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Occipital Alpha and Gamma Oscillations Support
Complementary Mechanisms for Processing

Stimulus Value Associations

Tom R. Marshall1,2, Sebastiaan den Boer1,3, Roshan Cools1, Ole Jensen1,4,
Sean James Fallon1,2*, and Johanna M. Zumer1,4*

Abstract

■ Selective attention is reflected neurally in changes in the
power of posterior neural oscillations in the alpha (8–12 Hz)
and gamma (40–100 Hz) bands. Although a neural mechanism
that allows relevant information to be selectively processed has
its advantages, it may lead to lucrative or dangerous information
going unnoticed. Neural systems are also in place for processing
rewarding and punishing information. Here, we examine the
interaction between selective attention (left vs. right) and stim-
ulus’s learned value associations (neutral, punished, or re-
warded) and how they compete for control of posterior neural
oscillations. We found that both attention and stimulus–value
associations influenced neural oscillations. Whereas selective
attention had comparable effects on alpha and gamma oscil-
lations, value associations had dissociable effects on these

neural markers of attention. Salient targets (associated with
positive and negative outcomes) hijacked changes in alpha
power—increasing hemispheric alpha lateralization when
salient targets were attended, decreasing it when they were
being ignored. In contrast, hemispheric gamma-band lateraliza-
tion was specifically abolished by negative distractors. Source
analysis indicated occipital generators of both attentional and
value effects. Thus, posterior cortical oscillations support both
the ability to selectively attend while at the same time retaining
the ability to remain sensitive to valuable features in the envi-
ronment. Moreover, the versatility of our attentional system to
respond separately to salient from merely positively valued stim-
uli appears to be carried out by separate neural processes re-
flected in different frequency bands. ■

INTRODUCTION

An organism operating in a complex environment with
limited processing capacity must balance competing re-
quirements. Processing of information associated with rel-
evant stimuli must somehow be prioritized at the expense
of processing of irrelevant information. However, stimuli
with value associations must be able to capture resources
to achieve an expedited processing state (Baluch & Itti,
2011). The brain thus needs to engage in enhanced
processing both voluntarily and in a manner driven by
learned value associations. In this study, we investigated
how these two processes integrate.
The amplitude of alpha-band activity (8–12 Hz) changes

with voluntary attention to selectively engage or sup-
press task-relevant or -irrelevant information, respectively
(Jensen & Mazaheri, 2010; Snyder & Foxe, 2010). Antici-
pation of visual targets decreases alpha activity, whereas
anticipation of visual distractors increases it (Gould,
Rushworth, & Nobre, 2011; Handel, Haarmeier, & Jensen,
2011), and covert attention to one hemifield decreases

parieto-occipital alpha power contralateral to attention
while increasing it ipsilaterally (Thut, Nietzel, Brandt, &
Pascual-Leone, 2006; Worden, Foxe, Wang, & Simpson,
2000). Alpha is under top–down control from high-order
visual regions (Bastos et al., 2015), including the dorsal
attention network (Corbetta & Shulman, 2002), which has
been shown to play a role in voluntary attention (Nobre,
Gitelman, Dias, & Mesulam, 2000; Kastner, Pinsk, De Weerd,
Desimone, & Ungerleider, 1999). Inhibition of dorsal
network regions with TMS disrupts both voluntary atten-
tion and alpha modulation (Marshall, O’Shea, Jensen, &
Bergmann, 2015).

In contrast, gamma-band (40–100 Hz) power in-
creases as a result of voluntary attention (Koelewijn, Rich,
Muthukumaraswamy, & Singh, 2013; Fries, Reynolds,
Rorie, & Desimone, 2001) in a hemifield-specific manner
(Siegel, Donner, Oostenveld, Fries, & Engel, 2008) that
is behaviorally relevant (Hoogenboom, Schoffelen,
Oostenveld, & Fries, 2010). Increased gamma-band syn-
chronization likely emerges from a bottom–up drive to the
visual system (Bastos et al., 2015; van Kerkoerle et al.,
2014) and results in increased neuronal gain, supporting
efficient transfer of information up through a cortical
hierarchy (Tiesinga, Fellous, & Salinas, 2004; Salinas &
Sejnowski, 2001). Thus, increases in gamma power likely
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reflect expedited active processing of visual stimuli (Tallon-
Baudry & Bertrand, 1999).

