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Abstract.  The alternating current field measurement (ACFM) technique can be applied for surface-breaking fatigue 

crack detection and sizing; the link between the ACFM signal and crack size is well understood for individual cracks. 

However, the ACFM response to multiple clustered cracks is significantly different to that of isolated cracks. In 

railway rails the high wheel-rail forces can lead to rolling contact fatigue (RCF) cracks. Often cracks appear together 

in small clusters or in long stretches. The accurate characterisation of such fatigue cracks is essential for carrying out 

efficient and safe repair and maintenance. This paper presents a method for sizing the important sub-surface section 

of multiple cracks using ACFM via the application of an artificial neural network (ANN). The approach is 

demonstrated using a railway case study: a simulation-based dataset of signal response covering the range of RCF 

cracks typically seen in in-service railway tracks has been generated to give a thorough representation of the effect of 

clustered crack parameters on the ACFM response. A 5×5×2×1 multi-layer ANN has been optimised and trained 

using the validated simulation database to learn the inverse relationship between the crack pocket length (desired 

output) and the ACFM signal for a given cluster of RCF cracks. The network has been evaluated on a set of 

experimental data to size cracks of known dimensions from ACFM measurements and also on unseen simulation 

data. Results from both simulation and experiment show that the approach presented can be used to size clustered 

cracks to approximately the same degree of accuracy as is possible for isolated cracks. 

Keywords: ACFM, automated fault diagnosis, clustered cracks, ANN

1. Introduction

Fatigue cracks are a common cause of concern in most industries where metals are in service. Electromagnetic (EM) 

testing techniques are often used to detect and characterise cracks in safety-critical components in, for example, the 

oil and gas, nuclear, aeronautical and railway industries. Defect characterisation uses a model of the interaction 

between EM sensors and defects (see, for example, [1, 2]). It requires a solution to the inverse problem to be found, 

that is, for an unknown defect to identify the sub-surface size of the defect corresponding to a measured signal. 

Some analytical solutions for specific circumstances exist, e.g. the forward problem for eddy current testing [3] and a 

solution to the inverse problem for planar semi-elliptical cracks is possible for ACFM [4] due to the locally uniform 

electromagnetic field. Numerical solution techniques for the inverse problem are more common and applicable to 

more diverse crack shapes and conditions [5-12]. Huge computational power may, however, be required to solve 
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complex inversion problems numerically. Artificial intelligence based methods have been used to reduce the 

inversion problem to a simpler classification task [13-15].

In the railway industry, rolling contact fatigue (RCF) cracks in rails occur due to the high contact stresses between 

the wheel and rail, present even during normal operating conditions. It can be difficult to interpret the information 

received during inspection, that is, to determine the relationship between the signals received from inspection 

hardware and the size of the defects under test. This task is nearly always complicated by the presence of clusters of 

multiple closely-spaced cracks compared to isolated cracks [16, 17]. Following the fatal and economically damaging 

Hatfield, UK, rail derailment [18] inspection of the British railway network revealed more than 2000 sites of 

potentially serious RCF cracks [19]. At the derailment site over 300 cracks were discovered, and the rail had 

fragmented into over 200 pieces. As at this site, RCF cracks in rails often appear in clusters, with the cracks typically 

between 2 and 20 mm apart [20]. Characterisation of clustered cracks using EM testing approaches has only rarely 

been reported [21].

The alternating current field measurement (ACFM) technique can be used for RCF crack detection in rails. Network 

Rail, the GB infrastructure manager, has investigated the use of an ACFM sensor contained in a walking stick system 

[22, 23]. Models have been developed to relate the ACFM signal to crack size (via the pocket length) for isolated 

RCF cracks [24] whilst more recent work has shown the ACFM response for real RCF cracks within clusters is very 

different to that of isolated cracks and that there is a non-linear relationship between the signal response and the 

geometry of the cracks in the cluster [20, 24, 25].

Due to the increased number of parameters that can affect the ACFM signal for crack clusters (crack size, spacing, 

and number in a cluster) compared to isolated cracks, calibration curves as used for sizing isolated cracks are not 

sufficient when considering the sizing of crack clusters. In this paper a machine learning approach using an artificial 

neural network (ANN) is applied to the problem of sizing RCF cracks within clusters using ACFM measurements. 

