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 30	
  

Abstract 31	
  

Most climate mitigation scenarios involve negative emissions, especially those that aim to 32	
  

limit global temperature increase to 2°C or less. However, the carbon uptake potential in land-33	
  

based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty 34	
  

by using two land-based mitigation scenarios from two land-use models (IMAGE and 35	
  

MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ-GUESS, 36	
  

ORCHIDEE, JULES, LPJmL). Each of the four combinations of land-use models and 37	
  

mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the 38	
  

century, achieved either via the cultivation of bioenergy crops combined with carbon capture 39	
  

and storage (BECCS) or avoided deforestation and afforestation (ADAFF). 40	
  

Results suggest large uncertainty in simulated future land demand and carbon uptake rates, 41	
  

depending on the assumptions related to land use and land management in the models. Total 42	
  

cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, 43	
  

ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of 44	
  

mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than 45	
  

achieved in the land-use models. The large differences in carbon uptake between the DGVMs 46	
  

and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to 47	
  



different model assumptions regarding bioenergy crop yields, and due to the simulation of soil 48	
  

carbon response to land-use change. Differences between land-use models and DGVMs 49	
  

regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, 50	
  

on the results. Given the low confidence in simulated carbon uptake for a given land-based 51	
  

mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower 52	
  

than assumed in scenarios consistent with the 2°C target, relying on negative emissions to 53	
  

mitigate climate change is a highly uncertain strategy. 54	
  

 55	
  

Introduction 56	
  

“Negative emissions”, i.e. the removal of carbon dioxide (CDR) from the atmosphere, is an 57	
  

important concept for climate change mitigation (Lenton and Vaughan, 2009). Scenarios 58	
  

based on land-use (LU) models or Integrated Assessment Models (IAMs) tend to achieve an 59	
  

end-of-century warming goal at or below 2°C only through negative emissions which 60	
  

commence within the next 1-2 decades, and then increase and are sustained at considerable 61	
  

rates during the second half of the 21st century (Anderson and Peters, 2016, Fuss et al., 2014, 62	
  

Gasser et al., 2015, Riahi et al., 2017, Rogelj et al., 2015, Sanderson et al., 2016, Smith et al., 63	
  

2016a). So far, negative emissions represented in IAMs are mainly land-based options (Popp 64	
  

et al., 2017, Popp et al., 2014b). 65	
  

IAMs currently focus on two land-based CDR technologies which both utilize the carbon (C) 66	
  

uptake by plants via photosynthesis. One is large-scale cultivation of crops or trees for 67	
  

bioenergy and capturing the C released upon combustion for long-term storage in geologic 68	
  

formations (BECCS). The other is to maintain or increase terrestrial C stocks via avoided 69	
  

deforestation and afforestation/reforestation (ADAFF). These are the two most widely-used 70	
  

options in IAMs to achieve negative emissions because they do not have to rely on the 71	
  



development of new, large-scale technology (ADAFF), or are regarded as the most prolific 72	
  

option with the capability to supply energy (BECCS) (Humpenöder et al., 2014, Smith et al., 73	
  

2016a). However, the land demand/availability of these approaches is highly uncertain 74	
  

(Boysen et al., 2017a, Popp et al., 2017), and their potential to remove significant amounts of 75	
  

C from the atmosphere is regarded as controversial (Fuss et al., 2014). Additionally, conflicts 76	
  

with other LU, associated supply of ecosystem services, and maintenance/enhancement of 77	
  

biodiversity are highly likely (Krause et al., 2017, Smith et al., 2016a, Williamson, 2016). 78	
  

Considering typical time frames of decades involved in the planning and establishment of 79	
  

climate mitigation projects, the quantification of their uncertainties in terms of achievable 80	
  

CDR is important to inform policy makers about practicality and risks. 81	
  

Here, we address the uncertainty of C uptake potential from land-based climate change 82	
  

mitigation by using projections of future land-use change (LUC) from one IAM (IMAGE) 83	
  

and one socio-economic LU model (MAgPIE; for simplicity we refer to IMAGE and 84	
  

MAgPIE as land-use models - LUMs - in the following) as input to four dynamic global 85	
  

vegetation models (DGVMs; LPJ-GUESS, ORCHIDEE, JULES, LPJmL). In these scenarios, 86	
  

C uptake is achieved either via BECCS or via ADAFF. The cumulative additional C uptake 87	
  

target in each mitigation LUC scenario is 130 GtC by year 2100 compared to a baseline LUC 88	
  

scenario without additional land-based mitigation (BASE). We analyze total C uptake and the 89	
  

relative contribution of vegetation, soils, and C storage via CCS in the four DGVMs and 90	
  

compare it to the C uptake targeted and achieved in the LUMs. 91	
  

 92	
  

Materials and methods 93	
  

Detailed information about the LUMs and the scenarios can be found in Krause et al. (2017). 94	
  

