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ABSTRACT
This paper presents the validation of a novel leak detection method for water distribution pipelines, 
although it could be applied to any buried pressurized fluid flow pipe. The detection method is based on 
a relative pressure sensor attached non-invasively to the outside of the pipe combined with temperature 
difference measurements between the pipe wall and the soil. Moreover, this paper proposes an anomaly 
detection algorithm, originally developed for monitoring website traffic data, which differentiates a ‘leak’ 
event from ‘normal’ pressure change events. It is compared to two more commonly used methods based 
on a fixed threshold and a moving average. The validation of the new system in a field trial over a 6-month 
period showed that all the known leaks were identified with 98.45% accuracy, with the anomaly detection 
algorithm performing best, making this system a real contender for leak detection in pipes.

Introduction

Underground pipeline systems (e.g. water, gas) are vital infra-
structures that cities and societies greatly depend on, yet they 
are often also the oldest. This, combined with the fact that they 
are buried, makes their condition assessment extremely com-
plex and challenging. Moreover, at different times various mate-
rials have been introduced for use as pipes (Rajani and Kleiner 
2004), which have different deterioration mechanisms signifi-
cantly increasing the challenges for condition assessment.

Losses due to a failure (i.e. a leak) of a pipe are not limited to 
the direct loss associated with the lost medium, but they also 
include other direct (i.e. costs for repairs), indirect (i.e. interruption 
to supply) and social (i.e. public image and trust) costs (Al-Barqawi 
and Zayed 2006; Makar and Kleiner 2000), which can have a sig-
nificant impact on the asset owners and to society. The total cost 
of a failure also increases with time to implement a repair (Rajani 
and Kleiner 2004) and therefore, fast detection of failures is an 
essential part of a pipeline network management system.

A variety of techniques can be used to detect failures in pipes. 
These methods are commonly called Non-Destructive Testing/
Evaluation (NDT/NDE) methods (Al-Barqawi and Zayed 2006; 
Misiunas 2005) and are used to evaluate the deteriorated state of 
a pipe and to detect potential failures ideally before they happen 
or at an early stage in the failure process. These systems rely on 
different measurement/monitoring techniques (Liu and Kleiner 
2012, 2013; Rajani and Kleiner 2004; Sinha and Knight 2004; Sonyok, 
Zhang, and Zhang 2008). The most common types of leak detection 
method are acoustic-based methods, which rely on the detection of 

acoustic sound emitted by the leak. In order to detect this acoustic 
wave, they commonly use hydrophones which often require access 
to the interior of the pipe via a tapping. In addition, these systems 
are not suitable for dense spatial deployment for continuous mon-
itoring of pipes due to their high cost, high sampling rate (causing 
high power consumption) and need for intensive processing power.

A large proportion of NDE techniques are based on either 
geophysical surveys from the ground surface or surveys from 
within the pipe and are not suitable for long-term, high spatial 
resolution over a large area, deployment on the pipeline networks 
(e.g. ground penetrating radar and vision-based systems). Current 
NDE techniques such as vision-based methods and Smart Pipe 
Inspection Gauges (PIGs) also commonly have high power con-
sumption and require access to the interior of the pipe, which 
make them less suitable for long-term continuous deployment 
over a large area. Each NDE technique has their specific advantage 
and disadvantage based on the technology that it uses and are 
well documented in the literature (Costello et al. 2007; Liu and 
Kleiner 2012; Makar and Kleiner 2000; Misiunas 2008; Rajani and 
Kleiner 2004; Rizzo 2010).

Wireless Underground Sensor Networks (WUSN) as a subset of 
wireless sensor networks offer a potentially suitable platform for 
large area pipeline monitoring due to their scalability and con-
tinuous monitoring capabilities. Different sensor networks for 
pipeline monitoring have been developed (Cattani et al. 2017; 
Lai, Chen, and Li 2012; Stoianov et al. 2007, 2008; Whittle et al. 
2013), but commonly rely on direct pressure sensors. These can 
introduce a potential leakage point similar to tapings for ser-
vice lines as discussed by Tayefi, Beck, and Tomlinson (2015) or 
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Relative temperature difference measurements

