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Reachability of eigenspaces for interval circulant

matrices in max-algebra

Ján Plavkaa, Sergĕı Sergeevb,1,∗
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B. Němcovej 32, 04200 Košice, Slovakia
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Abstract

A nonnegative matrix A is said to be strongly robust if its max-algebraic
eigencone is universally reachable, i.e., if the orbit of any initial vector ends
up with a max-algebraic eigenvector of A. Consider the case when the initial
vector is restricted to an interval and A can be any matrix from a given
interval of nonnegative circulant matrices. The main aim of this paper is to
classify and characterize the six types of interval robustness in this situation.
This naturally leads us also to study the max-algebraic spectral theory of
circulant matrices and the relation of inclusion between attraction cones of
circulant matrices in max-algebra.

Keywords: Max-algebra, circulant matrices, interval analysis, reachability.
AMS classification: 15A18, 15A80, 65G40, 93C55

1. Introduction

Max-algebra has applications in such fields as discrete event systems and
scheduling theory (among others) [2, 4, 11], and plays a crucial role in the
study of discrete event systems in connection with optimization problems
such as scheduling or project management in which the objective function
depends on the maximum and times operations (or equivalently maximum
and plus via a logarithmic transform). Notice that the main principle of
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discrete events systems consisting of n entities is that the entities work in-
teractively, i.e., a given entity must wait before proceeding to its next event
until certain others have completed their current events. The steady states
of such systems correspond to the max-algebraic eigenvectors of the matri-
ces that describe them, therefore the investigation of reachability of the set
of eigenvectors from a given state by a given system is important for such
applications. Matrices for which the steady states of the corresponding sys-
tems are reached with any nontrivial starting vector are called robust, see [4]
Section 8.6.

In practice, matrix entry values are not exact numbers and usually are
contained within intervals, and therefore interval arithmetic is an efficient
way to represent matrices in a guaranteed way on a computer. A max-
algebraic (tropical) version of interval analysis was developed, e.g., in [12],
which emphasized the polynomiality of some algorithms of max-algebraic
interval analysis. That polynomiality was in striking contrast with NP-
hardness of relevant algorithms previously known in usual interval analysis.
Independently, [7] developed a theory of some max-algebraic linear systems
with interval coefficients and optimization problems over such systems.

When developing interval extensions of linear algebra problems a whole
range of solvability problems routinely arises, by considering all possible com-
binations of quantifiers (as in Definition 2.8 of the present paper). In classical
linear algebra this leads to the notions of united solutions, controllable solu-
tions and tolerable solutions [17, 20]. In max-algebra we similarly have, e.g.,
four types of interval extensions of the max-algebraic spectral problem [8] or
two types of interval extensions of robustness studied in [15].

Similarly to [15], the present paper also considers max-algebraic interval
extensions of robustness and reachability problems. However, we focus on
matrices of a certain special type: circulants. In usual algebra, circulant
matrices have a number of geometric applications [6]. A more recent appli-
cation of circulants can be found in [21]. There, an algebraic construction
based on circulant matrices allows for designing LDPC codes with efficient
encoder implementation, in contrast to designing LDPC codes based on ran-
dom construction techniques which make it difficult to store and assess a
large parity-check matrix or to analyze the performance of the code. In
max-algebra, circulant matrices appear to describe the periodic regime of se-
quences of matrix powers [4, 18]. It is also easy to see that circulant matrices
of a given dimension form a commutative semigroup, both in max-algebra
and in usual linear algebra.
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When considering matrices of special type, it is natural to require that
the set of matrices that is an interval extension of such a matrix can contain
matrices of that type only. This is a basic idea behind the notion of interval
circulant matrix defined here. The main aim of the present paper is thus
to classify and characterize the six types of interval robustness for circulant
matrices in max-algebra. However, obtaining such a characterization is not
possible without a deeper study of properties of circulant matrices in max-
algebra, which is itself of some theoretical interest.

We now outline the organization of the paper and the results obtained
there. Section 2 is devoted to some basic notions of max-algebra and its
connections to the theory of digraphs and max-algebraic convexity. In par-
ticular, we revisit the max-algebraic spectral theory here, focusing on the
eigencone and the attraction cone associated with an arbitrary eigenvalue,
the cyclicity of critical graphs and the ultimate periodicity of max-algebraic
matrix powers and orbits.

Section 3 presents some known as well as some new results on the spec-
tral theory and attraction cones of circulant matrices. In particular, Propo-
sition 3.7 describes the critical node sets of circulant matrices and presents
several formulae for the cyclicity of the critical graph of a circulant matrix.
This result combines together some facts that have been previously obtained
or stated in [14, 15, 22]. The main new result of this section is Theorem 3.10,
which deals with a particular problem of inclusion of the attraction cones of
circulant matrices A and B satisfying A ≤ B and having the same maxi-
mum cycle mean. It appears that inclusion attr(A) ⊆ attr(B) holds for such
circulant matrices. Note that it does not hold for general matrices, as Exam-
ple 2.24 demonstrates. Section 3 also contains several motivating examples.
The proofs of Proposition 3.7 and Theorem 3.10 are deferred to Section 5.

Based on the result about inclusion of attraction cones of Theorem 3.10,
Section 4 characterizes various types of interval robustness which are de-
scribed in Definition 2.8. Some of them can be verified in polynomial time, see
Theorems 4.7, 4.9, 4.15. Other types of robustness reduce to max-algebraic
two-sided systems of equations and inequalities for which efficient algorithms
exist but the problem of constructing a polynomial algorithm remains open.
See Theorems 4.11, 4.13, 4.14.

Subsection 5.1 presents a proof of Proposition 3.7. The proof uses the
fact that any circulant matrix is strictly visualized in the sense of [19] and
relies in part on the results of [9, 10].

Subsection 5.2 presents a proof of Theorem 3.10. In particular, the proof
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draws upon the role of cyclic classes in the max-linear systems of equations
describing attraction cones, as presented in [4] Chapter 8 and [18].

2. Preliminaries

2.1. Main definitions and problem statements

By max-algebra we mean the set of nonnegative numbers R+ equipped
with the usual multiplication a · b and the idempotent addition a ⊕ b :=
max(a, b). These arithmetical operations are then routinely extended to ma-
trices and vectors: in particular, (A⊗B)i,k =

⊕
j Ai,j ·Bj,k and (A⊕B)i,j =

Ai,j ⊕ Bi,j for any two nonnegative matrices A,B of appropriate sizes. We
will also consider the max-algebraic powers of matrices Ak := A⊗ . . .⊗ A︸ ︷︷ ︸

k

.

In what follows, we will be interested in the orbits of vectors under the
action of matrices, that is, the sets

O(A, x) = {x, A⊗ x, A2 ⊗ x, . . .}, (1)

and especially in the case when the orbit of a vector hits an eigenvector of A.
Let us now give formal definitions related to the max-algebraic eigenproblem.

Definition 2.1 (Eigenvalues and Eigenvectors). A value λ ∈ R+ is called
a (max-algebraic) eigenvalue of A ∈ Rn×n

+ if A⊗x = λx for some x ∈ Rn
+\{0}.

The greatest eigenvalue of A will be denoted by λ(A).
The vector x ∈ Rn

+\{0} satisfying A⊗ x = λx is called a (max-algebraic)
eigenvector associated with A.

The eigencone of A associated with eigenvalue λ is defined as the set
containing all eigenvectors of A with associated eigenvalue λ as well as the
zero vector:

V (A, λ) := {x ∈ Rn
+ : A⊗ x = λ⊗ x}.

One of the key notions of the paper is that of attraction cone: the set
which comprises all vectors whose orbit hits a given eigencone.

Definition 2.2 (Attraction cones). The attraction cone of A ∈ Rn×n
+ as-

sociated with eigenvalue λ is the set

attr(A, λ) = {x ∈ Rn
+ : O(A, x) ∩ V (A, λ) 6= ∅}.

We also denote attr(A) := attr(A, λ(A)).
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Any eigencone or any attraction cone is a max cone, in the sense of the
following definition.

Definition 2.3 (Max cones). A set V ⊆ Rn
+ is called a max cone if for

all x ∈ V , y ∈ V any max-linear combination αx ⊕ βy (where α, β ∈ R+)
belongs to V .

We will use the following notational shortcuts.

Definition 2.4 (Index Sets N and N0). We denote

N = {1, . . . , n}, N0 = {0, . . . , n− 1}.

In this paper we deal with the following special class of matrices in max-
algebra.