To achieve this, extensive modelling work, based on defect parameters observed in railway clustered RCF cracks, has 

been undertaken to determine the influence of important crack parameters on the ACFM signal, and to be used as the 

training and validation databases for the ANN. D'Angelo, et al. [61] proposed a method for automatic classification 

of isolated defects from 2D scans using Lissajous figures. While this method can be only applied on isolated cracks, 

it has potential to be further extended to allow extraction of this method’s a priori information about crack clusters 

from 2D scans.

2. NDT techniques in the railway industry
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Railway inspection via NDT has been practised for almost 100 years since the introduction of a mobile magnetic flux 

leakage based system for defect detection by Sperry [26]. More recently, conventional ultrasonic (UT) sensors have 

been the dominant technique for inspection of deep cracks in rails. It requires liquid coupling between sensor and the 

rail and more importantly, suffers from what is known as “crack shadowing”, where the presence of smaller crack(s) 

within a cluster of cracks may block the identification of larger and more critical ones [27]. 

A number of other NDT techniques have been investigated and introduced for the detection of RCF cracks in the 

railway industry. Pulsed EMATs (electromagnetic acoustic transducers) can be used without contact, although they 

are sensitive to lift-off effects and exhibit low sensitivity to small defects [28]. Amongst electromagnetic NDT 

techniques, magnetic flux leakage (MFL), eddy current (EC), and ACFM have been shown to be the most applicable 

techniques for the detection and characterisation of small surface-breaking defects in metals. MFL can be used in 

surface-breaking and shallow subsurface crack detection for cracks >4mm long, although MFL sensors suffer from 

rapid performance deterioration at speed [26, 29, 30]. EC and ACFM can reliably detect small to medium surface-

breaking cracks, and the latter has the added benefit of higher sensitivity to surface cracks and lower sensitivity to 

sensor lift-off than the former [31-33]. Automated NDT for fault diagnosis and condition monitoring is becoming 

increasingly common due to the advancement in sensor technology combined with the computational efficiency of 

modern electronics [34-37]. For a comprehensive overview of the NDT techniques used in the railway industry, the 

reader is referred to [26].

No individual NDT technique has been able to fully meet all of the requirements of railway rail condition inspection, 

namely, robust and reliable detection, deployment at speed and accurate defect characterisation capability for small 

and larger cracks. Combined systems have been deployed on rail measurement trains, for example the Deutsche Bahn 

system [38] using EC and UT technologies. When operating at high speed, inspection is typically limited to detection 

or categorisation of severity such as reported by [39] in a system combining UT, EC and visual technologies; the 

authors suggest employing a machine learning approach for improved defect classification using the signals received 

from their system.

The combination of artificial intelligence (AI) methods with NDT in the railway industry has been proposed or 

reported a number of times [40, 41]. For example, in the automatic processing of image based techniques: for track 

profile inspection [42], detection of missing track-to-sleeper fastening bolts [43], and defect detection in sleepers and 

fastenings [44]. Automatic classification of defective wooden sleepers and quantification of surface length and width 

of cracks was reported in [45] using multi-layer perceptron and support vector machines. Automatic detection of 
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defects in freight car wheels [46] and axles [47] via AI techniques to process the signals from UT testing has also 

been reported. 

Accurate characterisation, over and above purely detection, of the cracks formed within clusters remains to be 

achieved by the majority of the NDT techniques applicable for RCF crack inspection on the railway. Some results in 

this area have been reported using pulsed eddy current thermography. Such an approach, combined with infrared (IR) 

imaging, has been applied to the visualisation of multiple cracks in a rail in a laboratory environment [21]. It shows 

the potential to quantify the subsurface geometry of cracks within clusters, including the angle and depth. Transfer to 

an operational railway environment may be hindered by the potential fragility of the imaging equipment in a harsh 

environment and restrictions on deployment of the technique at speed. A static PEC thermography approach is used 

and an initial investigation conducted into determining defect depths and orientations by extracting the thermal 

response at the crack tip over time [48]. Hesse et al., [17] investigated the use of a surface wave inspection technique 

and considered clusters of cracks. It was found that the interference between signals did not allow precise sizing, but 

it was suggested that some categorisation of severity may be possible.