Attention can be biased by learned associations with
stimuli (Theeuwes & Belopolsky, 2012); stimuli with
positive associations become both easier to select and
harder to ignore (Anderson, Laurent, & Yantis, 2011;
Della Libera & Chelazzi, 2009), and presentation of re-
warding information in a task-irrelevant context impedes
task performance (Hickey, Kaiser, & Peelen, 2015; Krebs,
Boehler, & Woldorff, 2010). Stimuli with negative asso-
ciations also capture attention (Fox et al., 2000); pictures
containing negative objects elicit longer fixation times
and increased recall accuracy (Humphrey, Underwood,
& Lambert, 2012), and negative faces impair performance
on a facial feature counting task (Eastwood, Smilek, &
Merikle, 2003). The attention and reward systems are
likely to be tightly coupled (Baluch & Itti, 2011); value
history and spatial attention induce highly similar biases
in visual cortex in both monkey (Stănişor, van der Togt,
Pennartz, & Roelfsema, 2013) and human (Serences,
2008). It may even be the case that rewards and punish-
ments are a dominant factor in optimizing selective atten-
tion in order for an organism to optimize its interaction
with the environment (Chelazzi, Perlato, Santandrea, &
Della Libera, 2013; O’Brien & Raymond, 2012). Given this
putative tight coupling of value and attention in brain
and behavior, we hypothesize that the electrophysiolog-
ical signatures of selective attention are influenced by
value associations.

In this study, participants performed a visual cueing
task where attention and value were orthogonally
manipulated. Participants first performed a conditioning
manipulation where they learned associations between
stimuli—Chinese characters—and rewards or losses
(Figure 1A). Stimuli acquired both a salience (some
symbols acquired a value connotation, others served as
controls) and a specific valence (reward or loss). Then
participants performed a Posner-type attentional cueing
task during MEG recordings where the conditioned stim-

uli served as targets and distractors. Participants were
told that the learned value associations would apply dur-
ing this test phase (i.e., every presentation of a value-
salient stimulus resulted in a reward or loss for them,
irrespective of task performance) to prevent extinction.
However, the task was to detect a contrast change in
the cued stimulus and thus required only voluntary at-
tention. Thus, attention and value were orthogonally
manipulated.
Stimulus–value associations may interact with attention

to influence posterior neuronal oscillations in three distinct
ways. First, because stimuli with learned connotations—
both rewarding and punishing—need to be prioritized,
it may be that stimuli influence alpha and gamma accord-
ing to their salience. Second, because attentional effects
have been shown for negative stimuli specifically (Eastwood
et al., 2003; Fox et al., 2000), valence may play a role. Third,
the current focus of selective attention, that is, the rele-
vance of a stimulus at the current time, may exert an influ-
ence. This design enabled us to test these three factors
in parallel; the first by comparing the oscillatory responses
to positive and negative stimuli with neutral stimuli, the
second by comparing positive and negative stimuli to each
other, and the third by comparing targets with distractors.

METHODS

Participants

Twenty-eight participants (11 men), aged 23 ± 2.7 years
(mean ± SD) participated in the experiment. Participants
were right-handed, had no prior knowledge of any Chinese
language, and had normal or corrected-to-normal vision.
All experiments were carried out in accordance with the
Declaration of Helsinki and following ethical approval
by the local ethics board (CMO regio Arnhem-Nijmegen,
CMO2001/095). A technical error resulted in experimental
data not being available for one participant, and one partic-
ipant was excluded because of excessive eye movements

Figure 1. Experimental
paradigm. (A) Representative
stimulus set. During the
association phase, two Chinese
characters were paired with a
positive value, two with a
negative value, and two with
no value (“neutral” stimuli).
This allows examination of
the effects of stimulus salience
(by comparing positive and
negative stimuli with neutral)
and of stimulus valence
(by comparing positive with
negative). (B) Example trial of
the learning phase. Participants
were repeatedly shown Chinese characters, which were consistently paired either with a positive value, a negative value, or no value via
visual and auditory feedback. (C) Example trial of the testing phase. Participants were instructed to pay attention to the symbol on the cued side
and report when that symbol changed contrast.
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during the MEG recordings (>90% of all trials). All sensor-
level and statistical analyses were therefore conducted on
the remaining 26 participants. For one further participant,
no structural MRI scan was acquired. All source analysis
was therefore conducted on 25 participants.

Procedure

There were two phases to the experiment: a training
phase and a test phase. During the initial training, partic-
ipants learned associations between Chinese characters
and positive, neutral, or negative outcomes. Then, imme-
diately afterwards, they performed a cued spatial atten-
tion task using these symbols while MEG data were
acquired.
The training phase was conducted in a dimly lit sound-

attenuated room, without electrophysiological record-
ings. Stimulus–reward associations were randomized
over participants. Figure 1A shows one possible set of
stimulus–reward associations. As depicted in Figure 1B,
the trial sequence consisted of white stimuli presented
on a gray background. Each trial started with a fixation
cross that was displayed for 1 sec. Then one of six differ-
ent stimuli was presented, followed by both visual and
auditory feedback. Two stimuli were associated with pos-
itive feedback (+80 cents, “kaching!” sound), two were
associated with negative feedback (−80 cents, “buzz”
sound), and two were associated with neutral feedback
(0 cents, “beep” sound). In this way, stimuli could both
become associated with a salient outcome, with a specific
valence. Participants were instructed to memorize the
stimuli and their associated values. Each stimulus was
presented 12 times. At the end of the learning phase, par-
ticipants were tested on the stimulus–value associations.
Participants performed the subsequent test phase