Temperature is one of the key parameters to monitor in rela-
tion to pipelines. Large variations in the environmental tem-
perature of the pipes (i.e. seasonal changes) can increase 
the number of pipe failures during cold seasons (Kleiner and 
Rajani 2002). However, regardless of the changes in environ-
mental temperature, the temperature of the pipe also varies 
based on the temperature and the flow rate of the medium (i.e. 
water) that it carries. Changes in the flow rate vary the cooling/
warming effect of the medium on the pipe wall. This is due to 
the change in the residence time of the medium in the pipe, 
which changes the transfer of heat between the medium and 
the pipe. Based on this principle a novel method of detect-
ing relative changes in the flow rate of the pipe is proposed 
(Sadeghioon 2015; Sadeghioon et al. 2014). The temperature 
of the pipe wall and its surrounding soil are measured by 
two separate temperature sensors correspondingly placed 
directly on the pipe wall and at 30 cm horizontal distance into 
the soil (at the same depth as the pipe). Changes in the flow 
of water in the pipe (i.e. caused by a pipe failure) result in a 
change in the temperature of the pipe wall. However, due to 
the low-thermal conductivity of the soil compared to the pipe, 
this change in temperature will not affect the temperature of 
the soil (at 30 cm away) creating a change in the temperature 
difference between the pipe and the soil. The type and con-
dition of the soil (i.e. its moisture content) can affect its ther-
mal conductivity. However, due to the significant difference 
between the thermal conductivity of the pipe and the soil, the 
effect of these characteristics of the soil on the temperature 
difference between the pipe and the soil is negligible. As the 
temperature difference caused by customer demand usually 
follows a daily pattern and is not permanent (unlike leaks) it 

contamination in asbestos cement pipes as described by Webber 
et al. (1989). In addition, the higher cost of these systems com-
pared to traditional surveying techniques makes their dense 
deployment not economically feasible. Therefore, there is a need 
for a low cost and easy to install non-invasive (to the pipe) method 
of monitoring pipelines.

This paper presents the validation of a novel sensor system 
capable of non-invasive pipeline monitoring. It is based on rela-
tive pressure sensor measurements combined with temperature 
difference measurements between the pipe and surrounding 
medium, to detect leaks in buried pipes in the field. A new anom-
aly detection algorithm to automate the data analysis, and thus 
significantly improve the usability of the system by minimising 
false alarms and automating the analysis, is also presented. It is 
this new algorithm that makes the system a real, and practical 
alternative to the more expensive solutions used to date.

Proposed leak detection system

Overview of the sensor system

The leak detection method is based on a distributed low-power 
wireless sensor network and is described in detail in Sadeghioon 
et al. (2014). Briefly, this system consists of multiple low-cost 
wireless nodes installed on the pipeline system. Each node 
is connected to a relative pressure sensor (based on a Force 
Sensitive Resistor, FSR) attached to the outside of the pipe using 
a clip, and it utilizes the expansion and contraction of the pipe 
due to pressure changes (see Sadeghioon et al. 2014 for more 
details). The node is also connected to temperature sensors, one 
attached to the pipe wall and the other in the soil in close prox-
imity to the pipe (at the same depth as the pipe). Figure 1 shows 
a schematic of the system.

Figure 1. Schematic of the wireless sensor node and the sensors.
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is possible to differentiate the variations caused by leaks from 
those caused by usage. This method is also not affected by 
seasonal or sudden temperature variations as it only relies on 
the relative difference in temperature between the pipe and 
the soil. This effect has been observed when the sensor system 
was deployed in the field (Sadeghioon et al. 2014), and in FEA 
modelling not included in this paper due to space limitations. 
Based on these findings, this paper proposes that the temper-
ature differential in combination with the relative pressure 
readings from the FSR sensor can be used to detect abnormal 
pressure drops in the pipe caused by leaks/bursts and differen-
tiate them from systematic pressure changes in the pipeline, 
therefore reducing the number of false positives (incorrectly 
identified leaks).