Definition 2.5 (Circulant Matrices). A matrix A ∈ Rn×n
+ is called circu-

lant, if it has entries Ai,j = at for i, j ∈ N , t ∈ N0 such that t ≡ (j−i)(mod n)
and a0, a1, . . . , an−1 ∈ R+. Equivalently, A is a circulant matrix if it is of the
form

A =


a0 a1 a2 . . . an−2 an−1
an−1 a0 a1 . . . an−3 an−2

...
...

...
...

...
a1 a2 a3 . . . an−1 a0

 .

for some a0, a1, . . . , an−1 ∈ R+. Such a circulant matrix we will also denote
by Z(a0, . . . , an−1).

Circulant matrices will be the main topic of Section 3 and Section 5,
where we will study their spectral theory and attraction cones.

The final part of this paper is devoted to intervals and interval circulant
matrices.

Definition 2.6 (Intervals). A set X ⊆ Rn
+ is called an interval if it is of

the form
X = ×ni=1X i,

for X i nonempty subsets of R+ taking any of the following four forms:

[xi, xi], (xi, xi), (xi, xi], [xi, xi),

for xi, xi ∈ R+.
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Definition 2.7 (Interval Circulant Matrices). By ZC(a0, . . . ,an−1) we
denote the set of all circulant matrices A such that Ai,j ∈ at for i, j ∈ N
and t ∈ N0 such that t ≡ (j − i)(mod n), where a0, . . . ,an−1 are intervals
independently taking any of the four forms listed in Definition 2.6.

A set of circulant matrices that is of the form ZC(a0, . . . ,an−1) for inter-
vals a0, . . . ,an−1 is called an interval circulant matrix.

In the literature on max-algebra, A ∈ Rn×n
+ is called robust if x ∈ attr(A)

for all x ∈ Rn
+, see [4] Section 8.6. In this paper we consider various extensions

of this notion to interval circulant matrices. These extensions are listed in
the following definition.

Definition 2.8 (Interval Robustness). Let X ⊆ Rn
+ be an interval and

ZC(a0, . . . ,an−1) be an interval circulant matrix. Then ZC(a0, . . . ,an−1) is
called

possibly X−robust if (∃A ∈ ZC(a0, . . . ,an−1))(∀x ∈X)[x ∈ attr(A) ] ,

universally X−robust if (∀A ∈ ZC(a0, . . . ,an−1))(∀x ∈X)[x ∈ attr(A) ] ,

tolerance X−robust if (∀A ∈ ZC(a0, . . . ,an−1))(∃x ∈X)[x ∈ attr(A) ] ,

weakly tolerance X−robust if (∃A ∈ ZC(a0, . . . ,an−1))(∃x ∈X)[x ∈ attr(A)]

and X is called

possibly ZC−robust if (∃x ∈X)(∀A ∈ ZC(a0, . . . ,an−1))[x ∈ attr(A) ] ,

tolerance ZC−robust if (∀x ∈X)(∃A ∈ ZC(a0, . . . ,an−1))[x ∈ attr(A) ] .

In particular, the aim of Section 4 will be to derive an efficient character-
ization of these types of interval robustness.

2.2. Associated graphs, critical graphs and periodicity

Let us start with the following basic definition. For relevant definitions
see also, e.g., [4] Section 1.5.

Definition 2.9 (Digraphs, Walks, Cycles and Connectivity). Let G be
a digraph with set of nodes N and set of edges E. A walk on G is a se-
quence W = (i0, i1, . . . , il) with i0, i1, . . . , il ∈ N where each pair (is−1, is) for
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s ∈ {1, . . . , l} is an edge. If i0 = i and il = j then W is said to be connecting
i to j, and l is called the length of W .
G is called strongly connected if for each i, j ∈ N with i 6= j there exists

a walk on G connecting i to j.
For A ∈ Rn×n

+ , the weighted digraph G(A) associated with A is the digraph
with set of nodes N = {1, . . . , n} and set of edges E = {(i, j) : Ai,j 6= 0},
where Ai,j is the weight of an edge (i, j).

If G = G(A) then the weight of W = (i0, i1, . . . , il) is defined by Ai0,i1 ·
Ai1,i2 · . . . · Ail−1,il . This walk is called a cycle if il = i0, with the cycle
(geometric) mean defined by (Ai0,i1 · Ai1,i2 · . . . · Ail−1,i0)

1/l.

Let us also give a separate definition of the maximum cycle mean.

Definition 2.10 (Maximum cycle (geometric) mean). The maximum
cycle (geometric) mean of any A ∈ Rn×n

+ or of G(A) is

n
max
k=1

max
1≤i1,...,ik≤n

(Ai1,i2 · Ai2,i3 . . . Aik,i1)1/k. (2)

The striking importance of this concept in max-algebra is due to the following
fact.

Proposition 2.11 (e.g., [4], Corollary 4.5.6). For any A ∈ Rn×n
+ , its

greatest max-algebraic eigenvalue (λ(A)) is equal to (2).

The concept of irreducible matrix is common for max-algebra and non-
negative linear algebra, and it is most conveniently defined via the associated
digraph.

Definition 2.12 (Irreducible, Reducible and Completely Reducible).
A is called irreducible if G(A) is strongly connected, and reducible otherwise.

Digraph G is called completely reducible if it consists of several strongly
connected subgraphs called components such that there are no walks con-
necting a node from one component to a node of another component. A is
called completely reducible if so is G(A).

Note that any irreducible matrix is completely reducible. Observe also
the following criterion of complete reducibility.

Proposition 2.13. A digraph G = (N,E) is completely reducible if and only
if every edge of E lies in a cycle of G.
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Proof. “If”: Suppose that G contains two maximal strongly connected sub-
graphs G1 and G2 and that there is a walk connecting one subgraph to the
other. Without loss of generality we can assume that the walk does not con-
tain nodes from any other subgraphs, so that it contains an edge (i, j) with
i ∈ G1 and j ∈ G2. As this edge is on a cycle, there is also a walk from j
to i. However, this implies that G1 and G2 both belong to a larger strongly
connected subgraph of G thus contradicting their maximality. Thus the “if”
part is proved.

“Only if”: If G is completely reducible then each edge (i, j) belongs to a
strongly connected subgraph of G, and it belongs to a cycle since there exists
a walk connecting j back to i. �

The following subdigraph of G(A) is crucial for the max-algebraic spectral
theory and it is an example of completely reducible digraph.

Definition 2.14 (Critical Digraphs). The critical digraph of A, denoted
by Gc(A), consists of all nodes and edges of the cycles of G(A) at which the
maximum cycle mean of A (2) is attained. These cycles are called critical
cycles. The nodes of Gc(A) are called critical nodes and their set is denoted
by Nc(A), and the edges of Gc(A) are called critical edges and their set is
denoted by Ec(A).

Corollary 2.15. Any critical graph is completely reducible.

Proof. By Definition 2.14, every edge of Gc(A) belongs to a cycle of Gc(A).
The claim now follows from Proposition 2.13. �

The concept of the digraph’s cyclicity is crucial for the study of attraction
cones (Definition 2.2) and the ultimate periodicity of {At}t≥1 (to be defined
soon).

Definition 2.16 (Cyclicity). For a strongly connected digraph, its cyclic-
ity is defined as the g.c.d. of the lengths of all cycles of that digraph.

Cyclicity of a completely reducible digraph is defined as the l.c.m. of the
cyclicities of its components.

Cyclicity of a digraph G is denoted by σ(G).

We now discuss the ultimate periodicity of max-algebraic matrix powers.
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Definition 2.17 (Ultimate Periodicity). Let {αk}k≥1 be a sequence of
some elements. If there exists T such that αt+σ = αt for all t ≥ T and some
σ (i.e., αt+σ and αt are identical), then {αk}k≥1 is called ultimately periodic.
The least T and the least σ for which the above property holds are called
the transient and the ultimate period of {αk}k≥1 respectively.

Proposition 2.18 ([5]). Let A ∈ Rn×n
+ be an irreducible matrix with λ(A) 6=

0.Then {(A/λ(A))t}t≥1 is ultimately periodic and σ(Gc(A)) is the ultimate
period of that sequence.

In this paper we also need the following trivial extension of Proposi-
tion 2.18 and its consequence for orbits of vectors.

Corollary 2.19. Let A ∈ Rn×n
+ be a completely reducible matrix with λ(A) 6=

0, such that the maximum cycle mean of each component of G(A) is the same
(and equal to λ(A)).Then {(A/λ(A))t}t≥1 is ultimately periodic and σ(Gc(A))
is the ultimate period of that sequence.

Corollary 2.20. Under the conditions of Proposition 2.18 or Corollary 2.19,
{(A/λ(A))t ⊗ x}t≥1 is ultimately periodic for any x ∈ Rn

+.