while MEG was acquired. Figure 1C shows one represen-
tative trial. At the beginning of each trial, three white fix-
ation crosses were presented for 1000 msec, before
dimming for 500 msec to instruct the participant to fixate
on the central cross, to refrain from blinking, and to sig-
nal the upcoming stimuli. Two stimuli were then pre-
sented 8° of visual angle to the left and right of the
fixation cross, simultaneously with a spatial cue consist-
ing of two arrows flanking the central fixation cross. After
an interval of 1450 msec (47% of trials) or 2350 msec
(40%), one stimulus changed contrast. On 13% of trials,
the contrast change occurred after 750 msec; these
“catch” trials were to ensure that participants would
begin directing covert attention rapidly following the
cue. Data from these short-interval trials were not ana-
lyzed. Contrasts could either increase or decrease with
equal probability. On 95% of trials, the cued stimulus
changed contrast, and on 5% of trials, the uncued stimu-
lus changed contrast. Participants were instructed to indi-
cate the direction of contrast change of the cued stimulus
as quickly as possible with a button press using either the
index or middle finger of the right hand (change direc-

tion/finger mapping was randomized across participants).
Participants were instructed not to respond when the
uncued stimulus changed contrast and data from these
trials were also not analyzed. Participants completed
eight blocks of 72 trials. Total task time was approximately
50 min.

Crucially, participants were informed before com-
mencement of the test phase that the previously learned
symbol–reward associations would apply during the test
phase, that is, that each presentation of a given symbol—
whether in the cued or uncued location—would result in
financial reward, financial penalty, or neither (nominal
extinction). This was done to directly test the effects of
reward associations on the neural signals when reward
and attention were orthogonalized (i.e., when task per-
formance did not influence financial outcome).

MEG Data Acquisition

MEG data were recorded from participants in the seated
position using a CTF 275-channel axial gradiometer MEG
system (CTF MEG systems, VSM MedTech Ltd., Coquitlam,
Canada). The MEG data were sampled at 1200 Hz after a
300-Hz low-pass filter was applied. During recordings, the
positions of three fiducial markers (left and right ear canals
and nasion) were continuously monitored in real time via
an in-house head localization software (Stolk, Todorovic,
Schoffelen, & Oostenveld, 2013). This tool was used to
adjust the participants’ head positions in the breaks be-
tween blocks to ensure minimal head movement over
the course of the experiment. Electrocardiogram and
horizontal and vertical EOG were recorded using bipolar
electrode pairs.

MEG Data Analysis

All MEG analyses were performed using the MATLAB
FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen,
2011). Data were demeaned, a linear trend was fitted and
removed, and line noise was removed using a discrete
Fourier transform approach at the principal (50 Hz)
and first and second harmonic (100 Hz, 150 Hz) frequen-
cies. Data were preprocessed using automatic artifact
detection methods to remove trials containing eye blinks
and horizontal eye movements (assessed using the hori-
zontal and vertical EOG channels, respectively) and
SQUID jumps and muscle artifacts (assessed using the
MEG channels).

Synthetic planar gradients were calculated to facilitate
interpretation of MEG sensor topographies. Planar gradient
maxima are known to be located above underlying neural
sources (Bastiaansen & Knösche, 2000; Hari & Salmelin,
1997). First, the axial gradiometer data were converted to
orthogonal synthetic planar gradiometer pairs, then time
frequency representations of power were computed, and
finally the powers of the pairs were combined for a given
sensor pair location. Oscillatory power for low frequencies

Marshall et al. 121



was estimated for the 2–30 Hz frequency bands using a fast
Fourier transform. A sliding time window approach was
used to extract a 500-msec data segment every 50 msec;
data segments weremultiplied with a Hanning taper before
computing the fast Fourier transform. Power for high fre-
quencies was estimated from 30 to 140 Hz in steps of 5 Hz.
Data segments of 200 msec were extracted every 50 msec
and multiplied with a set of seven orthogonal Slepian
tapers to produce a frequency smoothing of ±20 Hz.

For the alpha band analysis, we focused on the 8–12 Hz
frequency range (Marshall et al., 2015; Okazaki et al.,
2015; Bonnefond & Jensen, 2012; Sauseng, Klimesch,
Gerloff, & Hummel, 2009; Sauseng et al., 2005). For
gamma-band analysis, we chose a range of 45–65 Hz
based on inspection of the grand-averaged data. We also
preselected relevant time windows. For both frequency
bands, a 750-msec window of interest was selected from
450–1200 msec following the onset of the visual stimuli.
This time window was used to avoid contamination by
cue-related and stimulus onset-related phase-locked ac-
tivity (because we used a 500-msec sliding time window
for the alpha data and the first change moment could
occur at 1450 msec postcue). We used the same window
for the gamma to compare the alpha and gamma data.