In the following we provide a short description of the LUMs and the scenarios. 95	
  



 96	
  

Description of the land-use models 97	
  

The Integrated Model to Assess the Global Environment (IMAGE) is an ecological-98	
  

environmental model framework simulating the environmental consequences of human 99	
  

activities worldwide (Stehfest et al., 2014). 100	
  

The Model of Agricultural Production and its Impact on the Environment (MAgPIE) is a 101	
  

global LU and agro-food system model. It optimizes spatial-explicit LU patterns and 102	
  

intensification levels to satisfy a given food, feed, material, and bioenergy demand at minimal 103	
  

production costs (Lotze-Campen et al., 2008, Popp et al., 2014a).  104	
  

Climate change and CO2 impacts on forest growth and crop yields are accounted for in the 105	
  

LUMs. The LPJmL DGVM (Bondeau et al., 2007) represents the crop/vegetation sub-model 106	
  

in both IMAGE (where it is dynamically coupled) and MAgPIE (where it provides potential C 107	
  

stocks, crop yields, irrigation water requirements, and blue water availability as input data). 108	
  

We also use an offline version of LPJmL as one of our four DGVMs which differs from the 109	
  

versions used in the LUMs mainly by not considering technological yield increases in the 110	
  

future. 111	
  

 112	
  

Land-use scenarios 113	
  

Both LUMs harmonized their pasture and cropland LU patterns to the HYDE 3.1 dataset 114	
  

(Klein Goldewijk et al., 2011) in the years 2005 (IMAGE) or 1995 (MAgPIE) to create a 115	
  

continuous historical-to-future time series. The simulation period was 1970-2100 for IMAGE 116	
  

and 1995-2100 for MAgPIE, with LUC scenarios starting to diverge in year 2005. The spin-117	
  

up in IMAGE was set to 700 years with natural vegetation cover followed by 300 years with 118	
  



year 1970 land-cover map, climate and CO2. In MAgPIE, potential C densities from LPJmL 119	
  

were used as initial (1995) values, with agricultural vegetation and litter C set to zero and soil 120	
  

C depleted based on IPCC recommendations to account for real land cover at the start of the 121	
  

simulation period (Humpenöder et al., 2014). Socioeconomic developments as input to the 122	
  

LUMs were based on SSP2 (Popp et al., 2017). Food production in the mitigation scenarios 123	
  

was maintained on the same levels as in BASE. 124	
  

With respect to the rate of forest regrowth in the ADAFF scenarios, MAgPIE parameterizes 125	
  

managed afforestation by climate region specific S-shaped growth curves towards potential 126	
  

forest biomass, and litter and soil C recovering within 20 years (Humpenöder et al., 2014). In 127	
  

contrast, forest regrowth in IMAGE is dynamically simulated by LPJmL, which is a sub-128	
  

component of IMAGE. This means that similar C uptake rates following afforestation are to 129	
  

be expected for IMAGE and the stand-alone LPJmL DGVM. Forest regrowth in IMAGE 130	
  

partly takes place on degraded forest lands, which are assumed to be completely deforested 131	
  

(Doelman et al., 2018). 132	
  

The degraded forest land-cover class was implemented in IMAGE due to a mismatch between 133	
  

deforestation rates reported by the FAO’s 2015 Forest Resource Assessment 134	
  

(http://www.fao.org/3/a-i4793e.pdf, last accessed September 2017) and historical expansions 135	
  

of cropland and pasture area reported by FAO. These differences are assumed to be caused by 136	
  

additional reasons (e.g. unsustainable forestry preventing regrowth of natural forests, mining, 137	
  

or illegal logging) and accounted for by a historically calibrated rate of forest degradation, 138	
  

which is extrapolated into the future (Doelman et al., 2018). 139	
  

 140	
  

Description of the Dynamic Global Vegetation Models 141	
  



The LUC scenarios were used as input to four DGVMs: LPJ-GUESS (Olin et al., 2015, Smith 142	
  

et al., 2014), ORCHIDEE (Krinner et al., 2005), JULES (Best et al., 2011, Clark et al., 2011), 143	
  

and LPJmL (Bondeau et al., 2007, Sitch et al., 2003). The models have different heritages; 144	
  

while ORCHIDEE and JULES were developed as land components of global climate models 145	
  

(IPSL and UKESM), LPJ-GUESS and LPJmL were originally designed as stand-alone offline 146	
  

models to simulate vegetation dynamics and associated C and water fluxes. All DGVMs 147	
  

represent vegetation using a number of plant functional types (PFTs), with LPJ-GUESS and 148	
  

LPJmL also representing dedicated crop PFTs. LPJ-GUESS is different from the other 149	
  

