to identify the surface states. These two setups provide complementary information for the 

observation of helicoid surface states. In all near field measurements, we set the scanning step as 

1 mm (a /3), providing a large surface momentum space in the range of [-3π/a, 3π/a]2 after the 

Fourier transformation. The helicoid structure of surface arc is experimentally measured and 

numerically simulated, and is presented as a series of equi-frequency contours between 12.6 GHz 

and 14.0 GHz (Fig. 3C and 3E in experiment, and Fig. 3D and 3F in simulation). 

As shown in Fig. 3C and D, at 13.1 GHz, which is below the Weyl frequency, the Fourier 

transformation of the experimentally measured field distribution shows the presence of four 

symmetrically displaced elliptical bulk states with the same size located along the diagonal 

directions. We clearly observe two surface arcs running across the Brillouin zone boundaries and 

connecting the neighboring bulk states with opposite topological charges. In the vicinity of the 

air equi-frequency contour (circle), there exists a surface ellipse. The surface ellipse joins and 

reroutes the surface arc at higher frequencies (Fig. 3E and F). Indeed, the surface ellipse and 

surface arcs together form the same unified helicoid surface in the dispersion of the surface states. 

With increasing frequency, the top surface arc emerged from the Weyl node with positive / 

negative topological charge rotates anti-clockwise / clockwise. The observed rotation of the 

helicoid surface state around a Weyl node can therefore be used to detect the chirality of the 

Weyl node (23). At lower frequencies, as mentioned above each surface arc connect between the 



bulk states through the Brillouin zone boundary, while the surface ellipse expands gradually with 

increasing frequency. Between 13.5 and 13.6 GHz, the surface arc and surface ellipse connect 

with each other, and then transition into a new configuration: a direct surface arc connecting 

between the bulk states within the Brillouin zone, and a surface ellipse centered at its edge. The 

evolution of the surface arc configuration across the measured frequency range matches 

topologically with that described by the Jacobi elliptic function shown in Fig. 3A. At the 

frequency of 14.3 GHz, the surface arcs appear to be linear [Fig. S4F, (19)], leading to nearly 

diffraction-less propagation of the surface wave in the real space [Fig. S4C, (19)]. Slightly away 

from the Weyl frequency, the equi-energy contour of the bulk state consists of four very small 

spheres enclosing the Weyl points. It is expected that the interference between them result in a 

chessboard like interference pattern in real space, which is experimentally confirmed as a spatial 

frequency filter (17) [Fig. S5, (19)]. In addition, the dimensional reduction from ideal Weyl 

points to graphene-like dispersion is shown in Fig. S6 [Sec. 8, (19)]. We also analyzed that the 

presence of dielectric loss of our system does not affect the existence of the Weyl points [Sec. 9, 

(19)]. 

The designed ideal Weyl system presented here opens up opportunities for studying 

intriguing physics and offers a prototype platform for realistic device applications. In photonics, 

besides the topologically nontrivial surface states supported by Weyl materials, the diverging 

Berry curvature (5) close to Weyl points provide a new degree of freedom in controlling the 

transport of optical wave packets, and may lead to the observation of a gigantic Hall effect for 

light (24). Furthermore, any phenomena related to the conical dispersion of the light cone may be 

observed around Weyl points, such as diverging and diminishing scattering cross sections (25). 



The vanishing density of states at Weyl frequencies also provides a robust platform for 

controlling light matter interaction when emitters are embedded inside photonic Weyl materials. 
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Fig. 1. Structure and band topology of the ideal photonic Weyl meta-crystal. (A) Schematic 

of a saddle shaped metallic inclusion, which has non-centrosymmetric D2d point group 

symmetry, embedded in a dielectric (dielectric constant of 2.2 ± 2% at 10 GHz). Here ax = ay = a 

= 3 mm and az = 4.5 mm. (B) Photograph of the top surface of the sample, fabricated with 

printed circuit board technology by etching 3 mm-thick double-sided, copper-clad (0.035 mm-



thick) dielectric laminates.  A 1.5 mm-thick ‘blank’ layer spaces each pair of printed layers to 

prevent electrical connection between the metallic coils. The bulk sample is assembled by 

stacking (1.5 + 3) mm bilayers in the z-direction. The unit cell is indicated by the white square. 

(C) Four type-I Weyl points reside on the same energy as indicated by the blue plane with 

respect of kz = 0. (D) Bulk and surface Brillouin zone with four Weyl points located along the Γ–

M directions. Top (magenta) and bottom (cyan) topological surface-state arcs are shown 

schematically. (E) CST Microwave Studio (CST) simulated band structure along high-symmetry 

lines. The cyan shaded area highlights the energy window where the ideal Weyl points (red / 

blue point) reside. Longitudinal (LM) and transverse modes (TM) are labelled. 

  



 	

Fig. 2. Angle resolved transmission measurement of the ideal Weyl system. (A, B) Schematic 

view of the sample fabricated with crystal cutting angle of 26.57º; top and side views are 

illustrated. θ and φ are the scan and rotation angles defined along the local coordinates v and w, 

respectively. (C) Projection of Weyl points in momentum space with respect to the global 

coordinates (x, y, z) when φ = 0 ̊. First Brillouin zone is indicated by the purple square. Magenta 

circle indicates the equi-frequency contour of vacuum at 13.5 GHz. kp is the in-plane component 

of the incident wave-vector through a projection onto the sample surface (u-w surface). (9). (D), 

(E) and (F) are the band projections with φ = 0 ̊, 30 ̊ and 60 ̊, respectively. The experimental and 

simulated results are shown in the left and right panels, respectively. 



 

 

Fig. 3. Experimental observation of helicoidal structure of topological surface states. (A) 

Schematic illustration of helicoid surface states in an ideal Weyl system with four Weyl points 

within the surface Brillouin zone, plotted using the Jacobi elliptic function. The arcs of different 

colors represent the evolution of equi-frequency arcs connecting Weyl points of opposite Chern 



numbers. (B) Transmitted near-field scanning system (setup ‘a’), where the source (red) is 

positioned on the bottom surface center. (C) and (E) Equi-frequency contour ( 𝐸& ) measured 

using setup ‘a’ from 12.6 GHz to 14.0 GHz. (D) and (F) Bulk (black dashed) and surface 

(magenta solid) states simulated by CST microwave studio, correspondingly. Anti-clockwise 

(red) and clockwise (cyan) arrows indicate the surface arc rotation directions with increasing 

frequency corresponding to positive and negative Weyl nodes, respectively. The central solid 

circle indicates the air equi-frequency contour. The plotted range for each panel is [-π/a, π/a]2. 
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