Statistics

The power of time–frequency windows of the MEG data
was averaged across two predefined ROIs consisting of all
parietal and occipital sensors in each hemisphere. Aver-
age oscillatory power values were calculated for these
two ROIs for each of the nine conditions described below.
We then combined these two ROI values into a single
measure for each condition using the lateralization index,
which effectively controls for individual differences in
overall power by normalizing to the sum of the power
values in the two ROIs (Haegens, Handel, & Jensen,
2011; Thut et al., 2006) according to the formula

ALI j ¼ ðPowerj; ipsilateral hemisphere

−Powerj; contralateral hemisphereÞ=
Powerj; ipsilateral hemisphere

þPowerj; contralateral hemisphereÞ

Here, “contralateral” and “ipsilateral” refer to the direction
of attention. The three possible target values (positive,
negative, neutral) and three possible distractor values
(positive, negative, neutral) created a total of nine possible
experimental conditions. For both alpha and gamma
bands, lateralization index values were calculated for
each participant and each of the nine conditions and en-
tered into a 3 × 3 repeated-measures ANOVA (rmANOVA).
Greenhouse–Geisser correction was performed where
necessary. Post hoc analysis was performed using paired-
samples t tests. Statistical analyses were performed using
SPSS and MATLAB.

Source Analysis

To explore the underlying sources generating the effects
of value on alpha and gamma, we performed a source anal-
ysis using DICS beamforming (Gross et al., 2001). Using
an MNI template brain, a three-dimensional grid with
8-mm spacing was constructed, mirror symmetric about
the sagittal midline. The template brain was then warped
to the individual participant’s anatomical MRIs, and the in-
verse warp was applied to the grids. This produces subject-
specific grids aligned in a common (MNI) space.
Source analyses were conducted separately for each

frequency band of interest. For the alpha band, a 1000-
msec window was used from the cue target interval,
300–1300 msec after the onset of the stimuli. From all
artifact-free trials, the cross-spectral density was computed
using a Slepian taper set consisting of three orthogonal
tapers, with a 10-Hz center frequency and 2-Hz spectral
smoothing. Note that the use of a 1000-msec window for
the alpha-band source analysis contrasts the sensor-level
data where a 750-msec window was used. The longer
window ensures that frequency smoothing can be con-
trolled to precisely an 8–12 Hz band for comparability
with the sensor-level analysis. For the gamma band, a
750-msec window was used from 450 to 1200 msec after
stimulus onset, with a 55-Hz center frequency and 10-Hz
smoothing, that is, at 45–65 Hz band for comparability
with the sensor-level analysis.
The common spatial filter was then used to estimate

average power for each experimental condition: attention
(left, right), target value (positive, negative, neutral), and
distractor value (positive, negative, neutral). From these
data, we then computed attentional lateralization index
(ALI) for each pair of symmetric grid points in the left
and right hemispheres, according to the formula

ALI j ¼ ðPowerj; ipsilateral hemisphere

−Powerj; contralateral hemisphereÞ=
Powerj; ipsilateral hemisphere

þPowerj; contralateral hemisphereÞ
We then computed the grand average for each reward

condition and extracted the “peak” grid point displaying
maximum lateralization in each value condition. We then
interpolated these lateralization maps to a high-resolution
anatomical template for visualization. Finally, we looked
up the peak locations in the AAL atlas (Tzourio-Mazoyer
et al., 2002) to determine the anatomical region in which
lateralization was strongest for each frequency band an
value condition.

RESULTS

Salient Value-associated Targets Increased
Alpha Lateralization

The spatial attention and reward paradigm is shown in
Figure 1. The MEG data were acquired during the testing
phase where we presented the target and distractor
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simultaneously with the spatial cue so that both the alpha
and gamma would be modulated by attention and stimu-
lation concurrently (Figure 1C). We concentrated our
analysis in a 750-msec window locked to the cue. We
quantified the lateralization of alpha power according
to the formula

ALI j ¼ ðPowerj; ipsilateral hemisphere

−Powerj; contralateral hemisphereÞ=
Powerj; ipsilateral hemisphere

þPowerj; contralateral hemisphereÞ:

The contrast detection task with covert spatial atten-
tion produced robust attentional lateralization in the alpha
band (8–12 Hz) in posterior sensors: When participants
were cued to attend to a stimulus on the left, they showed
low alpha power in the right hemisphere compared with
the left hemisphere, and when cued to the right the re-
verse pattern was observed, consistent with many previous
findings (Handel et al., 2011; Thut et al., 2006; Worden
et al., 2000). Figure 2A shows the lateralization index for
low frequencies averaged over all target and distractor
value conditions calculated for the parieto-occipital sensors
where the alpha lateralization effect was largest in the
grand average (Figure 2B, “Grand Average”). Clear, band-
limited activity is visible in the alpha band, beginning ap-
proximately 450 msec after stimulus onset and persisting
until the period where the contrast change could occur.