DGVMs by its explicit representation of forest demography and by having nitrogen cycling as 150	
  

an additional constraint on ecosystem C processes (in addition to soil water availability which 151	
  

is accounted for in all DGVMs). All DGVMs represent LUC and land management explicitly 152	
  

even though the models differ in terms of implemented processes and level of detail. Table 1 153	
  

and the extended Table S1 provide an overview of model differences which are important for 154	
  

this study. 155	
  

 156	
  

Simulation setup 157	
  

The DGVM simulation period was 1901-2099. DGVMs were first spun up to pre-industrial 158	
  

equilibrium state (1901), recycling 1950-1959 climatology to attain a stable equilibrium of C 159	
  

pools and fluxes in each model using atmospheric CO2 concentration from 1901 160	
  

(Meinshausen et al., 2011). Climate from the 1950-1959 period was used for the spin-up 161	
  

because these were the first years in the climate data set, a common practice in this kind of 162	
  

set-up. DGVMs were then applied over the transient period 1901-2099 using transient CO2 163	
  

(Meinshausen et al., 2011) and climate data (1950-2099) simulated by the IPSL-CM5A-LR 164	
  

climate model for the representative concentration pathway RCP2.6 from the ISI-MIP project, 165	
  



bias-corrected as in Hempel et al. (2013). The temperature increase is 2°C by the end of the 166	
  

21st century relative to the pre-industrial era. The climate data for the spin-up and the 1901-167	
  

1949 period were randomly taken from the 1950-1959 period. Future atmospheric CO2 168	
  

mixing ratio followed the RCP2.6 pathway, peaking at 443 ppmv in year 2052 (Meinshausen 169	
  

et al., 2011). LUC was based on spatially explicit LU maps derived from the LUMs (for the 170	
  

historic period based on HYDE3.1) and translated into the vegetation types of each DGVM 171	
  

(see Table 1). The DGVMs aimed to be as consistent as possible with the LUMs when 172	
  

implementing LU patterns from the LUM scenarios, e.g. for IMAGE scenarios all DGVMs 173	
  

apart from JULES followed the IMAGE assumption of degraded forests being grasslands. 174	
  

Management information (crop types, irrigation, and nitrogen fertilizers) were also provided 175	
  

by the LUMs but were only used by some DGVMs which represented the relevant processes 176	
  

explicitly (Table 1). LPJ-GUESS was the only model being able to use nitrogen fertilizers as 177	
  

provided by the LUMs. Nitrogen application rates (synthetic plus manure) were available 178	
  

from 1970/1995 on. They were derived to match assumed crop yields in the LUMs. A historic 179	
  

hindcast (1901-1969/1901-1994) was calculated based on initial (1970/1995) fertilizer rates 180	
  

from the LUMs and relative changes in the Land-Use Harmonization data set 181	
  

(http://luh.umd.edu/index.shtml, see also Krause et al., 2017). The implementation of the LU 182	
  

data into the DGVMs (e.g. mapping to DGVM vegetation types and defining rules by which 183	
  

managed land expands over natural vegetation), land masks, and additional required input 184	
  

variables (e.g. soil characteristics) were left to the responsibility of the individual DGVM 185	
  

groups. Different model structures and implementations of the LU patterns can result e.g. in 186	
  

differences in global forest area in the individual DGVMs (Fig. S1). The spatial resolution of 187	
  

the DGVMs was the same as the resolution of the input data (0.5°x0.5°), except for 188	
  

ORCHIDEE (2°x2°). In total, 24 combinations of DGVMs and LUC scenarios were 189	
  

simulated, including 16 combinations of DGVMs and mitigation LUC scenarios. 190	
  



 191	
  

Results 192	
  

Land-use scenarios 193	
  

In both LUMs, LUC is generally greater for ADAFF scenarios than for BECCS scenarios 194	
  

(Fig. S2) because the former is simulated with LUMs to be less efficient at CDR than the 195	
  

latter (Humpenöder, et al., 2014). The different C accumulation trajectories in ADAFF (see 196	
  

methods) result in ADAFF activities starting earlier in IMAGE but avoided 197	
  

deforestation/afforestation area being slightly larger in MAgPIE by the end of the century 198	
  

(Figs. S1, S2a,b, Table S2). Forest area by year 2099 is 1040 Mha larger in ADAFF than in 199	
  

BASE for IMAGE and 1103 Mha larger for MAgPIE. For IMAGE, ~42% of this difference in 200	
  

forest area can be attributed to avoided deforestation and 58% to afforestation. For MAgPIE, 201	
  

the corresponding numbers are only 4% for avoided deforestation and 96% for afforestation, 202	
  

emphasizing the much larger role of afforestation compared to avoided deforestation in 203	
  

MAgPIE. The LUMs also differ in terms of land-cover classes affected by ADAFF activities. 204	
  