Leak detection algorithms

Leak detection algorithms based on absolute pressure and 
flow measurements using DMA (District Metered Area) log-
gers or loggers with a high sampling frequency (>200  Hz) 
and transient-based leak detection algorithms have been the 
topic of numerous research in the literature (Covas and Ramos 
2010; Hamilton and Charalambous 2007; Mashford et al. 2009; 
Meniconi et al. 2015; Vitkovsky, Simpson, and Lambert 2000; 
Wu, Sage, and Turtle 2010). Both of the proposed metrics in 
the current research are relative measurements and therefore 
are not suitable as an input for these conventional algorithms. 
Therefore, a novel method of leak detection based on an anom-
aly detection algorithm (Kejariwal 2015; Vallis, Hochenbaum, 
and Kejariwal 2014) originally developed for monitoring web-
site traffic is proposed. To the best of authors’ knowledge this 
is the first time this method has been applied to pipeline moni-
toring data. This method is also compared with two other com-
mon approaches for detecting pipe failure using the same input 
parameters. It should be noted that the accuracy is not impor-
tant for this system as we are measuring relative values. It is the 
resolution of the sensors (i.e. 0.0625 °C for the temperature sen-
sor and 12 bits for the FSR system) which is critical, and enables 
them to register small relative changes in the operation of the 
pipe compared to its normal operation. More details on preci-
sion, accuracy and resolution of field instrumentation can be 
found in (Dunnicliff and Green 1993). In addition, all the meth-
ods investigated in this paper combine the readings from the 
relative pressure sensor and the temperature differential to dif-
ferentiate failures resulting from a change in the flow rate within 
the pipe from normal pressure changes.

A common pre-processing methodology, segmenting the 
relative pressure sensor and the calculated temperature differ-
ences into daily ranges needs to be carried out on the data to 
make them suitable for all of the leak-detection techniques. The 
absolute value of the range of the relative pressure PR and tem-
perature difference TR are then calculated and are used as the 
input parameter for the leak detection algorithms.

The first of the three methods (method A) uses a fixed thresh-
old defined by the user based on historical data (e.g. the mean 
value of the relative pressure and temperature difference range 
during the first 7 days) from the same system to detect abnor-
malities in the relative pressure range of each day. Subsequent 

days are flagged if the fixed threshold is exceeded. Similarly, a 
fixed threshold is used to flag days with abnormal temperature 
difference readings. A leak is identified in the system if, for a given 
day, both the temperature difference and the relative pressure 
readings are flagged. Despite the simplicity of this algorithm it 
can be very effective in systems where pipes have a consistent 
operational characteristic (for example fixed pressure regimes and 
predictable industrial usage).

The second method (method B) also uses a threshold criterion, 
but this is not fixed and is calculated based on a 7-day moving 
average from the data. Similar to method A, days where both the 
temperature difference and the relative pressure are outside the 
threshold values are used as an indication of a potential anom-
aly in the pipe operation (i.e. leak). This method is more suitable 
for systems where normal operational parameters of the system 
are not constant. However, a drawback of this method compared 
to method A is that the moving average can potentially mask 
slowly developing leaks by adapting the threshold to the leaks 
as it grows.

The third method (method C), based on anomaly detec-
tion algorithms, classifies the days with anomalies by using 
a Seasonal Hybrid Extreme Studentized Deviate (S-H-ESD) 
algorithm developed by Twitter and is published as an open 
source R package (Kejariwal 2015). This method extends the 
well-established Generalized ESD test by dissecting data into 
piecewise approximations. The S-H-ESD algorithm removes 
the periodic components and the median of the data for each 
timeframe in order to create the data-set for the ESD calcula-
tions. The Generalized ESD assumes that the inliers are normally 
distributed and there can be K outliers in the data-set where 
K ≤

Total samples

2
 and is a user defined value based on the data-

set type and expected prevalence of anomalies (for this data a 
maximum of 49% anomaly is used in the algorithm to ensure 
maximum number of anomalies are detected). The method then 
calculates the first outlier by identifying the furthest deviation 
from the mean. This outlier is then removed from the data-set 
and the next outlier is identified by recalculating the statisti-
cal parameters (up to K outliers). Although this method was 
originally developed for monitoring website traffic data it has 
been adopted in this research for pipeline monitoring as the two 
data-sets have similar daily patterns. In addition, this method 
can detect both local and global anomalies. This is important as 
leaks can manifest themselves as large systematic anomalies or 
smaller local anomalies. Also, unlike most other anomaly detec-
tion algorithms this method can be easily applied to relative 
measurements. Further details on this method are presented 
in (Hochenbaum, Vallis, and Kejariwal 2017). The relative pres-
sure and temperature difference data-sets are analyzed and 
flagged separately using this package. Similar to methods A and 
B, days with anomalies in both data-sets are identified as indi-
cating potential pipeline failure. It should be noted that data- 
processing techniques such as Kalman Filtering cannot be 
applied to relative measurements in their current form as is the 
case with the relative pressure data collected from the system 
described in this paper.

The performance of all the methods was analyzed by com-
paring their accuracy, sensitivity and specificity. Accuracy is cal-
culated using Equation (1).
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of the leak. These local pressure changes are not studied in this 
paper and the proposed leak detection method uses systematic 
pressure changes and local pressure and temperature difference 
for its operation.