Let us now introduce some notation related to the ultimate periodicity.

Definition 2.21. Let A ∈ Rn×n
+ have λ(A) 6= 0. If {(A/λ(A))t}t≥1 is ulti-

mately periodic then denote by T (A) the transient and by per(A) the ulti-
mate period of that sequence.

Thus per(A) = σ(Gc(A)) for any A satisfying the condition of Proposi-
tion 2.18 or Corollary 2.19.

The ultimate period of {(A/λ(A))t⊗x}t≥1 does not necessarily equal the
cyclicity of Gc(A), and the attraction cone associated with λ(A) consists of
the vectors for which the ultimate period of {(A/λ(A))t ⊗ x}t≥1 is equal to
1. More precisely, we have the following.

Proposition 2.22. Let A ∈ Rn×n
+ be a completely reducible matrix with

λ(A) 6= 0 such that the maximum cycle mean of each component of G(A)
is the same (and equal to λ(A)). Then

attr(A) = {x ∈ Rn
+ : λ(A)At ⊗ x = At+1 ⊗ x}, where t ≥ T (A).
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Proof. By definition x ∈ attr(A) if and only if As+1 ⊗ x = λ(A)As ⊗ x,
hence λ(A)At ⊗ x = At+1 ⊗ x is sufficient for x ∈ attr(A). For the necessity
observe that As+1 ⊗ x = λ(A)As ⊗ x implies As

′+1 ⊗ x = λ(A)As
′ ⊗ x for

some s′ ≥ max(s, T (A)) and such that (A/λ(A))s
′

= (A/λ(A))t, and hence
At+1 ⊗ x = λ(A)At ⊗ x. �

Corollary 2.23. Under the conditions of Proposition 2.22 attr(A) is a closed
max-cone.

Proof. Under these conditions attr(A) is the solution set of the system
λ(A)At ⊗ x = At+1 ⊗ x. This solution set is a max-cone since it is closed
under taking max-linear combinations (see Definition 2.3) and it is a closed
set since all arithmetic operations of max-algebra are continuous. �

Let us finally consider the attraction cones of the following two matrices
satisfying the conditions of Proposition 2.22.

Example 2.24. Take

A =


0.5 1 0.2 0
1 0.5 0.2 0

0.2 0.2 0.2 0
0 0 0 1

 , B =


0.5 1 0.2 0
1 0.5 0.3 0

0.4 0.4 0.4 0
0 0 0 1


The ultimate periods of {A,A2, A3, . . .} and {B,B2, B3, . . .} equal 2. In the
first case, the periodicity starts from A2 (i.e., we have A2 = A4), and in the
second case it starts from B3 (i.e., we have B3 = B5). The attraction cones
are

attr(A) = {x : A3 ⊗ x = A4 ⊗ x}, attr(B) = {x : B3 ⊗ x = B4 ⊗ x},

where

A3 =


0.5 1 0.2 0
1 0.5 0.2 0

0.2 0.2 0.04 0
0 0 0 1

 , A4 =


1 0.5 0.2 0

0.5 1 0.2 0
0.2 0.2 0.04 0
0 0 0 1

 ,

B3 =


0.5 1 0.2 0
1 0.5 0.3 0

0.4 0.4 0.12 0
0 0 0 1

 , B4 =


1 0.5 0.3 0

0.5 1 0.2 0
0.4 0.4 0.12 0
0 0 0 1

 .
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We further see that in both cases, the systems defining these attraction cones
reduce to just one equation:

attr(A) = {x : 0.5x1 ⊕ x2 ⊕ 0.2x3 = x1 ⊕ 0.5x2 ⊕ 0.2x3},
attr(B) = {x : 0.5x1 ⊕ x2 ⊕ 0.2x3 = x1 ⊕ 0.5x2 ⊕ 0.3x3},

Observe that x = [1 1 5 1] belongs to attr(A) but not to attr(B), and
x = [0.5 1 10

3
1] belongs to attr(B) but not to attr(A).

�

Example 2.24 also shows that Theorem 3.10, the main result of the next
section which claims that attr(A) ⊆ attr(B) for any circulant A,B with
A ≤ B and λ(A) = λ(B), is not true for general completely reducible (or
irreducible) matrices.

3. Circulant matrices: critical graph and attraction cones

Let us start with the following statement, which is well known in usual
linear algebra. See, e.g., [6] Theorem 3.1.1. A proof of it in max-algebra,
which works equally well in the usual linear algebra case, is given below for
the reader’s convenience.

Proposition 3.1. Let A,B ∈ Rn×n
+ be circulant matrices. Then A ⊗ B

is also circulant. In particular, any max-algebraic power of A (or B) is a
circulant.

Proof. Observe that A is a circulant matrix if and only if we can represent
A = a0I ⊕ a1P ⊕ . . .⊕ an−1P n−1, where

P =


0 1 0 . . . 0
0 0 1 . . . 0
... . . .

. . . . . .
...

0 0 . . . 0 1
1 0 . . . 0 0

 .

In this case A = Z(a0, a1, . . . , an−1). Computing A ⊗ B amounts to multi-
plying a0I ⊕ a1P ⊕ . . .⊕ an−1P n−1 by b0I ⊕ b1P ⊕ . . .⊕ bn−1P n−1, assuming
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that A = Z(a0, a1, . . . , an−1) and B = Z(b0, b1, . . . , bn−1). This multiplica-
tion results in an expression of the form c0I⊕ c1P ⊕ . . .⊕ cn−1P n−1, thus also
a circulant.

Writing At as At−1⊗A for every t ≥ 2, we also show that At is a circulant
by a simple inductive argument. �

The following observation will play a key role in proving many properties
of circulants.

Lemma 3.2. Let A ∈ Rn×n
+ be a nonzero circulant matrix and let Ai,j =

µ 6= 0 for some i, j ∈ N . Then (i, j) belongs to a cycle (i1, . . . , in, i1) with
it− it−1 ≡ (j− i)(mod n) for all t ∈ {2, . . . , n}, and i1− in ≡ (j− i)(mod n).
The weight of each edge in (i1, . . . , in, i1) equals Ai,j = µ.

Proof. Consider an infinite sequence {i`}`≥1 where i1 = i, i2 = j, i`+1 − i` ≡
(j − i)(mod n) for all ` ≥ 1 and i` ∈ N for all ` ≥ 1. By Definition 2.5,
Ai`,i`+1

= Ai,j for all ` ≥ 1. However, we also have that in+1 = i1 since
in+1 − i1 ≡ n · (j − i)(mod n) = 0(mod n). Hence the claim follows. �

Proposition 3.3. Let A = Z(a0, . . . , an−1). Then A has a unique max-
algebraic eigenvalue equal to

λ(A) =
n−1
max
k=0

ak. (3)

If A 6= 0 then λ(A) 6= 0 and all nodes in N are critical.

Proof. If A 6= 0 then max(a0, . . . , an−1) > 0. In this case, let i and j be
such that Ai,j = µ > 0. By Lemma 3.2 (i, j) belongs to a cycle (i1, . . . , in, i1)
where the weights of all edges are equal to µ. It follows that the cycle mean
of that cycle is also µ. Thus, the maximal cycle mean is equal to the maximal
weight of edges, which shows (3). Taking k such that ak = λ(A), for each
i ∈ N we have j with k ≡ (j − i)(mod n) such that Ai,j = λ(A), hence each
i ∈ N is on a critical cycle. Since all nodes G(A) are critical, A has a unique
eigenvalue equal to λ(A) as it follows, e.g., from [4] Corollary 4.5.8.

If A = 0 then max(a0, . . . , an−1) = 0 = λ(A). �

Note that equation (3) was obtained already in [16], Theorem 2.1. How-
ever, we preferred to give a partially self-contained proof of this equation for
the reader’s convenience.
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Corollary 3.4. Let A ∈ Rn×n
+ be a circulant matrix. Then λ(A) = 0 if and

only if A = 0.

Proof. Obviously, λ(A) = 0 if A = 0. The ”only if” part is equivalent to the
implication (A 6= 0)⇒ (λ(A) 6= 0) stated in Proposition 3.3. �

We now formulate the following immediate corollary of Proposition 2.13.

Corollary 3.5. Any circulant matrix A is completely reducible.

Proof. If A = 0 then G(A) has no edges and is completely reducible. Oth-
erwise, by Lemma 3.2 any edge of G(A) belongs to a cycle, and the claim
follows from Proposition 2.13. �

Proposition 3.6. For any nonzero circulant matrix A ∈ Rn×n
+ the matrix

sequence {(A/λ(A))t}t≥1 is ultimately periodic, and T (A) ≤ (n− 1)2 + 1.