In IMAGE, forest maintenance and expansion usually takes place on pastures or degraded 205	
  

forests (ADAFF compared to BASE), but in MAgPIE afforestation on abandoned croplands is 206	
  

also relevant, particularly after year 2070 (see Table S2; note that some of the abandoned 207	
  

cropland in MAgPIE ADAFF is not afforested but instead converted to pasture while at other 208	
  

locations pastures are converted to forests, resulting in small net changes in pasture area by 209	
  

the end of the century).  210	
  

The area needed for bioenergy production is mainly taken from natural vegetation in IMAGE 211	
  

but also from existing agricultural land in MAgPIE. IMAGE has a larger bioenergy land 212	
  

demand to fulfil the same CCS target as MAgPIE (Fig. S2c,d). This reflects different 213	
  

modelling approaches: in IMAGE, land allocation for bioenergy cultivation follows a rule-214	
  



based approach according to sustainability criteria, implying that only marginal land not 215	
  

needed for food production is available for bioenergy. In MAgPIE, bioenergy and food 216	
  

production compete for fertile land based on a cost minimization procedure. Consequently, 217	
  

average bioenergy yields are lower in IMAGE than in MAgPIE, thereby increasing the 218	
  

required area to deliver the same annual CCS rates. 219	
  

 220	
  

Present-day carbon pools and future changes in the baseline scenarios 221	
  

Present-day C pools as simulated by IMAGE and MAgPIE are 440 and 484 GtC in global 222	
  

vegetation, and 1121 and 1981 GtC in the soils (including litter), respectively. The large 223	
  

divergence in soil C between the two LUMs is likely mainly due to the representation of 224	
  

permafrost in MAgPIE. Vegetation C simulated by the DGVMs ranges between 275 and 425 225	
  

GtC, and soil C between 1315 and 1954 GtC (Fig. S3). For the two non-mitigation BASE 226	
  

scenarios, in all DGVMs except LPJmL the land acts as a net C sink between year 2000 and 227	
  

2099 (Fig. S3). The magnitude and direction of change in C pools is determined by the 228	
  

DGVM’s response to RCP2.6 climate change, CO2 fertilization, and baseline LUC. 229	
  

 230	
  

Total carbon uptake in the mitigation scenarios 231	
  

Total additional C uptake in the mitigation scenarios is here calculated as the sum of changes 232	
  

in vegetation C, litter and soil C, and (relatively negligible) product pool C, plus cumulative 233	
  

CCS (all relative to BASE). While an uptake target of 130 GtC was set in both LUMs, actual 234	
  

C uptake in the LUMs in most cases deviates somewhat from this number. For the ADAFF 235	
  

scenarios, the simplicity of the afforestation implementation in IMAGE was unable to exactly 236	
  

meet the target. In MAgPIE, afforestation decision-making was based on present-day 237	
  



potential C pools. Potential impacts of climate change on the terrestrial C storage capacity 238	
  

were therefore not considered which leads to a mismatch between intended and actual 239	
  

sequestration. The realized C uptake in ADAFF between year 2005 and 2099 is 141 GtC in 240	
  

IMAGE and 120 GtC in MAgPIE (Figs. 1a,b, 2a). Around 49% of the total C increase in 241	
  

IMAGE ADAFF can be attributed to avoided deforestation and 51% to afforestation (for 242	
  

MAgPIE spatial C stocks were not available but afforestation is certainly much more 243	
  

important due to the limited decline in forest area in MAgPIE BASE). For BECCS, in both 244	
  

LUMs the CDR target was implemented as a gross CCS target which included the harvested 245	
  

C from bioenergy crops and a fractional (80%; Klein et al., 2014) capture and storage of this 246	
  

harvest. Cumulative CCS reaches 128 GtC in year 2099 in both LUMs (see subsection 247	
  

“Cumulative CCS”) so the implemented CDR/CSS target is achieved. However, calculations 248	
  

of the target in the LUMs originally neglected terrestrial C losses from deforestation for 249	
  

bioenergy cultivation. When these are included, cumulative CCS combined with ecosystem C 250	
  

losses from deforestation result in a net total C uptake of 86 and 107 GtC, thus below the 251	
  

sought target due to emissions from LUC. 252	
  

In contrast to the two LUMs, total C uptake (relative to BASE) is typically lower in the 253	
  

DGVM simulations forced by the same LU patterns, with total C uptake in the DGVMs 254	
  

ranging between 19 and 130 GtC (Figs. 1a,b, 2a). Unsurprisingly (as LPJmL represents the 255	
  

vegetation component of the LUMs), the closest agreement exists between the LUMs and 256	
  

LPJmL. ORCHIDEE simulates the lowest uptake for ADAFF and JULES the lowest uptake 257	
  

for BECCS. The maximum yearly total C uptake per decade within the 21st century ranges 258	
  

from 1.9 GtC yr-1 (IMAGE ADAFF) to 3.5 GtC yr-1 (MAgPIE ADAFF) in the LUMs and 259	
  

from 0.4 GtC yr-1 (ORCHIDEE IMAGE-ADAFF) to 2.0 GtC yr-1 (LPJmL IMAGE-BECCS) 260	
  

in the DGVMs. Spatially, total C uptake is concentrated in the tropics for ADAFF (except in 261	
  