During the trials a total of 6 nodes were installed on the pipe 
network at the facility separated by approximately 2 metres. The 
results presented in the next section were for one of the nodes 
attached to a 90 mm diameter MDPE pipe.

Results and discussion

All of the nodes associated with the trials were able to suc-
cessfully monitor and log the relative pressure and temper-
ature difference for the pipes. The output of one of the nodes 
installed on the MDPE pipe collected for a period of 6 months 
is presented and analyzed in this paper. These results are also 
verified by comparison with analyzed data from a separate node 
on the same pipe. Figure 2 shows the raw relative pressure data 
and temperature difference obtained from this node. The tem-
perature difference is calculated by determining the absolute 
value of the difference in temperature measured by the sensor 
attached to the pipe wall and the sensor placed in the soil.

It is seen from Figure 2, that the sensors used in the trials suc-
cessfully recorded daily fluctuations in the relative pressure of the 
water in the pipe. In addition, some anomalies were detected by 
the sensors, and are indicated by the spikes in the data.

The raw data collected by the node was pre-processed in order 
to calculate the daily range of the relative pressure and tempera-
ture difference. Figure 3(a) and 3(b) shows the processed data-set 
for the relative pressure range and temperature difference range 
respectively, and it also includes the reference days where valve 
operations were undertaken. These dates are used as a reference 
for analysing the performance of the proposed methods.

It can be seen from Figure 3(a) and 3(b) that the days when 
valve training took place showed a higher daily range for both 
relative pressure and temperature difference compared to other 
days where no training was carried out. The daily ranges were 
analyzed using the three proposed methods for leak detection 
to identify the most suitable and reliable approach to automate 
leak detection based on the proposed metrics. The output from 
each of the three algorithms were compared with the reference 
data (i.e. known valve training dates) to study the performance 
characteristics of each of the techniques. Figure 4(a) and 4(b) 
shows the output detection thresholds using methods A and 
B for the temperature difference and relative pressure readings 
respectively. In these figures, days with a higher daily range as 
compared to the threshold values are flagged as days with a 
potential leak.

Major limitations of methods A and B can be identified by 
further analysis of Figure 4(a) and 4(b) showing that although 
large events (i.e. abnormalities) were flagged by method A, 
smaller events (Figure 4(a), 07/12/2015-21/11/2015 and Figure 
4(b), 26/10/2015-02/11/2015) were not flagged by this method. 
In addition, this method lacks adaptability to normal changes in 
the system, such as changes in the range of the daily pressure 
variations due to a change in the pressure regulation system. 

 

The sensitivity is given by Equation (2).
 

The specificity of the algorithms is given by Equation (3).
 

The false positive rate of the algorithms is given by Equation (4).
 

Field Trials

The wireless node and its associated sensors were deployed on 
an industrial water facility to validate the performance of the 
system and its leak detection capabilities when combined with 
the algorithms. This facility has a network of pipes which are 
connected to the main water distribution network of the area 
(with various pipe diameters and materials) this was crucial for 
these tests as it enabled the system to be tested in a realistic 
environment with common daily fluctuations due to demand. In 
addition, there are several service taps along this pipe network 
(with an outlet into the ground) which were used to create ‘leaks’ 
by opening the valves. The FSR sensors were attached to 90 mm 
diameter medium density polyethylene (MDPE) water pipes at a 
depth of approximately 75 cm (see Sadeghioon (2015) for more 
detail). The surface at the location of the nodes was covered by 
grass. The outputs of the sensors were measured every 256 s 
using an ultra-low power WSN node developed by Sadeghioon 
et al. (2014), which time stamped and transmitted the data to a 
laptop located in a building approximately 30 metres away. A 
3G network connection was then used to upload the data to the 
cloud. The measurement frequency was selected as it provided 
a good balance between the battery life and performance, and 
also it was close to the frequency commonly used by DMA data 
loggers used by water companies. The water pipelines used 
in the facility were connected to a small distribution network 
resulting in daily variations in the sensor data. During the mon-
itoring period (i.e. 6 months, mid-summer to mid-winter in the 
UK) various valves on the pipe were opened (as part of valve 
training programmes), simulating a leak/failure in the pipes.