Proof. For the first part of the claim observe that any circulant matrix is
completely reducible by Corollary 3.5, and that by Proposition 3.3 λ(A) is
the maximum cycle mean of any maximal strongly connected component of
G(A).

Since λ(A) = 0 implies A = 0 by Corollary 3.4, we can assume λ(A) = 1
without loss of generality. Since all nodes of G(A) are critical, the transient
of periodicity of {A,A2, A3, . . .} is the same as the greatest transient of peri-
odicity of any sequence of rows of these powers {Ai•, A2

i•, A
3
i•, . . .} where i is

critical. However, these transients are bounded by (n− 1)2 + 1 by [13] Main
Theorem 1. �

The following proposition gives more information on the critical graph
and cyclicity of circulant matrices.

Proposition 3.7. Let A = Z(a0, . . . , an−1) 6= 0 and let p1, . . . , ps ∈ {1, . . . , n−
1} be the nonzero indices for which ap1 = . . . = aps = λ(A) (if such indices
exist) and such that p1 > p2 > . . . > ps. Then

(i) Gc(A) consists of m = gcd(n, p1, . . . , ps) isomorphic strongly connected
components. Node set of the ith component, for i ∈ {1, . . . ,m}, is
{i, i+m, . . . , i+ (n/m− 1)m}.
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(ii) per(A), equal to the cyclicity of each of these components, is 1 if a0 =
λ(A) and

per(A) = gcd(
n

gcd(n, p1)
,
p1 − p2

gcd(p1, p2)
,
p1 − p3

gcd(p1, p3)
, . . . ,

p1 − ps
gcd(p1, ps)

)

= gcd(
n

gcd(n, p1)
,
p1 − p2

gcd(p1, p2)
,
p2 − p3

gcd(p2, p3)
, . . . ,

ps−1 − ps
gcd(ps−1, ps)

)

= gcd(
n

gcd(n, p1)
,

p1 − p2
gcd(n, p1, p2)

,
p1 − p3

gcd(n, p1, p2, p3)
. . . ,

p1 − ps
gcd(n, p1, . . . , ps)

)

(4)

if a0 6= λ(A).

Parts of this statement can be found in [15] Theorem 4.1 and Lemma 4.1.
Essentially, part (i) was proved in [14] Lemma 4.2 and Lemma 4.3, although
in the max-min algebra setting. The number gcd(n, p1, . . . , ps) also appeared
in [22] Theorem 4 as the ”eigenspace dimension”. The result of part (ii)
relies on [9] (Theorems 3.1 and 3.3) where the cyclicity of threshold circulant
graphs (see Definition 5.3) was studied. We will give a complete proof of (i)
and a reduction of (ii) to the results of [9] in Subsection 5.1, for the reader’s
convenience.

Let us now describe the attraction cone of a circulant matrix as a solution
set of a max-algebraic two-sided system of equations.

Proposition 3.8. Let A ∈ Rn×n
+ be a circulant matrix. Then

attr(A) = {x : λ(A)An
2 ⊗ x = An

2+1 ⊗ x}.

Proof. By Corollary 3.4, λ(A) = 0 if and only if A = 0, in which case
attr(A) = Rn

+ and An
2

= An
2+1 = 0, and the claim holds trivially. Oth-

erwise, by Corollary 3.5 A is completely reducible and by Proposition 3.3
the maximal cycle mean of each component of G(A) is the same. The claim
then follows since A satisfies the conditions of Proposition 2.22 and since
n2 ≥ T (A) by Proposition 3.6. �

Let us examine the attraction cone of a 4× 4 circulant matrix.
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Example 3.9. Consider

A =


0 0 1 t
t 0 0 1
1 t 0 0
0 1 t 0

 ,

where t : 0 < t < 1. This is a circulant matrix, λ(A) = 1, and Gc(A) consists
of two disjoint cycles: (1 3) and (2 4). The cyclicity of Gc(A) is thus equal
to 2 and so is the ultimate period of the max-algebraic matrix powers of A.
Taking the max-algebraic powers of A we obtain

A2 =


1 t t2 0
0 1 t t2

t2 0 1 t
t t2 0 1

 , A2k =


1 t t2 t3

t3 1 t t2

t2 t3 1 t
t t2 t3 1

 ∀k ≥ 2,

A2k−1 =


0 0 1 t
t 0 0 1
1 t 0 0
0 1 t 0

 ∀k ≥ 2.

In particular, the periodicity transient is T (A) = 3. By Proposition 3.8 we
have attr(A) = {x : A16⊗ x = A17⊗ x}, implying that the attraction cone is
precisely the set of vectors x = (x1 x2 x3 x4) that satisfy

x1 ⊕ tx2 ⊕ t2x3 ⊕ t3x4 = t2x1 ⊕ t3x2 ⊕ x3 ⊕ tx4
tx1 ⊕ t2x2 ⊕ t3x3 ⊕ x4 = t3x1 ⊕ x2 ⊕ tx3 ⊕ t2x4.

(5)

System (5) can be further reduced using the cancellation rule

a⊕ b = ta⊕ c⇔ a⊕ b = c,

where t < 1 and a, b, c are arbitrary. Repeatedly applying this rule we obtain
the system

x1 ⊕ tx2 = x3 ⊕ tx4
tx1 ⊕ x4 = x2 ⊕ tx3,

(6)

equivalent to (5).
Now observe that x = [t 1 t2 1] satisfies this system of equations and

belongs to the attraction cone. In particular, the ultimate period of {Atx}t≥1
is 1, however, A ⊗ x 6= x which shows that attr(A) is not the same as the
(max-algebraic) eigencone of A in this case.
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The following theorem is one of the main results of the paper. Its proof
is postponed to Subsection 5.2.

Theorem 3.10. Let A,B ∈ Rn×n
+ be two circulant matrices such that λ(A) =

λ(B) and A ≤ B. Then attr(A) ⊆ attr(B).

Let us give two examples demonstrating this theorem. In the first example
we have two 0-1 matrices, and in the second one we consider the matrix of
Example 3.9 with two different values of t.

Example 3.11. Let us first consider a pair of 0-1 matrices:

A =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

 , B =


0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1
1 0 1 0 0 0

 .

Observe that the sequence {At}t≥1 is periodic from the very beginning. The
system A36 ⊗ x = A37 ⊗ x, being the same as A ⊗ x = A2 ⊗ x, reduces to
x1 = x2 = x3 = x4 = x5 = x6.
The sequence {Bt}t≥1 becomes periodic from T (B) = 3. More precisely, we
have

B2k−1 =


0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0

 , B2k =


1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1

 , k ≥ 2,

and the system B36 ⊗ x = B37 ⊗ x reduces to x1 ⊕ x3 ⊕ x5 = x2 ⊕ x4 ⊕ x6,
thus attr(A) ⊆ attr(B). �

Example 3.12. Take

A =


0 0 1 t1
t1 0 0 1
1 t1 0 0
0 1 t1 0

 , B =


0 0 1 t2
t2 0 0 1
1 t2 0 0
0 1 t2 0


16



with 0 < t1 < t2 < 1. Then attr(A) is the set of all x satisfying (6) with
t = t1, which is

x1 ⊕ t1x2 = x3 ⊕ t1x4
t1x1 ⊕ x4 = x2 ⊕ t1x3,

(7)

and attr(B) is the set of all x satisfying

x1 ⊕ t2x2 = x3 ⊕ t2x4
t2x1 ⊕ x4 = x2 ⊕ t2x3,

(8)

We next show that attr(A) ⊆ attr(B) in this example, by considering various
special cases.

Suppose first that we have t1x2 = t1x4 ≥ x1 ⊕ x3 in the first equation
of (7). This implies x2 = x4 ≥ t2(x1 ⊕ x3) ≥ t1(x1 ⊕ x3) and t2x2 = t2x4 ≥
(x1 ⊕ x3). This shows that in this case x belongs to both attr(A, 1) and
attr(B, 1). The case when t1x1 = t1x3 ≥ x2 ⊕ x4 in the second equation
of (7) is treated similarly.

Suppose now that x ∈ attr(A) and t1x2 = x3 ≥ x1 ⊕ t1x4. As we cannot
have t1x1 = x2 and x4 = t1x3 in the second equation of (7), assume that x2 =
x4 ≥ t1(x1 ⊕ x3). But this implies t1x2 = t1x4, and as t1x2 is the maximum
in the first equation, this returns us to the case which we considered first,
where x ∈ attr(B). We also note three other similar cases that are treated
in the same way.