ORCHIDEE, which simulates substantial emissions in some regions), while patterns are more 262	
  



diverse for BECCS (Fig. 3). The largest agreement in total C uptake across DGVMs is found 263	
  

in tropical Africa for the ADAFF scenarios (Fig. S4). The contributions of vegetation, soil, 264	
  

and cumulative CCS to model discrepancies in total C uptake are analyzed in the following 265	
  

subsections. 266	
  

 267	
  

Vegetation carbon 268	
  

As intended, the simulations with the ADAFF scenarios result in increasing biomass over the 269	
  

21st century compared to the BASE simulations for all LUMs and DGVMs. Vegetation C 270	
  

uptake in year 2099 is 79 and 66 GtC in IMAGE and MAgPIE and ranges between 39 and 73 271	
  

GtC in the DGVMs (Figs. 1c,d, 2b), with generally larger uptake for IMAGE scenarios than 272	
  

for MAgPIE scenarios due to the earlier start of ADAFF activities in IMAGE (Table S2). 273	
  

Biomass accumulation occurs at a relatively steady rate in the DGVMs but accelerates during 274	
  

the second half of the century in the LUMs (Fig. 1c,d). There is a drop in vegetation C for 275	
  

LPJmL MAgPIE-ADAFF around mid-century. As agricultural land has low vegetation C 276	
  

pools in LPJmL this is related to a decreasing vegetation C density in forests, which is not 277	
  

compensated for by the simultaneous increase in forest area. Tree PFTs in LPJmL are 278	
  

represented by average individuals (representing all trees belonging to this PFT), and the 279	
  

individual’s properties are changed when afforestation occurs in a grid-cell. These changes in 280	
  

the PFT’s properties might in some regions reduce its ability to compete or make it more 281	
  

vulnerable to disturbances so that tree mortality is increased compared to the BASE scenario 282	
  

in which no afforestation took place. 283	
  

The vegetation C uptake in IMAGE can be equally attributed to avoided deforestation and to 284	
  

afforestation (Table S3). No quantification is possible in MAgPIE because spatial C stocks 285	
  

were not available. In the DGVMs, the contribution of avoided deforestation to the vegetation 286	
  



C uptake in ADAFF is generally larger for IMAGE-LU than for MAgPIE-LU (Table S3), 287	
  

confirming the much larger role of afforestation compared to avoided deforestation in 288	
  

MAgPIE. For BECCS, all LUMs and DGVMs simulate deforestation-driven decreases in 289	
  

vegetation C. JULES simulates the largest biomass losses upon deforestation and ORCHIDEE 290	
  

the smallest losses. Since global vegetation C stocks are similar across DGVMs (with the 291	
  

exception of ORCHIDEE, Fig. S3), differences in C losses arise from spatial variations in 292	
  

biomass which DGVMs (and presumably LUMs) are known to not capture well (Johnson et 293	
  

al., 2016). BECCS deforestation emissions are generally larger for IMAGE-LU patterns than 294	
  

for MAgPIE-LU patterns, reflecting the much larger decline in forest area (Fig. S1, Table S2). 295	
  

Site-level comparisons can help us to better understand differences across models. Therefore, 296	
  

in order to understand local responses better and to use these to interpret the simulated global 297	
  

totals, we extracted grid-cells from the global simulations (for IMAGE scenarios as spatial 298	
  

information were not available from MAgPIE), selected because a large fraction of the grid-299	
  

cells’ area underwent land-cover transitions within the 21st century. However, there are 300	
  

substantial variations in the models’ response to LUC across different sites, making it difficult 301	
  

to choose representative grid-cells and to draw universal conclusions from this comparison. 302	
  

Figure S5 shows three relatively representative example sites. As expected for a 0.5° 303	
  

resolution, there are substantial differences on grid-cell level across models in terms of initial 304	
  

vegetation C densities. All models simulate increasing biomass in response to afforestation 305	
  

(Fig. S5a,b) and biomass losses upon deforestation (Fig. S5c). However, JULES does not 306	
  

simulate forest degradation (Fig. S5c; see methods for more information about degraded 307	
  

forests), contributing to the lower vegetation C uptake compared to the other DGVMs for the 308	
  

IMAGE ADAFF scenario. 309	
  

For MAgPIE scenarios, site-level comparisons are not shown because MAgPIE only reported 310	
  

global C pools. For the MAgPIE ADAFF scenario, global vegetation C uptake is very similar 311	
  



in all DGVMs but lower than in MAgPIE (Fig. 1d). It seems that one reason for this 312	
  

divergence is different assumptions about potential vegetation C stocks (available for 313	
  