The proposed leak detection system can operate based on 
the data from only one node. However, by using only one node 
the system cannot provide information regarding the location of 
the leak. Denser deployment of the nodes will allow the location 
of the leak to be narrowed down between the node upstream 
and the one downstream of the leak. This is possible due to the 
difference between the change in the flow rate in the pipe before 
and after the leak resulting in a change in temperature differ-
ence. Any systematic pressure change caused by a leak will be 
recorded by all of the nodes on the pipe. However, local pressure 
changes caused by the leak can only be detected by the nodes 
in the vicinity of the leak. The zone of influence of each node for 
measuring these local pressure variations depends on the pipe 
characteristics (i.e. diameter), operational characteristics and size 

(1)accuracy =

∑

Correctly identified days with failure +
∑

Correctly identified days without failure
∑

Total number of days

(2)sensitivity =

∑

Correctly identified days with failure
∑

Total number of days with failure

(3)specificity =

∑

Correctly identified dayswithout failure
∑

Total number of days without failure

(4)False positive rate =

∑

Incorrectly identified days with failure
∑

Total number of days
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Figure 2. relative pressure data and temperature difference data collected by the node.

Figure 3. Calculated daily range values for (a) relative pressure and (b) temperature difference.
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data. Visual comparison of Figure 5(a) and 5(b) with Figure 4(a) and 
4(b) shows that the more advanced algorithm (method C) was not 
affected by the issues discussed previously that affect methods A 
and B. In addition, the results from all of the algorithms show that 
the addition of the temperature difference ‘flags’ helped to differ-
entiate pressure variations due to pipe failure from other pressure 
variations. This is clearly visible between 02/11/2015–23/11/2015 
(Figures 4 and 5). In this period all the methods identified multiple 
abnormal variations in the relative pressure. Without confirmation 
from the temperature difference data this could have resulted in a 
significantly larger number of false positives. Table 1 presents the 
performance characteristics of all methods. In addition, the per-
formance characteristics of all methods without the use of tem-
perature difference data (marked by *) is also presented in Table 1.

Table 1 shows that overall all methods had an accuracy of 
greater than 90% in the detection of leaks. This is very promising 
as it further validates the feasibility of using non-absolute read-
ings for leak detection in pipes. Comparing the accuracy of the 

Similarly, negative drift in the baseline data can potentially result 
in the events not being flagged. Method B addresses many of the 
shortcomings of method A by adjusting to changes in the data. 
However, method B also has certain disadvantages. For exam-
ple, in method B the magnitude of the threshold value is highly 
affected by the value of the range in the previous 7 days. This 
can result in smaller leaks after a series of larger events not being 
detected by this method (Figure 4(a), 26/10/2015-02/11/2015). 
This is due to the fact that the value of the threshold increases 
as large events are recorded. This problem can be mitigated by 
increasing the span of the moving average calculations to take 
more days into consideration when calculating the threshold. 
However, this will make the threshold less adaptable to changes 
in the system and create a larger lead in delay in the detection of 
the leaks. The anomaly detection algorithm (method C) can solve 
the problems associated with methods A and B. Figure 5(a) and 
5(b) show the output from method C, indicating that it was able 
to detect the abnormal readings in the pressure and temperature 

Figure 4. (a) relative pressure data and (b) temperature difference values compared to the threshold values for methods a and b.
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catastrophic consequences. In addition, the results presented in 
Table 1 show that method C also has no false positives. This is 
important for users of the algorithm as the number of false alarms 
can significantly affect their trust in the algorithm. Table 1 also 
shows that by using the temperature difference measurements 
the rate of false positives in all methods is significantly reduced 
(or even eliminated). This shows that the temperature difference 
measurements can be used to differentiate abnormal changes in 
relative pressure from daily/systematic changes.

three different methods given in Table 1, shows that the proposed 
anomaly detection algorithm performed better, giving higher 
accuracy, sensitivity and specificity values, when compared to 
the other two methods. This was expected as this algorithm is 
less susceptible to errors caused by changes in the baseline val-
ues or sequential leaks. It can also be shown from Table 1 that 
method C has a significantly better sensitivity compared to the 
other methods. Sensitivity of the leak detection methods is par-
ticularly important, as missing leak events can have costly or even 

Figure 5. Flagged days (indicated by circular markers) from the anomaly detection algorithm (method C) for (a) the relative pressure range and (b) for the temperature 
difference range.



8   A. M. SADEGHIOON ET AL.

This is now opening up the possibility of a large-scale roll-out 
of the new system as the large amounts of data can be analysed 
automatically. Only with this algorithm will water companies be 
able to fully utilize this system without putting an unnecessary 
strain on their data analysis unit and is the missing puzzle piece 
to this novel leak detection system.
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