We focused the subsequent analysis on the 450–1200 msec
interval. Plotting the topographies of each value condition
separately revealed clear differences in the magnitude of
the lateralization as a function of the value of the stimuli
(Figure 2B). Both target and distractor values appeared
to influence the alpha lateralization, with alpha lateraliza-
tion being strongest when targets were salient (positive
or negative) and weakest when distractors were salient.

To quantify the above statistically, alpha-band (8–12 Hz)
lateralization in the period between the cue and the con-
trast, change was computed for each value condition sep-
arately and entered into a 3 × 3 rmANOVA with factors
Target value association (positive, negative, neutral) and
Distractor value association (positive, negative, neutral).
This revealed statistically significant main effects of Target
value, F(2, 50) = 7.85, p = .001, and Distractor value,
F(2, 50) = 3.27, p = .046, but no significant interaction,
F(4, 100) = 1.15, p = .34.

To investigate the main effect of Target value associa-
tion, data were averaged over distractor value association
and compared using paired-samples t tests (Figure 2C).
This revealed significantly higher alpha lateralization indi-
ces for both positive and negative targets compared with
neutral targets: positive targets, t(25) = 3.94, p = .0006,
and negative targets, t(25) = 3.49, p = .0018. Alpha later-
alization indices for positive and negative targets did not
differ from each other, t(25) = 0.12, p = .91. To directly
test the hypothesis that alpha lateralization is sensitive

Figure 2. Alpha lateralization
demonstrates sensitivity to
stimulus salience, but not
to stimulus valence. (A)
Hemispheric alpha lateralization
index, averaged across all
conditions. Clear, band-limited
attentional lateralization is
visible in the alpha band,
persisting until the contrast
change. (B) Topographies of
attentional lateralization in
the 8–12 Hz band for each
value of target and distractor.
(C, D) Both positive and
negative targets (i.e., salient
targets) produced increased
alpha lateralization compared
with neutral targets. (E, F) Both
positive and negative distractors
(i.e., salient distractors) reduced
alpha lateralization compared
with neutral distractors. Error
bars indicate standard errors
of the mean. Asterisks denote
statistical significance; *p < .05,
**p < .01, ***p < .001,
****p < .0001.
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to the association of targets with salient outcomes, alpha
lateralization indices for positive and negative targets
were averaged together and compared with the neutral
target alpha lateralization index in a paired-samples t test
(Figure 2D). This revealed significantly greater values for
value-salient targets, t(25) = 4.63, p = .000097. To com-
pute effect size analysis of the target saliency effect, we
calculated the square of Pearson’s r according to the
formula r2 = t2/(t2 + df ): This revealed an r2 of .46, indi-
cating a large effect size (Cohen, 1988). Thus, alpha oscil-
lations are biased according to the salience of targets.

Salient Distractors Decreased Alpha Lateralization

Similarly, to investigate the main effect of distractor, alpha
lateralization index values were averaged with respect to
target value and compared using paired-samples t tests
(Figure 3E). This revealed significantly greater alpha later-
alization index values for neutral distractors compared
with positive distractors, t(25) = 2.14, p = .043, and
showed a trend for being greater than that of negative
distractors, t(25) = 2.00, p = .057. Positive and negative
distractors did not differ from each other, t(25) = 0.76,
p = .46. To test directly the hypothesis that alpha lateral-
ization is sensitive to the association of distractors with
salient outcomes, alpha lateralization indices for positive
and negative distractors were averaged together and
compared with that from neutral distractors in a paired-

samples t test (Figure 3F). This revealed significantly
reduced alpha lateralization for value-salient distractors,
t(25) = −2.30, p = .03. Effect size analysis of the dis-
tractor saliency effect revealed an r2 of .18, indicating a
medium effect size. Thus, alpha oscillations are biased
by the salience of both targets and distractors, that is,
irrespective of their relevance.

Gamma Lateralization Was Responsive to the
Valence of Distractors

The visual stimuli and covert spatial attention also pro-
duced a modulation of the gamma lateralization index in
the period between stimulus onset and contrast change,
albeit weaker than the alpha modulation, again consistent
with previous work that has shown gamma-band activity
changing as a function of spatial attention (Koelewijn
et al., 2013; Siegel et al., 2008). Figure 3A shows the later-
alization index for high frequencies averaged over all
target and distractor value conditions. Attentional lateral-
ization is visible both before and after the contrast change
moment. Plotting the topographies of each condition
separately revealed a complex picture (Figure 3B). In
some conditions—notably the “neutral target, negative dis-
tractor” condition, the pattern of lateralization seemed to
be reversed compared with the grand average.
To statistically investigate these observed differences,