MAgPIE and LPJ-GUESS; see Fig. S6). An additional factor explaining the divergence is the 314	
  

pace of the regrowth curve. In contrast to the other models, MAgPIE assumes a single 315	
  

response function per biome, irrespective of spatial differences in climate and soil conditions 316	
  

within a biome, and thus ignores the effects of spatial differences within a biome, e.g. in terms 317	
  

of annual precipitation or soil fertility on forest regrowth (Poorter et al., 2016). Additionally, 318	
  

MAgPIE does not account for disturbances. When looking at forest regrowth rates averaged 319	
  

over different biomes it seems that tropical regrowth occurs much faster in MAgPIE than, for 320	
  

example, in LPJ-GUESS (Fig. S7a). 321	
  

 322	
  

Soil carbon 323	
  

Compared to vegetation, modelled soil C changes in response to ADAFF activities are much 324	
  

more diverse, with some DGVMs simulating net soil C losses upon afforestation (Figs. 1e,f, 325	
  

2c). Soil C uptake in ADAFF is 62 GtC in IMAGE and 54 GtC in MAgPIE, which is 326	
  

comparable to vegetation C uptake. In contrast, soil C changes in the DGVMs range between 327	
  

-33 and +57 GtC. Soil C accumulation in LPJmL for the MAgPIE ADAFF scenario starts 328	
  

significantly earlier than in the other models. As afforestation on pastures is common in 329	
  

MAgPIE until around year 2070, this indicates a large soil C uptake potential in LPJmL for 330	
  

pasture-forests transitions, which is also apparent in the LPJmL simulations driven by the 331	
  

IMAGE ADAFF LU patterns. For BECCS, all models simulate small soil C losses (up to -16 332	
  

GtC) which are generally larger in the LUMs than in the DGVMs. In both ADAFF and 333	
  

BECCS, differences between LUMs and DGVMs in terms of soil C changes are more 334	
  

pronounced for IMAGE-LU patterns than for MAgPIE-LU patterns. 335	
  



The soil C emissions in JULES and ORCHIDEE for the ADAFF scenarios (and the relatively 336	
  

low emissions for BECCS) might be partly caused by the simplistic representation of 337	
  

agricultural management processes in these models. While LPJmL and LPJ-GUESS represent 338	
  

croplands by specific crop PFTs and growing seasons, ORCHIDEE and JULES grow crops as 339	
  

harvested grass (modified natural grass in ORCHIDEE, natural grass in JULES; see Table 1). 340	
  

Additionally, ORCHIDEE does not include grazing of pastures, which means more biomass C 341	
  

is transferred to the litter when the grass dies. Consequently, pastures and croplands have 342	
  

larger soil C pools in ORCHIDEE and JULES, respectively, than if these processes were 343	
  

accounted for, resulting in less soil C accumulation potential upon afforestation. To test 344	
  

further how different representations of agriculture in the DGVMs affect soil C changes upon 345	
  

afforestation we performed two sensitivity simulations with LPJ-GUESS in which we 346	
  

simplified the representation of management processes following Pugh et al. (2015). In these 347	
  

simulations, the rate of change in LPJ-GUESS soil C pools is reduced by 57% in the MAgPIE 348	
  

ADAFF scenario (compared to the “standard” LPJ-GUESS simulations) when croplands are 349	
  

represented by pastures (mimicking the representation of croplands in JULES), and by 49% in 350	
  

the IMAGE ADAFF case when pastures are not harvested (mimicking the representation of 351	
  

pastures in ORCHIDEE, not shown). Furthermore, LPJ-GUESS, JULES, and particularly 352	
  

ORCHIDEE simulate a widespread decline in net primary productivity (NPP) upon 353	
  

afforestation (Figs. 2f, S8) because in these models tropical grasslands (or croplands) are 354	
  

often more productive than tropical forests. LPJmL, on the other hand, accounts for regional 355	
  

yield gaps so cropland NPP is scaled down. Even though the fraction of NPP transferred to 356	
  

the soil might differ across models (e.g. due to different mortality in secondary forests), this 357	
  

suggests that the lower productivity of re-growing forests compared to agriculture also plays 358	
  

an important role for the limited soil C accumulation (or emissions) in LPJ-GUESS, JULES, 359	
  

and ORCHIDEE. 360	
  



 361	
  

Cumulative CCS 362	
  

CCS is calculated by multiplying the harvested C of bioenergy crops by a capture efficiency 363	
  

of 80% before geologic storage. A prescribed CCS trajectory was implemented in both 364	
  

LUMs, which means that annual global CCS rates are the same in IMAGE and MAgPIE. 365	
  

Cumulative CCS reaches 128 GtC in both LUMs by year 2099. In the DGVMs, cumulative 366	
  