3. Overview of the ACFM Principle

The ACFM technique induces a locally unidirectional alternating current (AC) into a specimen under inspection. 

This current flows in a thin skin near the surface; the presence of a crack will force the current to flow around the 

ends and down its faces. These changes in the direction of the current will produce non-uniformity in the magnetic 

field which is constantly monitored by an ACFM instrument. The ACFM instrument is moved across or just above 

the surface of a specimen under test and sensors measure two of the components of the magnetic field, that is, tangent 

to the specimen surface ( ) and perpendicular to the direction of induced current flow ( ). As the current passes 𝐵𝑥 𝐵𝑧

down and around the face of a crack a reduction in current intensity produces a trough in the  signal over the centre 𝐵𝑥

of the crack. The maximum reduction from the background level in the  signal, , (see Figure 1) can be 𝐵𝑥 ∆𝐵𝑥𝑚𝑎𝑥

related through inversion of the ACFM signal to the crack’s pocket length, i.e., the length of the crack along its 

direction of propagation below the surface. 

When clusters of closely-spaced cracks are inspected with an ACFM instrument the Bx signal does not return to its 

background level between cracks. For very closely spaced cracks (<5mm, approximately, depending on size), distinct 

troughs are not observed in the one dimensional Bx signal, and for more widely spaced cracks indistinct individual 

troughs may be present [33]. The maximum change in Bx from a scan over the whole cluster is greater than for an 

individual crack of the same size, as shown in the example in Figure 1. While solutions to the inverse problem for 
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isolated cracks are well established, using analytical [23, 49], numerical [24, 50] or empirical [23] methods, the 

determination of the subsurface size of cracks appearing in clusters is not yet fully reported, and is the subject of the 

remainder of this paper via a combined modelling and ANN approach. It will also be shown that sizing of clustered 

RCF cracks based on the technique that is already established for single RCF cracks could result in a large margin of 

error.

Figure 1 Comparison of the ACFM signal between an isolated and clustered crack. The results correspond to a crack of 10 mm surface length and aspect ratio of 
1.5 where the clustered crack consists of 7 uniform cracks of the same size as the isolated crack having an inter-crack spacing of 5 mm.  

4. Modelling Approach

The non-linear nature of the equations governing the interaction of the ACFM signal with a defect makes it 

impractical to obtain a general closed-form solution and invert the ACFM signal. An analytical solution to the 

inverse problem for isolated cracks of semi-elliptical geometry exists [49], but within the ACFM walking stick 

product tested on the GB railway calibration and empirical destructive testing were used to generate look up tables 

for crack sizing since the analytical model gave inaccurate results [23]. Another common approach is the application 

of the finite element method (FEM) to solve the distribution of the magnetic field in the air above the defect and 

tabulation of the measured ACFM signal and respective crack size using the modelled data [32]. In this study, a 

uniform field COMSOL model previously developed for isolated RCF cracks [20, 24, 50, 51] has been extended to 

allow a wider parametric study of clustered RCF cracks closely enough spaced that their ACFM signals overlap (see 

Figure 2). In the model the material properties of the air and the metal domains are: conductivity ( ) 50 and 5x106 𝜎

S/m, respectively, and relative magnetic permeability ( ) 1 and 50, respectively. A non-zero value of air 𝜇𝑟

conductivity is used to avoid singularity issues when solving the forward problem with the FEM solver. In the 
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simulation step, the probe has been modelled using a uniform field approximation, validated in previous work [20, 

24, 50, 51] to simplify resolving the FEA model for each probe position and to speed up the computations. Therefore, 

in the model a uniform incident field has been applied to the conductor domain and the solution of the disturbed 

magnetic field intensity (i.e. and ) above the cracks in the air domain has been sampled at different positions 𝐵𝑥  𝐵𝑧

along the centre line of the crack cluster at a fixed spacing of 0.142 mm.