gamma-band (45–65 Hz) lateralization during the period

Figure 3. Gamma lateralization
demonstrates sensitivity to
distractor valence but not to
distractor salience or to target
value. (A) Gamma attentional
lateralization index, averaged
across all conditions. Lateralized
gamma-band activity is visible in
the interval between stimulus
onset and contrast change.
(B) Topographies of attentional
lateralization in the 45–65 Hz
band for each value of target
and distractor. (C, D) Target
valence and target salience did
not module attention-related
gamma lateralization. (E)
Negative distractors elicited
significantly different levels of
the gamma lateralization index
compared with positive and
neutral distractors. (F) Salient
distractors (i.e., average of
positive and negative) did not
elicit a significantly different
gamma lateralization index
compared with neutral
distractors. Error bars indicate
standard errors of the mean.
Asterisks denote statistical
significance; *p < .05.
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between stimulus onset and contrast change was com-
puted for each condition separately and entered into a
3 × 3 rmANOVA as for the alpha data. This revealed a
statistically significant main effect of Distractor value,
F(2, 50) = 3.74, p = .031, no significant main effect of
Target value, F(2, 50) = 0.023, p= .977, and no significant
interaction, F(4, 100) = 1.21, p = .31.
Although no significant main effect of target value was

revealed by the rmANOVA, we nonetheless tested whether
pairwise differences in gamma lateralization index were
detectable as a function of target outcome-salience or
valence, for consistency with the analysis of the alpha data.
However, pairwise t tests revealed no significant differ-
ences (t < 0.2, p > .9 in all cases; Figure 3C, D).
To investigate the significant main effect of Distractor

value, gamma lateralization indices were averaged with
respect to target value and compared using paired-samples
t tests (Figure 3E). In contrast to the alpha band, this anal-
ysis revealed significantly higher gamma lateralization
indices for negative distractors compared with positive dis-
tractors, t(25) = 2.21, p = .036, and showed a trend as
compared with neutral distractors, t(25) = 2.02, p =
.054. Effect size analysis revealed r2 values of .17 and .20,
indicating medium effect sizes. Gamma lateralization index
values from neutral distractors did not differ significantly
from those of positive distractors, t(25) = −0.904, p = .37.
Thus, gamma oscillations were biased in a valence- and
relevance-specific manner; they were abolished only when
a negative stimulus appeared in the distractor position.
Despite the opposing effects found for positive and

negative distractors, for consistency with the analysis of
the alpha-band data we tested the hypothesis that gamma
lateralization is sensitive to the association of distractors
with salient outcomes. Gamma lateralization index values

for positive and negative distractorswere averaged together
and compared with neutral distractors in a paired-samples
t test (Figure 3F). This did not reveal a significant difference,
t(25) = 0.896, p = .38.

Alpha and Gamma Effects Overlap in
Occipital Cortex

To identify the location of the cortical sources underlying
the observed effects of both voluntary attention and stim-
ulus value on alpha and gamma lateralization, we used a
beamforming approach (Figure 4). Consistent with our
sensor analysis, attentional alpha lateralization was visible
in all value conditions, but markedly stronger when tar-
gets had either positive or negative value and weaker
when distractors had positive or negative value. To con-
firm that the observed alpha and gamma modulations
were occipital, we identified the peak of maximum later-
alization in each value condition and looked up the peak
coordinate in the AAL atlas (Tzourio-Mazoyer et al., 2002;
Table 1). For the alpha band, all conditions showed the
strongest lateralization in the middle portion of the oc-
cipital cortex. For the gamma band, both “positive dis-
tractor” and “neutral” distractor conditions showed the
strongest modulation in superior occipital cortex, with
the “negative distractor” condition showing no lateraliza-
tion in this region. (The actual peak did not correspond
to an AAL-defined region and was in the vicinity of the
cerebellum). This is evidence for occipital generation of
the effects of value history and voluntary attention on

Figure 4. Statistical source maps of the main effects of target and
distractor value on alpha and gamma lateralization indices from the
time period between stimulus onset and contrast change, overlaid
and projected into source space. All effects are clearly maximal in
occipital cortex. Note that no effect of target value was observed in
the gamma band.

Table 1. MNI Coordinates of Maximal Lateralization of
Oscillatory Power for the Different Reward Conditions

Condition Peak Position (MNI) Region (AAL Atlas)

Alpha

Positive targets [3.2 −8.8 1.6] Middle occipital

Negative targets [4.0 −8.8 1.6] Middle occipital

Neutral targets [4.0 −8.0 2.4] Middle occipital

Positive distractors [4.0 −8.8 1.6] Middle occipital

Negative distractors [4.0 −8.8 2.4] Middle occipital

Neutral distractors [3.2 −8.0 2.4] Middle occipital

Gamma

Positive distractors [1.6 −8.8 1.6] Superior occipital

Negative distractors [4.0 −8.8 −3.2] NA

Neutral distractors [1.6 −9.6 2.4] Superior occipital

As alpha lateralization is measure of interhemispheric differences in
power, the sign of the X coordinate is irrelevant. “NA” indicates
that the peak coordinate did not lie in a region defined by the AAL atlas
(Tzourio-Mazoyer et al., 2002).
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alpha and gamma oscillations and could indicate a com-
mon or overlapping source generator for these effects.