CCS ranges from 37 to 130 GtC by year 2099 (Figs. 1g,h, 2d). 367	
  

As the DGVMs used bioenergy production area from the LUMs and also the same 368	
  

assumptions about capture efficiency and storage capacity, the lower CCS calculated in most 369	
  

of the DGMVs has to arise mainly from differences in simulated bioenergy yields, including 370	
  

differences in the harvest index. Both LUMs assume rain-fed perennial and fast-growing 371	
  

second generation bioenergy crops (such as Miscanthus) to fulfil the CCS demand. LPJmL is 372	
  

the only DGVM representing dedicated bioenergy crops explicitly, but like the other DGVMs 373	
  

does not assume technological yield increases. This implies that the slightly larger cumulative 374	
  

CCS than in MAgPIE originates from higher initial yields. In contrast, LPJ-GUESS grows 375	
  

bioenergy as maize (with residues included for CCS), ORCHIDEE as crop grass, and JULES 376	
  

as natural grass (for harvest assumptions see Table S1). Consequently, average bioenergy 377	
  

yields are highest in LPJmL followed by LPJ-GUESS and then ORCHIDEE and JULES (Fig. 378	
  

S9). Cumulative CCS in all DGVMs apart from LPJmL is higher for IMAGE-LU patterns 379	
  

than for MAgPIE-LU patterns (Figs. 1g,h, 2d) because the larger cultivation area in IMAGE 380	
  

(Fig. S2c,d) outweighs lower average yields (Fig. S9). In the LUMs, the same trade-off 381	
  

between land expansion and yields results in equivalent global CCS rates in both LUMs. 382	
  

 383	
  

Discussion 384	
  



The C uptake potential of afforestation is largely restricted by historic C removal via 385	
  

deforestation. Cumulative LUC emissions over the 1750-2015 period were ~190 GtC (Le 386	
  

Quere et al., 2016), with a very large uncertainty arising from how different forms of land 387	
  

management are considered in the simulations (Arneth et al., 2017) but also due to different 388	
  

LUC hindcasts (Bayer et al., 2017). However, a possibly large fraction of agricultural area 389	
  

will be needed for future food production (Boysen et al., 2017a, Popp et al., 2017) and CO2 390	
  

fertilizing effects on forest growth will likely be limited in RCP2.6. This suggests that 391	
  

achieving 130 GtC net uptake via ADAFF might be challenging, consistent with results from 392	
  

the DGVMs here (especially for MAgPIE-LU where avoided deforestation only plays a minor 393	
  

role compared to afforestation). A limited (<150 GtC) C uptake potential via afforestation 394	
  

within this century was also estimated in previous studies, despite very different methods and 395	
  

assumptions (Lenton, 2010, and references therein). However, one recent study (Sonntag et 396	
  

al., 2016) found a much larger (215 GtC) uptake in a coupled Earth System Model (ESM) for 397	
  

a high emission scenario (RCP8.5) when using RCP4.5 LU (afforestation, -700 Mha 398	
  

agricultural land) instead of RCP8.5 LU (deforestation, +800 Mha agricultural land). The C 399	
  

uptake was thus higher than in our study, but so were baseline deforestation rates, climate 400	
  

impacts, and, particularly, differences in CO2 fertilization (RCP8.5 vs. RCP2.6 in our study); 401	
  

the high levels of CO2 fertilization under RCP8.5 typically causes DGVMs to simulate much 402	
  

larger C uptake in forests. 403	
  

Some of the discrepancy in total C uptake between the LUMs and the DGVMs in the ADAFF 404	
  

scenarios originates from differences in vegetation C uptake, especially for MAgPIE. Natural 405	
  

forest regrowth upon agricultural abandonment is implemented in all DGVMs and IMAGE, 406	
  

while MAgPIE assumes managed regrowth according to prescribed, region-specific growth 407	
  

curves towards the biomass density of potential natural vegetation (Humpenöder et al., 2014). 408	
  

Observational studies differ substantially in reported forest regrowth rates (Krause et al., 409	
  



2016, and references therein). Biomass accumulation in tropical forests has often been 410	
  

reported to slow down a few decades after agricultural cessation, with aboveground biomass 411	
  

levels (representing ~80% of total biomass, Cairns et al., 1997) of mature tropical forests 412	
  

being reached within ca. 66-90 years (Anderson-Teixeira et al., 2016, Poorter et al., 2016), 413	
  

and belowground biomass needing more time to recover, especially following shifting 414	
  

agriculture (Martin et al., 2013). Poorter et al. (2016) also found slower accumulation rates in 415	
  

dry (<1500 mm) compared to wet (>2500 mm) environments. In comparison, tropical (22°S-416	
  