The remaining case when x ∈ attr(A), x1 = x3 ≥ t1(x2 ⊕ x4) and
x2 = x4 ≥ t1(x1 ⊕ x3) is impossible when t1 < 1. �

4. Interval robustness of circulant matrices

In this section we characterize the six types of interval robustness of
Definition 2.8 for interval circulant matrix ZC(a0, . . . ,an−1) and interval
X = ×ni=1X i where X i and ai are intervals independently taking one of the
following four forms:

[xi, xi], (xi, xi), (xi, xi], [xi, xi)

and
[aj, aj], (aj, aj), (aj, aj], [aj, aj)

for xi, xi ∈ R+ and i ∈ N , and aj, aj ∈ R+ and j ∈ N0, respectively.
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4.1. Universal and possible X−robustness

Let us introduce the following notation.

Definition 4.1 (Matrices A(k) and vectors x(k)). For a given index k ∈
N0 denote

A(k) = Z(a0, a1, . . . , ak−1, ak, ak+1, . . . , an−1),

and
x(k) = (x1, x2, . . . , xk−1, xk, xk+1, . . . , xn)

The following lemma explains the use of vectors x(k).

Lemma 4.2. Let X ⊆ Rn
+ be an interval and let A ∈ Rn×n

+ . Then X ⊆
attr(A) if and only if x(i) ∈ attr(A) for each i ∈ N.

Proof. Observe first that since the cone attr(A) is a closed set by Corol-
lary 2.23, the inclusion X ⊆ attr(A) is equivalent to cl(X) ⊆ attr(A), where
cl is a Euclidean closure. Since x(i) ∈ cl(X) for all i ∈ N (as vertices of the
box cl(X)), it follows that the condition is necessary. Let us show that this
condition is also sufficient. For this we will show that

x =
n⊕
k=1

xk
xk
x(k). (9)

Indeed, observe that when k 6= i we have that xk/xk ≤ 1 implies (xk/xk)x
(k)
i ≤

xi, and when k = i we obtain (xi/xi)x
(i)
i = xi. Since xi ≤ xi, we obtain that

n⊕
k=1

xk
xk
x
(k)
i = (xi/xi)x

(i)
i = xi,

for all i, so (9) holds. Thus x can be expressed as a max-linear combination of
x(k) for k ∈ N and x ∈ attr(A) since attr(A) is a max-cone (Definition 2.3). �

Definition 4.3 (Matrix Â). For a = max
k∈N0

ak define

Â = Z(â0, â1, . . . , ân−1),

where
âi = min{a, ai}, for each i ∈ N0.
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Let us characterize the cases when Â = 0 and when Â ∈ ZC(a0, . . . ,an−1).

Proposition 4.4. Let ZC(a0, . . . ,an−1) be given. Then

(i) Â = 0⇔ a = 0⇔ A = 0⇔ λ(A) = 0.

(ii) If ∀i : ai = [ai, ai], then Â ∈ ZC(a0, . . . ,an−1).

(iii) Â ∈ ZC(a0, . . . ,an−1)⇔ ∀i : (a ≥ ai ⇒ ai ∈ ai)&(a ≤ ai ⇒ a ∈ ai).

Proof. (i): Let us show that Â = 0⇔ a = 0. By Definition 4.3 it is immedi-
ate that a = 0 implies Â = 0. Next, assume that Â = 0. Then ai = 0 for all
i, which implies ai = 0 for all i, hence a = 0. The equivalence a = 0⇔ A = 0
is obvious, and A = 0⇔ λ(A) = 0 follows from Corollary 3.4.
(ii) and (iii): Straightforward. �

Matrices Â and A(k) for k = 0, . . . , n− 1 have the following useful prop-
erties.

Lemma 4.5. If Â 6= 0, then (∀A ∈ ZC(a0, . . . ,an−1))[(A/λ(A)) ≤ (Â/λ(Â)].

Proof. Observe that Â 6= 0 implies that A = 0 does not belong to the interval
matrix ZC(a0, . . . ,an−1). Recalling that âi = min(ai, a) for all i we see that
âi ≤ a for all i and that âk = a for k such that ak = a. Hence λ(Â) = a by
Proposition 3.3. Showing (A/λ(A)) ≤ (Â/λ(Â) means showing

ai/max
k
ak ≤ min(ai, a)/a ∀i. (10)

To prove (10) we observe that it follows from the inequality

ai · a ≤ max
j
aj ·min(ai, a) ∀i, (11)

which is
ai · a ≤ max

j
aj · a (12)

when min(ai, a) = a, and

ai ·max
i
ai ≤ ai ·max

j
aj (13)

when min(ai, a) = ai. Both (12) and (13) are obvious. This shows (11) and
hence (10) and (A/λ(A)) ≤ (Â/λ(Â)). �
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Lemma 4.6. For any nonzero A ∈ ZC(a0, . . . ,an−1) there exists A(k) 6= 0
for some k ∈ N0 such that [(A(k)/λ(A(k))) ≤ (A/λ(A))].

Proof. Let A = Z(a0, . . . , an−1) and let k be such that ak = maxj∈N aj. Con-
sider A(k). Since ak ≥ ak > 0 but the rest of the components defining A(k)

are ai ≤ ai for i 6= k, we have λ(A(k)) = ak and (A(k)/λ(A(k))) ≤ (A/λ(A)). �

We now characterize possibly X-robust and universally X-robust interval
circulant matrices.

Theorem 4.7. Let X ⊆ Rn
+ be an interval, and let ZC(a0, . . . ,an−1) ⊆

Rn×n
+ be an interval circulant matrix containing Â. Then ZC(a0, . . . ,an−1)

is possibly X-robust if and only if we have x(i) ∈ attr(Â) for all i ∈ N .

Proof. We need to show that there exists A ∈ ZC(a0, . . . ,an−1) such that
X ⊆ attr(A) if and only if x(i) ∈ attr(Â) for all i ∈ N . If Â = 0 then
attr(Â) = Rn

+ and the claim is obvious. Next we suppose that Â 6= 0

which implies λ(Â) 6= 0 by Corollary 3.4. By Proposition 4.4 part (i),
ZC(a0, . . . ,an−1) contains only nonzero matrices in this case.

“If”: By Lemma 4.2, the condition implies that X ⊆ attr(Â). The claim
then follows since Â ∈ ZC(a0, . . . ,an−1).

“Only if”: Let A ∈ ZC(a0, . . . ,an−1) be such that X ⊆ attr(A).
By Lemma 4.5 we have (A/λ(A)) ≤ (Â/λ(Â), and Theorem 3.10 yields
that x ∈ attr Â. As x ∈ attr Â for all x ∈ X, the claim then follows from
Lemma 4.2. �

Corollary 4.8. Let x ∈ Rn
+ and let ZC(a0, . . . ,an−1) ⊆ Rn×n

+ be an interval

circulant matrix containing Â. Then (∃A ∈ ZC(a0, . . . ,an−1))[x ∈ attr(A)]
if and only if x ∈ attr(Â).

Proof. Take X = {x} then the possible X-robustness means existence of
A ∈ ZC(a0, . . . ,an−1) such that x ∈ attr(A) and x(i) = x for all i ∈ N . The
claim then follows from Theorem 4.7. �

Theorem 4.9. Let X ⊆ Rn
+ be an interval, and let ZC(a0, . . . ,an−1) ⊆

Rn×n
+ be an interval circulant matrix. Then ZC(a0, . . . ,an−1) is universally

X-robust if and only if x(j) ∈ attr(A(i)) for all i ∈ N0 and j ∈ N .
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Proof. We need to show that X ⊆ attr(A) for all A ∈ ZC(a0, . . . ,an−1) if
and only if x(j) ∈ attr(A(i)) for all i ∈ N0 and j ∈ N .

“If”: Let x(j) ∈ attr(A(i)) hold for all i ∈ N0 and j ∈ N . Take A ∈
ZC(a0, . . . ,an−1). If A = 0 then x(j) ∈ attr(A) = Rn

+. Otherwise, by
Lemma 4.6 there exists k ∈ N0 such that A(k) 6= 0 and (A(k)/λ(A(k))) ≤
(A/λ(A)). Applying Theorem 3.10 to (A(k)/λ(A(k))) and (A/λ(A)) we obtain
x(j) ∈ attr(A) for all nonzero x(j), hence X ⊆ attr(A).