DISCUSSION

Our attentional system needs to perform a variety of com-
peting tasks to optimize behavior; voluntary influences
should allow us to focus on relevant information, but stim-
uli with important learned associations should be able to
intrudeonour awareness and “capture”processing resources
even when not directly task relevant. Here, we found that
two important indices of stimulus processing—alpha and
gamma oscillations localized to occipital cortex—were
dramatically influenced by the value associations of
the stimuli, in some cases by as much as a factor of 2
(Figure 3D). Importantly, oscillations in these different
frequency bands were biased in distinct ways according to
the salience, valence, and relevance of the stimuli, suggest-
ing that they may represent complementary mechanisms
for processing stimulus–value associations.

First, alpha lateralization was influenced primarily by
the association of the target and distractor stimuli with
salient financial outcomes; targets associated with finan-
cially salient outcomes increased attentional orienting,
primarily by further decreasing alpha power in target-
processing regions (contralateral to attention), which is
hypothesized to release those regions from inhibition
(Jensen & Mazaheri, 2010). Correspondingly, distractors
associated with salient financial outcomes decreased atten-
tional alpha lateralization. Thus, in addition to its role in
top–down attention (Thut et al., 2006; Worden et al.,
2000), alpha oscillations appear to be important for gating
information according to its acquired salience and irre-
spective of the current task relevance of the stimuli.

In contrast, lateralization of gamma-band activity—
believed to represent active processing and support in-
creased neuronal gain (Jensen, Kaiser, & Lachaux, 2007)—
was influenced by the valence of the distractor. Distractors
associated with losses caused a relative increase in gamma-
band activity in distractor-processing regions (ipsilateral to
attention), suggesting selective enhanced neural gain in
the representation of the distractor stimulus when it was
associated with a negative outcome. Gamma-band activity
thus differentiates items on the basis of their valence—how
positive or negative the stimuli are.

It has previously been shown that both visual alpha
and gamma power may be manipulated by the valences
of the stimuli in the visual field; viewing positive and neg-
ative images decreases posterior alpha power compared
with neutral images (De Cesarei & Codispoti, 2011),
whereas viewing unpleasant (compared with neutral) im-
ages increases posterior gamma power (Popov, Steffen,
Weisz, Miller, & Rockstroh, 2012). Our study comple-
ments and extends these findings, demonstrating that
stimulus–reward associations bias electrophysiological
indices of attentional orienting even when these asso-
ciations are entirely orthogonal to the current task. How-

ever, although attention has been shown to produce
task-specific, behaviorally relevant changes in the ampli-
tude of both alpha and gamma oscillations (Koelewijn
et al., 2013; Handel et al., 2011; Hoogenboom et al., 2010;
Siegel et al., 2008; Thut et al., 2006; Fries et al., 2001), they
most likely rely on different mechanisms (Bastos et al.,
2015; Brunet et al., 2015), which may in turn explain why
different reward associations differentially interacted with
attentional alpha- and gamma-band lateralization.
The dissociation we observed of oscillatory frequency

with stimulus feature may indicate that alpha and gamma
are differentially controlled by two different mechanisms
(Corbetta & Shulman, 2002). Several studies have indicated
that the dorsal network provides top–down control of
posterior alpha oscillations during selective attention
(Marshall et al., 2015), and the intraparietal sulcus (IPS)
may also be involved in the generation of the alpha
rhythm (Thut et al., 2011; Tuladhar et al., 2007). Other
evidence implicates the FEFs and IPS—key nodes in the
dorsal network—in the representation of reward. Visual
cues indicating rewards produce increased activations of
bilateral IPS relative to unrewarding cues (Serences, 2008).
Manipulation of dopamine receptors in FEF has also been
shown to enhance selectivity and reliability of spike re-
sponses to a visual stimulus in V4 (Noudoost & Moore,
2011a). Our results are entirely commensurate with the
notion that voluntary attention and stimulus salience exert
their effects via common mechanisms (Stănişor et al.,
2013). Indeed, we extend this concept by demonstrating
that they share a common electrophysiological signature;
when the target was salient—that is, when attention and
salience were aligned—this produced a “super lateral-
ization” in the alpha band, and when the distractor was
salient—that is, when attention and salience were in
conflict—this attenuated alpha lateralization.
It is interesting that gamma oscillations appear to be