4.1 Modelled Crack Parameters

The focus of this study is on the application of ACFM in the railway industry. Hence, the range of parameters used 

for the cracks in the model was chosen to represent RCF cracks at their early stage of development where the cracks 

have not yet turned down into the rail and can be removed by grinding. The crack parameters of interest for this study 

are crack surface length ( ), inter-crack spacing ( ), i.e., the average perpendicular distance between the centre of the 𝑆 𝐼

surface components of the cracks, number of cracks in a cluster ( ). Crack aspect ratio ( ) describes the ratio of the 𝑁 𝑅

major axis (a) to the minor axis (b) of an ellipse; the value of the major axis is given, assuming the minor axis is 1, 

thus a ratio of 1.5:1 is denoted R = 1.5. The crack vertical angle ( ) was fixed at 30  [20, 24] while a crack width of 𝑉 °

0.5 mm is used in this model. Shen, et al. [52] showed that, for RCF cracks propagating into a rail at a range of 

angles from 30-90 , the ACFM  signal response to changing crack vertical angle is insignificant. Hence, the  ° 𝐵𝑥 𝐵𝑥

signal can be directly used to determine the crack pocket length.
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Figure 2 An example of the 3D COMSOL model used for study of the ACFM response to clustered RCF cracks in rails; in this case S = 20 mm, R = 1.25, I = 5 
mm and V = 30°. The dotted blue line is the position where the solution of magnetic flux density is extracted to simulate a 1D scan along the rail in the isometric 
(a) and side (c) views; view (b) shows the top view of the  field solution.𝐵𝑥

The range of values of the parameters  and  were chosen based on observations of samples taken from in-𝑆,𝑅,  𝐼 𝑉

service rails in earlier studies [53-55]. The parameter  was limited to 15 as the maximum deviation observed in the 𝑁

ACFM signal saturates for  > 15. The ACFM magnetic field measurements were extracted at a constant, pre-𝑁

calibrated distance from the surface, corresponding to a zero lift-off measurement by the commercial ACFM sensor 

that has been used to validate the simulation results. The cracks are assumed to be planar and semi-elliptical, which 

matches well with empirical observations of small and moderately sized RCF cracks, while it is an appropriate 

simplification in the case of some heavier cracks which have not turned down into the rail [24]. However, errors in 

sizing will arise for the larger cracks as deviations from semi-elliptical shapes occur (discussed in [25]) therefore this 

approach is most suited to sizing small and moderate cracks with the aim to determine required grinding depth for 

maintenance procedures. Cracks within clusters of RCF observed in rail are often of similar size to one another, 

although this is not always the case. Uneven sizes may be observed, for example, when there is mixed traffic using a 

line; in a case like this crack shadowing is a potential problem for UT inspection. Therefore, some of the RCF 

clusters used in this study were modelled with the middle crack in the cluster being larger than the neighbouring 

cracks in terms of both the surface length and pocket length in order to study the robustness of the ANN in sizing 
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such clusters. The parameter  specifies the ratio of the pocket length of the middle crack in a cluster to that of its 𝑀

neighbouring cracks. Table 1 gives a summary of the values used for the parameters of interest.

Table 1 Values of the clustered crack parameters used in the model.

Parameter Note Unit Value

S Crack surface length mm 1,2,4,5,6,7,8,9,10,12,14,15,16,18,20,22,24,25,26,28,30

I inter-crack spacing mm 1,2,4,6,8,10,12

N Number of cracks in a cluster - 3,5,7,9,11,13,15,17

R Crack aspect ratio - 1,1.25,1.5,1.75

V Crack vertical angle ° 30

M Ratio of the largest surface length to the smallest surface length - 1,1.25,1.5,1.75,2,2.25,2.5,2.75,3,3.2,3.5,3.7