“Only if”: Take a sequence {As}s≥1 ⊆ ZC(a0, . . . ,an−1) such that
lims→∞As = A(k), and take any x ∈ X. Since x ∈ attr(As) for all s, by
Proposition 3.8 we have λ(As)A

n2

s ⊗x = An
2+1
s ⊗x for all s, and by the conti-

nuity of the arithmetic operations of max-algebra we obtain λ(A(k))(A(k))n
2⊗

x = (A(k))n
2+1 ⊗ x. As x ∈ attr(A(k)) for all x ∈ X, the claim then follows

from Lemma 4.2. �

Corollary 4.10. Let x ∈ Rn
+, and let ZC(a0, . . . ,an−1) ⊆ Rn×n

+ be an inter-
val circulant matrix. . Then (∀A ∈ ZC(a0, . . . ,an−1)) [x ∈ attr(A) ] if and
only if x ∈ attr(A(k)) for each k ∈ N0.

Proof. Take X = {x} then the universal X-robustness means that
x ∈ attr(A) for all A ∈ ZC(a0, . . . ,an−1). The claim then follows from
Theorem 4.9. �

4.2. Tolerance and weak tolerance X−robustness

Theorem 4.11. Let X ⊆ Rn
+ be a closed interval, and let ZC(a0, . . . ,an−1) ⊆

Rn×n
+ be an interval circulant matrix. Then ZC(a0, . . . ,an−1) is tolerance

X−robust if and only if (∀k ∈ N0)[(attr(A(k)) ∩X) 6= ∅].

Proof. “If”: Take A ∈ ZC(a0, . . . ,an−1). If A = 0 then attr(A) = Rn
+, hence

attr(A)∩X 6= ∅. Otherwise, for each i ∈ N0 take y(i) ∈ (X ∩ attr(A(i))], By
Lemma 4.6 there exists k ∈ N0 with (A(k)/λ(A(k))) ≤ (A/λ(A)). Applying
Theorem 3.10 to (A(k)/λ(A(k))) and (A/λ(A)) we obtain y(k) ∈ attr(A), hence
the implication.

“Only if”: For any k ∈ N0 take a sequence {As}s≥1 ⊆ ZC(a0, . . . ,an−1)
such that lims→∞As = A(k). For each of these matrices there exists xs ∈ X
such that xs ∈ attr(As). Then by Proposition 3.8 we have λ(As)A

n2

s ⊗ xs =
An

2+1
s ⊗xs for all s. Since X is compact, we can assume that lims→∞ x

s exists
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and denote it by y(k). Then we obtain that by the continuity of arithmetic
operations of max-algebra λ(A(k))(A(k))n

2 ⊗ y(k) = (A(k))n
2+1 ⊗ y(k). Hence

y(k) ∈ attr(A(k)). �

Corollary 4.12. Under the conditions of Theorem 4.11, ZC(a0, . . . ,an−1)
is tolerance X−robust if and only if all systems

λ(A(k))(A(k))n
2 ⊗ y = (A(k))n

2+1 ⊗ y, y ∈X, (14)

with k ∈ N0 such that A(k) 6= 0 are solvable.

We now characterize the weak tolerance robust matrices.

Theorem 4.13. Let X ⊆ Rn
+ be an interval and let ZC(a0, . . . ,an−1) ⊆

Rn×n
+ be an interval circulant matrix containing Â. Then ZC(a0, . . . ,an−1)

is weakly tolerance X−robust if and only if λ(Â)(Â)n
2 ⊗ x = (Â)n

2+1 ⊗ x is
solvable with x ∈X.

Proof. By Corollary 4.8, x ∈ X and A ∈ ZC(a0, . . . ,an−1) such that
x ∈ attr(A) exist if and only if x ∈ attr(Â) for some x ∈ X. This, by
Proposition 3.8, is equivalent to λ(Â)(Â)n

2 ⊗ x = (Â)n
2+1⊗ x being solvable

with x ∈X. �

4.3. Possible and tolerance ZC(a0, . . . ,an−1)−robustness

We now characterize the remaining two types of robustness.

Theorem 4.14. Let X ⊆ Rn
+ be an interval, and let ZC(a0, . . . ,an−1) ⊆

Rn×n
+ be an interval circulant matrix. Then X is possibly ZC(a0, . . . ,an−1)−robust

if and only if there exists x ∈X that satisfies λ(A(i))(A(i))n
2⊗x = (A(i))n

2+1⊗
x for all i ∈ N0 such that A(i) 6= 0.

Proof. By Corollary 4.10, x ∈X belongs to attr(A) for allA ∈ ZC(a0 . . . ,an−1)
if and only if it belongs to attr(A(i)) for all i ∈ N0 with A(i) 6= 0. By Propo-
sition 3.8 this is equivalent to x satisfying λ(A(i))(A(i))n

2⊗x = (A(i))n
2+1⊗x

for all such i. �
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Theorem 4.15. Let X ⊆ Rn
+ be an interval, and let ZC(a0, . . . ,an−1) ⊆

Rn×n
+ be an interval circulant matrix containing Â. Then interval vector

X is tolerance ZC(a0, . . . ,an−1)−robust if and only if ZC(a0, . . . ,an−1) is
possibly X−robust.

Proof. Suppose that X is tolerance ZC(a0, . . . ,an−1)−robust, then we have
the following

(∀x ∈X)(∃A ∈ ZC(a0, . . . ,an−1))[x ∈ attr(A) ]
Cor.4.8
⇐⇒ (∀x ∈X)[x ∈ attr(Â) ]

⇒ (∃A ∈ ZC(a0, . . . ,an−1))(∀x ∈X)[x ∈ attr(A) ],

and hence we have that ZC(a0, . . . ,an−1) is possibly X−robust.
The converse implication is trivial. �

4.4. Computational complexity

We close the section with a couple of remarks on the computational com-
plexity of the different types of interval robustness.

Remark 4.16. By Theorems 4.7 and 4.15 the verification of whether

(i) ZC(a0, . . . ,an−1) is possibly X-robust,

(ii) ZC(a0, . . . ,an−1) is universally X-robust,

(iii) X is tolerance ZC(a0, . . . ,an−1)-robust

reduces, under some assumptions, to the verification whether some vectors
satisfy some two-sided max-linear systems with n2 and n2 +1 powers of some
matrices. Hence these types of robustness are of polynomial complexity.

Remark 4.17. By Corollary 4.12, Theorem 4.14 and Theorem 4.15, verify-
ing whether

(i) ZC(a0, . . . ,an−1) is tolerance X-robust,

(ii) ZC(a0, . . . ,an−1) is weakly tolerance X-robust,

(iii) X is possibly ZC(a0, . . . ,an−1)-robust
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reduces, under some assumptions, to verifying the non-emptyness of solution
set of some system of max-affine inequalities, where some of the inequalities
(among those defining X) can be strict. This problem was generally shown
to be polynomially equivalent to solving a mean-payoff game [1], for which
efficient pseudopolynomial algorithms exist, but existence of a polynomial
algorithm has been a long-standing open question.

5. Proofs of Proposition 3.7 and Theorem 3.10

5.1. Cyclicity of circulants: Proof of Proposition 3.7

Let us start with the following elementary but useful statement.

Lemma 5.1. Let p1, . . . , ps, n ∈ N (the set of natural numbers). Then the
equation

p1x1 + . . .+ psxs ≡ m(mod n) (15)

has a solution x = (x1, . . . , xs) ∈ Ns if and only if m is a multiple of
gcd(p1, . . . , ps, n).

Proof. “Only if”: Observe that p1x1 + . . .+psxs and n are always multiples
of gcd(p1, . . . , ps, n), and if (15) holds then so is m as well.

“If”: The claim is well known for s = 1 (elementary number theory).
The same fact also implies existence of xs ∈ N such that

psxs ≡ m(mod gcd(n, p1, . . . , ps−1)). (16)

We now prove the claim by induction assuming that it holds for s−1. Observe
that (16) implies that there exists also k ∈ N such that

psxs + k gcd(n, p1, . . . , ps−1) ≡ m(mod n). (17)

But by induction there exist x1 ∈ N, . . . , xs−1 ∈ N such that

p1x1 + . . .+ ps−1xs−1 ≡ k gcd(n, p1, . . . , ps−1)(mod n). (18)

Combining (17) and (18) we get the claim. �

Let us now introduce the following definition that appeared in [19] (see
also [4]).
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Definition 5.2 (Visualized Matrices). A nonzero A ∈ Rn×n
+ is called

(i) visualized if Ai,j ≤ λ(A) for all i, j, and

(ii) strictly visualized if it is visualized and Ai,j = λ(A) if and only if (i, j) ∈
Gc(A).

By (3) we have that λ(A) = max(a0, a1, . . . , an−1) forA = Z(a0, . . . , an−1),

implying that λ(A) =
n

max
i,j=1

Ai,j for any circulant A. That is, any circulant

matrix is visualized. We will now argue that it is also strictly visualized.