primarily sensitive to negative distractors. Task-irrelevant
unpleasant background information has been shown to
draw attention away from a visual detection task per-
formed at fixation (Hindi Attar & Müller, 2012), and un-
pleasant faces have been shown to increase gamma-band
activity during masked face detection (Luo et al., 2009).
One possible explanation for the interaction of stimulus
valence with stimulus task relevance may be a different
contribution of the dorsal and ventral networks (Corbetta
& Shulman, 2002) to alpha- and gamma-band activity.
Engagement of goal-directed attention to a target may
cause alpha power to decrease, “opening the gate” ( Jensen
& Mazaheri, 2010) and enabling processing of task-relevant
information—for example, a contrast change—equally
for all stimuli. Conversely, goal-directed attention requires
the inhibition—“closing the gate”—of a distractor, poten-
tially via an alpha power increase (Handel et al., 2011).
However, when the distractor signals a financial loss, this
may engage the ventral network, which is believed to act
as a “circuit breaker” (Corbetta & Shulman, 2002). This
would predict that the distractor would capture some
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attentional resources, resulting in increased gamma-band
activity and increased propagation (via greater neuronal
gain) of this signal to higher-order regions. However, it
remains an open question why correspondingly important
information about a financial gain from a task-irrelevant
stimulus did not exert a similar attentional capture as re-
flected in the gamma band. It is known that losses are felt
more keenly than equivalent gains in certain circumstances
(Novemsky & Kahneman, 2005); thus, it may be the case
that a signal of an imminent loss captures more attention
and is processed in a prioritized manner.
As well as considering the contribution of cortical at-

tentional networks to the reward effects reported here,
it is highly plausible that subcortical networks play a role.
A body of evidence links the generation of the cortical
alpha rhythm to the thalamus (Lopes da Silva, 1991),
and the pulvinar has been shown to synchronize regions
of cortex in the alpha range in response to changing
attentional demands (Saalmann, Pinsk, Wang, Li, & Kastner,
2012). Thus, alpha oscillations may be a feature of long-
range synchrony between cortical and subcortical regions.
In contrast, visual stimulus-induced gamma-band activity
is observed in visual cortex but not in LGN (Bastos, Briggs,
Alitto, Mangun, & Usrey, 2014). Because subcortical struc-
tures contribute to the generation of the alpha rhythm
whereas gamma activity emerges locally in the cortex, it
may also be the case that BG substructures involved in
reward and salience processing (Gurney, Prescott, &
Redgrave, 2001) contribute differentially to the modu-
lation of these rhythms with attention. Quantifying the
respective influence of cortical and subcortical structures
on the oscillatory lateralization effects reported here
should be a major question for future research.
A further intriguing hypothesis concerns the role of

neuromodulators in biasing attention. Although both
dopamine and acetylcholine have been posited to play a
role in attentional control (Noudoost & Moore, 2011a;
Herrero et al., 2008), they may differentially contribute to
bottom–up and top–down attention (Hasselmo & Sarter,
2011; Noudoost & Moore, 2011b), which depend on dis-
sociable neural circuits (Buschman&Miller, 2007). Because
gamma-band activity likely reflects a bottom–up drive to
the visual system whereas alpha oscillations are likely
under top–down control (Jensen, Bonnefond, Marshall, &
Tiesinga, 2015), this would suggest dissociable effects of
these two neuromodulators on the different frequency
bands. Indeed, physostigmine—a cholinergic agonist—
selectively enhances attentional modulation of alpha but
does not affect stimulus-induced gamma band activity
(Bauer et al., 2012). Perhaps dopamingeric manipulation
would conversely alter attentional modulation of gamma
activity while leaving alpha activity unaffected. The combi-
nationofMEGwith pharmacologicalmanipulations canpro-
vide useful insights in future studies (Muthukumaraswamy,
2014).
An important feature of this study is the orthogonaliza-

tion of attention and motivation. Although our stimuli

were associated with a positive or negative value before
performance of the MEG task, participants were informed
ahead of time that financial reward and penalty occurred
irrespective of task performance. This reduces the pos-
sibility that participants simply made more effort to per-
form the task well on trials where a rewarding stimulus
was present, because the reward would be received in
any case. This may explain why simple response speed
differences were not observed as a function of stimulus
value. This contrasts with previous studies that may have
confounded the relative contribution of attention and
reward to the observed neural signals (Maunsell, 2004).
Indeed, measuring the effect of financial outcome on atten-
tion directly—as we have done—has been shown to lead
to very different behaviors compared with manipulating
motivation and exerting consequent effects on attention
(LePelley, Pearson, Griffiths, & Beesley, 2015).

In conclusion, two distinct signatures of expedited stim-
ulus processing observed during voluntary attention—
lateralization of occipital alpha- and gamma-band oscil-
latory activity—are both also altered as a function of value
associations of stimuli in the visual field, even when those
value associations are not task relevant. Alpha power alters
when a stimulus is associated with a salient outcome, and
gamma in distractor-processing regions is selectively
boosted when a distractor is negative. Our findings pro-
vide important insights into the interaction between the
behaviorally critical features of value and attention.
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