In this study, a total of 1985 different sets of clustered cracks were simulated to represent a range of RCF crack 

clusters. The simulation time depends on the scale and complexity of each model as well as the processing power of 

the host platform; for the range of parameters considered in this study, a single simulation’s run time varied between 

approximately 60 and 500 s on a 64-bit operating system with quad core Intel processor running at 3.2 GHz and 

memory of 16 Gb. Figure 2(b) shows the x-component of the magnetic field,  in two dimensions for an example 𝐵𝑥,

crack cluster. The one-dimensional  signal extracted along the centre line of the solution domain is normalised 𝐵𝑥

with respect to the background signal, , taken at a location away from the cracks where the induced current is  𝐵𝑥0

undisturbed. This provides the means to compare the modelling results with experimental measurements obtained 

from an ACFM instrument with digitised output. In each case, the normalised maximum signal reduction, i.e., 
∆𝐵𝑥𝑚𝑎𝑥

𝐵𝑥0

, is obtained from the FEM solution. Determining the relationship between this value and the pocket length × 100 

given the number of cracks, the inter-crack spacing and their surface length is the target of this study.

4.2 Analysis of the modelling results

The effect of the parameters  and  on was studied to help understand the non-linear ACFM response 𝐼 𝑁
∆𝐵𝑥𝑚𝑎𝑥

𝐵𝑥0

× 100 

to clustered cracks (see Figure 3 and Figure 4). The normalised magnetic field scan lines (  for a sample of 
𝐵𝑥

𝐵𝑥0
× 100)

the cases is shown in Figure 5 and Figure 6 which correspond to the data shown in Figure 3 and Figure 4.
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Figure 3 Effect of number of cracks in a cluster ( ) on the ACFM signal. Each curve represents a different set of constant parameters values of ,  and .𝑁 𝑆 𝑅  𝐼

Figure 4 Effect of inter-crack spacing ( ) on the ACFM signal. Each curve represents different sets of constant parameters ( ,  and ).𝐼 𝑆 𝑅  𝑁
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Figure 5 Effect of  (odd numbers from 3 to 11) on the ACFM signal for cracks of small surface length for different values of I and R (here  = 5 mm). Curves 𝑁 𝑆
represent the magnitude of the x-component of the magnetic field  along the centre line of the solution box. In the case of I = 4 mm the individual cracks in a 𝐵𝑥
cluster can be distinguished.

Figure 6 Effect of  on the ACFM signal for cracks of small surface length for different values of N and R (here  = 5 mm). Curves represent distribution of the x-𝐼 𝑆
component of the magnetic field  along the centre line of the solution box.𝐵𝑥
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Figure 3 shows complex behaviour where the effect of  on the ACFM signal is dependent on the values of  and . 𝑁 𝑆   𝐼

For   5 mm the influence of the number of neighbouring cracks on the maximum reduction in the magnetic field 𝑆 ≤

is insignificant, which suggests that individual cracks in a closely-spaced cluster behave as an isolated crack, whereas 

for  > 5 mm the effect of  on the signal depends only on the value of . This dependency weakens with increasing 𝑆 𝑁  𝐼

 and nearly vanishes for   > 4 mm while it intensifies with decreasing . Further, the overall dependency on  𝐼 𝐼   𝐼 𝑁

vanishes for  > 11. Less complex behaviour, however, is observed in Figure 4 where the effect of  on the signal is 𝑁 𝐼

mostly dependent on the value of S; this dependency intensifies with increasing  and weakens with decreasing S 𝑆

until it nearly vanishes for  < 5 mm. The overall dependency on  vanishes for  > 10 mm in the case of S < 20 𝑆 𝐼 𝐼

while there is still a weak dependency for S > 20.

4.3 Comparison with single crack sizing method 

In order to demonstrate the significance of these dependencies on crack sizing using established techniques, a 

calibration curve currently used for sizing of isolated RCF cracks using ACFM measurements [24] was referred to in 

order to evaluate its accuracy for sizing of clustered cracks. To achieve this, eight of the modelled crack clusters were 

selected, Table 2. These clusters were also machined into a steel calibration plate (Figure 7) and experimental ACFM 

measurements were taken. For ease of machining vertical cracks were produced in the calibration plate, noting that 

for V >30° there is no effect of vertical angle on the  value [48]. 𝐵𝑥

Table 2 Parameters of RCF clusters used for extra validations.