Definition 5.3 (Threshold Digraphs). Let A ∈ Rn×n
+ and h ∈ R+. De-

fine the threshold digraph of A with respect to h as the subgraph of G(A)
containing all edges (i, j) with Ai,j ≥ h, and all nodes that are beginning
and end nodes of those edges. Denote this threshold graph by G(A, h).

Proposition 5.4. Let A ∈ Rn×n
+ be a nonzero circulant matrix. Then it is

strictly visualised, and Gc(A) = G(A, λ(A)).

Proof: By (3) no entry of A exceeds λ(A). Hence A is visualized. Also recall
that λ(A) > 0 by Corollary 3.4.

If Ai,j < λ(A) then the mean weight of any cycle with edge (i, j) is strictly
less than λ(A), so (i, j) is not critical. In other words, (i, j) being critical
implies Ai,j = λ(A).

It remains to show that if Ai,j = λ(A), which is equivalent to (i, j) being
an edge of G(A, λ(A)), then (i, j) is critical. In this case by Lemma 3.2 (i, j)
lies in a cycle with all edge weights equal to λ(A). The weights of all edges
in this cycle are equal to λ(A), hence the mean weight of this cycle is λ(A),
i.e., it is a critical cycle and (i, j) is critical. This completes the proof. �

Proof of Proposition 3.7. First observe that Proposition 5.4 implies that
Gc(A) = G(A, λ(A)) and hence the set of critical edges of a circulant matrix
A is given by

Ec(A) = {(i, j) : i = j if a0 = λ(A) or j − i ≡ pk(mod n), k ∈ {1, . . . , s}}
(19)

where p1, . . . , ps are such that ap1 = . . . = aps = λ(A) (and p1 > p2 > . . . >
ps).
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We now consider the component of Gc(A) which contains node i, for i
from the set {1, . . . , gcd(n, p1, . . . , ps)}.

Let us argue that the node set of this component is given by

{k ∈ N : k ≡ i+ l1p1 + . . .+ lsps(mod n), l1, . . . , ls ∈ N ∪ {0}}, (20)

Indeed, by (19) edges (i, j) where j ≡ (l+pt)(mod n)) for some t ∈ {1, . . . , s}
are the only edges that issue from i and are critical. Using this observation,
the claim follows by simple induction.

Using Lemma 5.1 we now observe that (20) is the same as

{i+ k gcd(n, p1, . . . , ps)) : k ∈ {0, . . . , (n/ gcd(n, p1, . . . , ps))− 1}.

This set does not intersect with the node set of any component containing a
different node in {1, . . . , gcd(n, p1, . . . , ps)}, and this yields gcd(n, p1, . . . , ps)
strongly connected components of Gc(A). Isomorphism between two compo-
nents containing i1 ∈ {1, . . . , gcd(n, p1, . . . , ps)} and i2 ∈ {1, . . . , gcd(n, p1, . . . , ps)}
is induced by the following mapping on their set of nodes:

i1 + k gcd(n, p1, . . . , ps)) 7→ i2 + k gcd(n, p1, . . . , ps)).

This completes the proof of part (i) of Proposition 3.7.
If a0 = λ(A) then Gc(A) contains all loops of the form (i, i) for 1 ≤ i ≤ n,

and the cyclicity of every component of Gc(A) is 1 since it contains a loop.
When a0 < λ(A), we can use the result of [9] Theorem 3.3 part (i) since
this result describes the cyclicity of any component of the threshold digraph
G(A, λ(A)) (see [9] Theorem 3.1.), and since Gc(A) = G(A, λ(A)) by Propo-
sition 5.4. According to this result, that cyclicity is equal to any of the three
expressions given in (4). This completes the proof of part (ii). �

5.2. Inclusion of attraction cones: Proof of Theorem 3.10

Before considering the problem of our interest, let us recall the notion of
cyclic classes which will be necessary for some proofs.

Definition 5.5 (Cyclic Classes). Let G = (N,E) be a strongly connected
graph with cyclicity σ(G), and let i, j ∈ N . Nodes i, j are said to belong to
the same cyclic class if the lengths of some (and hence all) walks connecting
i to j are a multiple of σ(G).
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Figure 1: Cyclic classes of two graphs of Example 5.6 (shown in different shades).

The cyclic class of i will be denoted by [i]. We also write [i] →1 [j] if
the lengths of some (and hence all) walks connecting a member of [i] to a
member of [j] have length congruent to 1 modulo σ(G).

By cyclic classes of a completely reducible digraph we mean cyclic classes
of its (strongly connected) components.

Example 5.6. Consider two associated graphs of 0-1 matrices of Exam-
ple 3.11 shown in Figure 1. On the left, the graph consists just of one cycle
of length 6, hence its cyclicity is 6 and the cyclic classes are {1}, {2}, {3},
{4}, {5} and {6}. On the right, the cyclicity of the graph is 2 and the cyclic
classes are {1, 3, 5} and {2, 4, 6}. �

Cyclic classes are also called components of imprimitivity. We refer the
reader to [3] Lemma 3.4.1 for a proof that belonging to the same cyclic class
is a well-defined equivalence relation.

Lemma 5.7. Let G be a strongly connected digraph.

(i) Let σ(G) > 1 and let i0, i1, . . . , ik be a walk on G. Then [il−1] →1 [il]
for each l ∈ {1, . . . , k}.

(ii) Let C be a cycle of G. Then C contains a member of each cyclic class
of G.

Proof. (i): Each edge is a walk of length 1. Therefore [il−1] →1 [il] for each
l ∈ {1, . . . , k}.
(ii): Let i be a node which is not in C. Let us show that C contains a node
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in the cyclic class of i. Since G is strongly connected, there exists a walk
connecting i to a node j of C. If the length of this walk is a multiple of σ(G)
then j ∈ [i]. Otherwise, we concatenate this walk with a walk from j to some
node k ∈ C whose edges belong to C and such that the length of resulting
walk is a multiple of σ(G). Then k ∈ [i] and the claim is proved. �

We now derive a convenient form of a system defining the attraction cone
for circulant matrices, based on the results of [18]. Here Ati• denotes the ith
row of At. We also write i ∼A j when i and j belong to the same component
of Gc(A).

Proposition 5.8. Let A ∈ Rn×n
+ be a nonzero circulant matrix. Then

x ∈ attr(A)⇔ An
2

i• ⊗ x = An
2

j• ⊗ x ∀i, j ∈ N s.t. [i]→1 [j] (21)

and
x ∈ attr(A)⇔ An

2

i• ⊗ x = An
2

j• ⊗ x ∀i, j ∈ N s.t. i ∼A j. (22)

Proof. By Proposition 3.8

attr(A) = {x : An
2 ⊗ x = An

2+1 ⊗ x} (23)

Since A is a circulant matrix, by Proposition 5.4 it is visualized, and then
by [18] Proposition 2.8 we also have An

2

j• = An
2+1
i• for any i, j ∈ Nc(A) such

that [i]→1 [j]. This shows (21). To show (22) recall that if a component of
Gc(A) has more than one cyclic class then for every two nodes i, j of the com-
ponent there is a walk i0 = i, i1, i2, . . . , ik = j on Gc(A) where [il−1] →1 [il]
for each l ∈ {1, . . . , k} by Lemma 5.7 part (i). Hence An

2

i• ⊗x = An
2

j• ⊗x holds
for all nodes i, j in that component. If a component has only one cyclic class
then [18] Proposition 2.8 implies that all rows with indices in that component
are equal to each other, so the equations An

2

i• ⊗x = An
2

j• ⊗x hold trivially for
all pairs of nodes from that component. �

It can be seen that we wrote out system (21) for all examples of Section 3.
In the case of Example 3.11, for which G(A) = Gc(A) and the cyclic classes
are shown on Figure 1, system (21) reduces to x1 = x2 = x3 = x4 = x5 = x6
for A and to x1 ⊕ x3 ⊕ x5 = x2 ⊕ x4 ⊕ x6 for B.

We will also need the following observations.
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Lemma 5.9. Let A,B ∈ Rn×n
+ be two matrices such that λ(A) = λ(B) 6= 0

and A ≤ B. Then Gc(A) ⊆ Gc(B).

Proof. Since A ≤ B the mean weight of each cycle in B is not less than the
mean weight of the same cycle in A. If that cycle is critical in A then its
mean weight λ(A) cannot increase in B since λ(A) = λ(B). Hence it equals
λ(B), i.e., the cycle belongs to Gc(B). �

Lemma 5.10. Let A,B ∈ Rn×n
+ be two circulant matrices with λ(A) =

λ(B) 6= 0, A ≤ B. Then

x ∈ attr(B)⇔ Bn2

i• ⊗ x = Bn2

j• ⊗ x ∀i, j ∈ N, s.t. i ∼A j. (24)

Proof. By (22),

x ∈ attr(B)⇔ Bn2

i• ⊗ x = Bn2

j• ⊗ x ∀i, j ∈ N s.t. i ∼B j. (25)

We also have Gc(A) ⊆ Gc(B) by Lemma 5.9 and hence each x ∈ attr(B)
satisfies the system in (24).