Cluster C1 C2 C3 C4 C5 C6 C7 C8

S, mm 5 7 11 15 21 14 5 10

PL, mm 2 2 4.4 5 6 7 2 4

R 1.25 1.75 1.25 1.5 1.75 1 1.25 1.25

I, mm 3 3 5 4 7 5 8 8

N 3 7 3 5 7 7 7 7

Comments - - - - - - middle crack is bigger S = 15, PL = 5 middle crack is bigger S = 15, PL = 5
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Figure 7 Illustration of the calibration block used for experimental validation.

Figure 8 Experimental ACFM  field measurements using a single probe sensor over the cracks in the calibration block. TR1 denotes trial number 1 while C1 𝐵𝑥
denotes cluster 1, etc.
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(a) (b)

Figure 9 (a) Image of the ACFM instrument and (b) illustrations of the ACFM probe used for the experimental measurements (linear dimensions are in mm) [56]. 

Figure 8 shows the experimental  measurements obtained along the scan line passing through the centre of the 𝐵𝑥

cracks of the calibration sample (dashed line in Figure 7) using a commercial ACFM instrument as shown in Figure 

9. The design of the probe is based on a cylindrical coil carrying 5 kHz AC current to induce a current in a specimen 

and two orthogonal “micro” cylindrical coils for measuring the flux density in two directions namely and . 𝐵𝑥 𝐵𝑧

Based on the manufacturer’s specifications, the instrument uses a 16 bits resolution ADC system and the instrument 

has a repeatability of 5 ADC units and an output date rate of 100 Hz. (The high speed sampled data are buffered 

internally by the instrument for signal conditioning purposes before the instrument streams the data to the PC). The 

probe can be used to size cracks of 1 mm deep so, as long as the changes in the overlapping signals due to closely 

spaced cracks compares to the level of a signal for a 1 mm deep crack (approximately 1% normalised value for a 

crack with surface length of 2.5 mm based on the calibration curve), then the instrument should be able to resolve it. 

In the experimental work, the probe was moved over the cracks by hand at low speed. Each measurement was 

repeated three times and the signal from the trial which resulted in the maximum signal reduction was taken. The 

corresponding signal reduction was converted to a normalised value (i.e. ). For the eight clusters this  
∆𝐵𝑥𝑚𝑎𝑥

𝐵𝑥0

× 100

value has been plotted against the surface length of the cracks in Figure 10, alongside the single crack sizing 

calibration curves.

In the sizing method for isolated cracks, given the maximum normalised ACFM signal drop (i.e. ) over  
∆𝐵𝑥𝑚𝑎𝑥

𝐵𝑥0

× 100

the crack and the crack surface length, the crack pocket length may be estimated, assuming a certain semi-elliptical 

shape.  The calibration curves in Figure 10 represent the Bx signal drop of semi-elliptical cracks whose shape is 
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representative of the extremes expected in RCF cracks, that is between semi-circular (R = 1) and whose width is 3.5 

times their pocket length (R = 1.75), refer to Figure 10. As such, the measured ACFM Bx signal drop should fall 

between the upper and lower lines for a known surface length. The pocket length is inferred from the ellipse ratio of 

the line on which the measurement falls or interpolated when the measurement is between lines. 

As can be observed in Figure 10, the signal drop for clusters C1 – C6 falls above all of the curves when plotted 

against the actual surface length. Using the sizing method for isolated cracks this would suggest elliptical ratios of R 

< 1 in each case, when the true elliptical ratios are R = 1 (C6), R = 1.25 (C1, C3), R = 1.5 (C4) and R = 1.75 (C2, 

C5). In fact, the measurements suggest elliptical ratios much less than 1; by interpolation C6 gives approximately R = 

0.5, indicating a pocket length of 21 mm since the surface length is 21 mm. The true pocket length is 6 mm, which is 

severely overestimated by this method. Since the other values are proportionally even further from the R = 1 curve 

for the remaining clusters, C1 – C4 and C6, interpolating a ratio value is inadvisable and would lead to gross 

overestimations of pocket length.

The situation is slightly different for clusters C7 and C8 which each contain 6 smaller cracks and one central larger 

crack with longer surface length and pocket length. For these clusters the measured Bx signal drop has been plotted 

against the surface length of the largest crack per cluster, which is 15 mm in both cases. For C8 interpolating using 

this surface length value gives an elliptical ratio of R = 1.95 and therefore a pocket length of 3.85 mm, which 

undersizes the largest crack (which has 5 mm pocket length), but is close to the pocket length of the remaining cracks 

(4 mm). If the average surface length (10.7 mm) were to be used as input to the method, the pocket length would be 

found to be 5.35 mm. In the case of C8, using the surface length of the largest crack gives a correct estimation of the 

pocket length of the largest crack, which is 5 mm via an elliptical ratio of R = 1.5. If the average surface length, 6.4 

mm, were to be used the interpolation method would be infeasible since the marker falls far from the upper curve. 

Even for this limited sample of two unevenly sized clusters it can be seen that the sizing method is unreliable, and 

only by chance was an accurate measure obtained for C8.
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Figure 10 Experimental ACFM measurements of clusters C1 – C8 plotted against the calibration curve used for sizing isolated cracks. In the case of uneven 
clusters (C7 & C8), the maximum surface length corresponding to the middle crack was used.

To address the problem of sizing cracks in a cluster a machine learning approach is proposed where the crack pocket 

length is predicted by an ANN which is trained to learn the inverse relationship between the ACFM signal and crack 

pocket length based on a training database obtained via modelling. An earlier study by Ravan, et al. [57, 58] 

proposed a neural network approach to reconstruct isolated cracks of multi-humped profile from ACFM 

measurements, although this network would not generalise to the characterisation of clustered cracks. In the present 

study, the inversion aims to map inputs from domain  to  through a non-linear network to predict the crack  𝑅 + 5

𝑅 +

pocket length ( ), given , I, ,  and . In this paper, the parameters , ,  and  are given by prior 𝑃𝐿  𝑆 𝑁 𝑀  
∆𝐵𝑥𝑚𝑎𝑥

𝐵𝑥0

 𝑆 𝐼 𝑁 𝑀

knowledge of the RCF cracks. Methods exist to detect these automatically. For example,  and  can 𝑆 𝑀

straightforwardly be obtained from the  signal [32] while  and  can be obtained using a camera and image 𝐵𝑧 𝐼 𝑁

processing techniques [59, 60]. D'Angelo, et al. [61] proposed a method for automatic classification of isolated 

defects from 2D scans using Lissajous figures. While this method can be only applied on isolated cracks, it has 

potential to be further extended to allow extraction of this method’s a priori information about crack clusters from 2D 

scans.    

5. Architecture of the ANN

This section describes the ANN architecture designed for the specific problem of clustered crack sizing. Different 

architectures of the network design were initially considered including networks with both a single hidden layer and 

multiple hidden layers, however, a multilayer perceptron (MLP) neural network was finally used, consisting of one 

input layer, two hidden layers and one output layer (Figure 11) as it showed a better generalisation capability. A tan-
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sigmoid function has been used as the activation function for the hidden layer due to its non-linear and saturation 

properties for inputs of large absolute values. This is very appealing in the context of the ACFM response to 

clustered cracks where the signal has been shown to saturate with respect to parameters  and  as seen in Figure 3 𝐼  𝑁,

and Figure 4. A linear transfer function has been used for the output layer. The Bayesian regularization (BR) method 

was used for training the network using backpropagation. 

Figure 11 Architecture of the ANN network use as a non-linear regression estimator. Numbers denote the number of neurons used in each layer while w and b 
represent weights and biases used in each layer

5.1 Training Method

To train the network, 70% of the simulated RCF crack models were used, including uneven clusters where   1. 𝑀 ≠

The training set was selected such that it includes cracks covering the whole range of surface lengths modelled. This 

is a crucial step in training a network that aims to allow the network to generalise well, since the ACFM response to 

the parameters of interest has been shown to be different for the different crack categories. Furthermore, the network 

was trained ten times using different random weights and biases and the network with the best performance was used 

for further analysis. The average training time was approximately 15 s.  This reduces the effect of weight 

initialisations and poor convergence due to being trapped in a local minimum during training and contributes to a 

more reliable network with better accuracy and reliability than a network which is trained once. The result of training 

is shown in Figure 12. All the data sets, i.e., training, validation and test sets were assessed to analyse the prediction 

accuracy and generalisation of the network. It can be seen that all the different categories of RCF cracks were 

included in each dataset. The results show that the network can predict the pocket length of a uniform RCF crack 

cluster with a good accuracy, i.e., to within ± 10%. 
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Figure 12 Evaluation of the trained network over the whole dataset.