Suppose now that x satisfies the system in(24). We will show that x also
satisfies

Bn2

i• ⊗ x = Bn2

j• ⊗ x ∀i, j ∈ N s.t. [i]→1 [j] (26)

so that x ∈ attr(B) by Proposition 5.8. Since Gc(A) ⊆ Gc(B), each compo-
nent α of Gc(A) belongs to a component β of Gc(B), and each component of
Gc(B) contains a component of Gc(A) because Nc(A) = Nc(B) = N . Hence
it amounts to show that if x satisfies the subsystem of equations in (24) cor-
responding to a component α of Gc(A) then it also satisfies the subsystem
of equations in (26) corresponding to the component β of Gc(B) such that
α ⊆ β. But by Lemma 5.7 part (ii) each cyclic class of β has a member in
any cycle of β and hence in any cycle of α (because α ⊆ β). This shows that
for each i, j with [i]→1 [j] in Gc(B) there exist k ∈ [i] and l ∈ [j] on a cycle
of α and then Bn2

k• ⊗ x = Bn2

l• ⊗ x holds by (24). However, Bn2

k• = Bn2

i• and
Bn2

l• = Bn2

j• by [18] Proposition 2.8. Hence the claim follows. �

Let us now introduce Kleene stars, as they will also be useful in the proof
of Theorem 3.10.
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Definition 5.11 (Kleene Stars). Let A ∈ Rn×n
+ have λ(A) ≤ 1. Then

A∗ = I ⊕ A⊕ A2 ⊕ . . .⊕ An−1

is called the Kleene star of A.

Proposition 5.12 (e.g., [4], Corollary 1.6.16). Let A ∈ Rn×n
+ . Then A∗ =

A if and only if one of the following equivalent conditions hold:

(i) A2 = A and Ai,i = 1 for all i ∈ N ;

(ii) Ai,i = 1 and Ai,jAj,k ≤ Ai,k for all i, j, k ∈ N .

More specifically, we will make use of the following.

Lemma 5.13. Let A 6= 0 be a circulant matrix. Then (A/λ(A))n
2

is a
Kleene star.

Proof. Note that λ(A) 6= 0 by Corollary 3.4. By Proposition 5.12 it suffices to
show that (A/λ(A))n

2
is an idempotent matrix and that ((A/λ(A))n

2
)i,i = 1

for all i. For the idempotency, observe that by Proposition 3.7 part (ii) per(A)
divides n2, and that T (A) ≤ n2 by Proposition 3.6. Hence (A/λ(A))2n

2
=

(A/λ(A))n
2
.

For the remaining part of the claim, assume λ(A) = 1 and recall that for
any t ≥ 1 and any i, j ∈ N , entry (At)i,j is equal to the greatest weight
of a walk of length t connecting i to j (e.g.,[4], Example 1.2.3). Take
i ∈ {1, . . . , n} and observe that G(A) contains a critical cycle of length n
going through i. The weights of all entries of that cycle equal to 1. Taking
n copies of this cycle we obtain a cycle in G(A) of weight 1 and length n2.
The claim ((A/λ(A))n

2
)i,i = 1 follows since the weights of all entries and

(therefore) of all walks are bounded by 1. �

We are now ready to prove the main result of Section 3.
The proof will also make use of the following notation.

Definition 5.14. Denote by k[mod n], respectively by k[mod′ n], the only
number in N0 = {0, . . . , n − 1}, respectively in N = {1, . . . , n}, which is
congruent to k modulo n.
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Proof of Theorem 3.10. The case λ(A) = λ(B) = 0 is trivial since in
that case A = B = 0 by Corollary 3.4 and hence attr(A) = attr(B) = Rn

+.
Otherwise, as attr(A/λ(A)) = attr(A) and attr(B/λ(B)) = attr(B) (which
follows, e.g., from Proposition 2.22), we can assume without loss of generality
λ(A) = λ(B) = 1 and consider matrices C = An

2
and D = Bn2

. By
Proposition 3.1 C and D are circulants, hence C = Z(c0, . . . , cn−1) and D =
Z(d0, . . . , dn−1) for some c0, . . . , cn−1 and d0, . . . , dn−1. Using A⊕B = B and
the expansion for (A⊕B)n

2
we obtain An

2 ≤ (A⊕B)n
2

= Bn2
, thus C ≤ D.

By Lemma 5.13 both of them are also Kleene stars. By Proposition 5.12 we
have D1,(α+γ)[mod′ n] ≥ D1,α ·Dα,(α+γ)[mod′ n] and hence

d(α+γ−1)[mod n] ≥ dα−1 · dγ (27)

for any α ∈ {1, . . . , n} and γ ∈ {0, . . . , n− 1}. In what follows we are going
to show that the assumption that attr(A) ⊆ attr(B) does not hold leads to
a contradiction with (27) for some α and γ.

By Lemma 5.9 we have Gc(A) ⊆ Gc(B). By Proposition 3.7 part (i), Gc(A)
consists of l components whose node sets are of the form

{k, k + l, k + 2l, . . . , k + (n/l − 1)l} for k ∈ {1, . . . , l}, (28)

where l is a divisor of n. Each of these node sets belongs to some component
of Gc(B).

By Proposition 5.8 x ∈ attr(A) if and only if

Ck• ⊗ x = Ck+l• ⊗ x = . . . = Ck+(n/l−1)l• ⊗ x for k ∈ {1, . . . , l}, (29)

and by Lemma 5.10 x ∈ attr(B) if and only if

Dk• ⊗ x = Dk+l• ⊗ x = . . . = Dk+(n/l−1)l• ⊗ x for k ∈ {1, . . . , l}, (30)

We will refer to (29) or (30) for fixed k as to a chain of equations.
Suppose by contradiction that x ∈ attr(A) but x /∈ attr(B). The latter

means that there exist k and s such that Dk• ⊗ x > Dk+ls• ⊗ x for some
integers k and s. Assume without loss of generality that k = 1 then

D1• ⊗ x = d0x1 ⊕ d1x2 ⊕ . . .⊕ dn−1xn.

Let dα−1 ·xα be one of the terms where the maximum in the above expres-
sion is attained. In D1+ls•⊗ x we find a term dα−1 · xβ where α ≡ β(mod l),
and we have the inequality dα−1 · xα > dα−1 · xβ and hence xα > xβ.
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Observe that c0 = d0 = 1 since C and D are Kleene stars. Since
α ≡ β(mod l) there exists a chain of equations among those of (29), which
contains both c0xα = xα and c0xβ = xβ. The corresponding chain of equa-
tions holds (since x ∈ attr(A)), but xα > xβ and therefore in the expres-
sion containing c0xβ there is a term cγx(β+γ)[mod′ n] (for some γ) such that
cγx(β+γ)[mod′ n] ≥ xα > 0, and hence

dγx(β+γ)[mod′ n] ≥ xα. (31)

Going back to the terms in the inequality D1,•x > D1+ls,•x and know-
ing that the maximum in D1,•x is attained at dα−1xα and D1+ls,•x con-
tains a term of the form dα−1xβ, we see that D1+ls,•x also contains the term
d(α+γ−1)[mod n]x(β+γ)[mod′ n] and that

dα−1xα > d(α+γ−1)[mod n]x(β+γ)[mod′ n]. (32)

Multiplying (31) by dα−1, combining with (32) and canceling x(β+γ)[mod′ n] >
0 we have

dα−1dγ > d(α+γ−1)[mod n],

which contradicts with the Kleene star property (27). The proof is com-
plete. �
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[22] H. Tomášková. Eigenproblem for circulant matrices in max-plus alge-
bra. In: Proceedings of the 29th Conference on Mathematical Methods,
Computational Techniques, Intelligent Systems (MAMECTIS-29), 2010.

34


	Introduction
	Preliminaries
	Main definitions and problem statements
	Associated graphs, critical graphs and periodicity

	Circulant matrices: critical graph and attraction cones
	Interval robustness of circulant matrices
	Universal and possible X-robustness
	Tolerance and weak tolerance X-robustness
	Possible and tolerance ZC(a0,…,an-1)-robustness
	Computational complexity

	Proofs of Proposition 3.7 and Theorem 3.10
	Cyclicity of circulants: Proof of Proposition 3.7
	Inclusion of attraction cones: Proof of Theorem 3.10

	Acknowledgement