5.2 Sensitivity Analysis

In order to analyse the accuracy of the trained network in crack sizing from experimental measurements, which 

usually contain some measurement error, the network inputs were subjected to random white noise of varying signal-

to-noise ratio (a time-based seed was used for generation of random numbers to effectively model independence of 

input parameters). The effects of the noise in some input parameters on the network output, crack pocket length, were 

studied. In doing so, the first, second and fourth parameters were considered for the analysis as the parameter N is 

visually measured. In each case, one parameter was subject to an additive white noise error while the other two 

parameters were kept constant. The results (see Figure 13) suggest that the network is most sensitive to the fourth 

parameter, , and least sensitive to the first and second parameters (i.e.  and ). 
∆𝐵𝑥𝑚𝑎𝑥

𝐵𝑥0

𝑆 𝐼
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Figure 13 Plot of the network sensitivity to the input parameters ,  and   . Results are averaged over training, validation and test sets. 𝑆 𝐼
∆𝐵𝑥𝑚𝑎𝑥

𝐵𝑥0

 

6. Results and Discussion of the Network Validation

(a) (b)

Figure 14 The network predictions of the crack pocket length based on (a) simulation data and (b) experimental ACFM measurements.

Figure 14 shows the result of pocket length predictions based on the inputs provided by simulation and experiments. 

The results show a validation error of within 10% for most of the clusters in both cases; however, in the case of the 

experimental data, the prediction errors for C6 & C7 are slightly higher than the rest; this disagreement, however, 

may be accounted for by the experimental procedure, e.g. change of probe direction or lift-off during the 
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measurements as the measurements were manually taken, and inherent variations and can be improved by using an 

automated system to perform the measurements more consistently, e.g. 2D raster scans by a robotic arm.

7. Conclusions

The results of the case study presented in this paper show an effective machine learning approach for sizing of 

clustered cracks. The machine learning approach enables the sizing of clustered cracks using the ACFM technique, 

whose response to these groups of cracks has been shown to be complex due to the interactions caused by the close 

proximity of cracks. The previously established methods and look up tables for isolated cracks are invalid in the 

multiple crack case because they would significantly overestimate the crack size for clustered cracks. 

The technique introduced in this paper involves application of a MLP network which is trained using extensive 

validated modelling data of ACFM responses to clustered cracks, where the complex interaction of different 

parameters of a crack cluster:  surface length, number of cracks, inter-crack spacing and surface length uniformity 

within a crack cluster, have been taken into account resulting in improved prediction accuracy of crack pocket length 

of the largest crack in a cluster (i.e. within 10% error) compared to the previously established methods. The method 

presented in this paper requires a priori information about different parameters of a crack cluster (i.e. ).  𝑆, 𝑁, 𝐼, 𝑀

However, it has potential to be extended to allow prediction of all relevant multiple crack parameters directly from 

the measurements.    

It has been demonstrated for a railway application and has the potential to be incorporated into the software of an 

ACFM-based inspection system deployed on the railway to increase the reliability of the inspection process. It has 

the potential to aid the automation of sizing of RCF cracks based on the data obtained from a low speed inspection 

regime. To implement this technique in a full ACFM inspection system would require further research and potential 

design improvements of the network to deal with more complex RCF crack clusters on in-service rails which 

sometimes exhibit significant non-uniformity of the crack parameters within a cluster. The method presented in this 

paper has the advantage of being a more robust approach compared to using a multi-dimensional lookup table 

because it requires a smaller database which can be easily adjusted to contain cracks of appropriate dimensions to 

suit different applications outside the railway domain where clustered cracks appear in metals.
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