20°N as in Poorter et al.) afforestation in the MAgPIE ADAFF scenario occurs in relatively 417	
  

dry regions, with an average precipitation of 1682 mm yr-1. While we can only quantify 418	
  

tropical recovery times (90% of old forest biomass) for MAgPIE (47 years; Fig. S7a) and 419	
  

LPJ-GUESS (~150 years in tropical Africa), the vegetation C uptake is similar across all 420	
  

DGVMs. The observational studies point towards typical recovery times that lie in the middle 421	
  

of this range. This suggests that, assuming that afforestation will mostly occur as natural 422	
  

regrowth, tropical biomass accumulation rates might be overestimated in MAgPIE. The LPJ-423	
  

GUESS recovery times of Krause et al. (2016) are, however, not directly comparable to these 424	
  

observations, as the LPJ-GUESS simulations allowed natural stand-replacing disturbances 425	
  

(e.g. fire, wind-throw) to occur in these recovering forests, slowing the recovery rate, whilst 426	
  

this is not likely to be the case in the chronosequence observations, which typically age the 427	
  

stand from last disturbance. Evaluation of forest regrowth rates in DGVMs, particularly in 428	
  

tropical forests, will be important to constrain uncertainty in ADAFF potential. 429	
  

Degraded forests also represent an uncertainty in our IMAGE scenarios. JULES represented 430	
  

degraded forests as natural vegetation, whereas the other DGVMs, simply for consistency, 431	
  

followed the IMAGE assumption of degraded forests being grassland. In reality, degraded 432	
  

forests likely represents a mixture between both approaches, with aboveground biomass on 433	
  

average being 70% lower than in undisturbed forests (Asner et al., 2010). Clearly, assuming a 434	
  



degraded forest being a grassland will overestimate vegetation C uptake potential when 435	
  

degraded forests are converted back to forests  (in IMAGE ~50% of the avoided deforestation 436	
  

and afforestation area by end-century is from degraded forests; see Table S2). Additionally, 437	
  

the mismatch between forest loss and agricultural gain reported by FAO (based on which the 438	
  

degraded forest class was introduced in IMAGE) might be largely explained by shifting 439	
  

cultivation (Houghton and Nassikas, 2017). However, most LUMs/DGVMs so far cannot 440	
  

adequately simulate shifting cultivation due to not explicitly representing forest demography. 441	
  

The representation of forest degradation thus remains a challenge for LUMs and DGVMs. 442	
  

Soil C changes contribute most to variations in total C uptake across models. Differences in 443	
  

simulated present-day soil C stocks are hardly surprising as global soil C estimates are very 444	
  

uncertain (Scharlemann et al., 2014) and large variations across DGVMs and ESMs have 445	
  

been reported before (Anav et al., 2013, Tian et al., 2015, Todd-Brown et al., 2013). 446	
  

Numerous studies explored soil C changes following LUC (Smith et al., 2016b, and 447	
  

references therein), but there is still substantial disagreement in terms of the magnitude of 448	
  

change for most land-cover transitions. While studies agree that transitions from forests to 449	
  

croplands reduce soil C (and vice versa), patterns are more diverse for conversions to/from 450	
  

grassland, depending on management intensity, climate, and soils (McSherry and Ritchie, 451	
  

2013, Powers et al., 2011). The picture is further complicated by evidence that the existing 452	
  

field observations in the tropics might not be representative for many tropical landscapes 453	
  

(Powers et al., 2011).  454	
  

The LUC scenarios from the LUMs differ in terms of converted land-cover types: in 455	
  

MAgPIE, afforestation partly takes place on former croplands (especially before year 2025 456	
  

and after 2070). MAgPIE assumes initial litter C (both in croplands and pastures) to be 457	
  

completely depleted and, based on IPCC guidelines, to be replenished within 20 years 458	
  

following agricultural abandonment. Soil C in former croplands is assumed to increase from 459	
  



the grid-cell specific average soil C density of cropland and natural vegetation towards the 460	
  

soil C density of natural vegetation within 20 years (Humpenöder et al., 2014). However, a 461	
  

litter C density of zero and an assumed time frame of 20 years until soil C reaches equilibrium 462	
  

appear questionable. In fact, some studies report soil C to decrease during the first years after 463	
  

cropland cessation (Deng et al., 2016), and subsequent C accumulation is usually slow and 464	
  

proceeds over several decades or even centuries (Silver et al., 2000). In contrast to the 465	
  

prescribed recovery implemented in MAgPIE, IMAGE simulates soil C changes dynamically 466	
  

within LPJmL. However, the contribution of soils to total C uptake is comparable to MAgPIE 467	
  

even though ADAFF activities in IMAGE are largely restricted to pasture-forest transitions. 468	
  

In reality, afforestation on grasslands (or avoided conversion from forests to grasslands) has 469	
  

even less soil C uptake potential than on croplands; soil C depletions in pastures/grasslands 470	
  

relative to forests are generally low (Don et al., 2011, Laganiere et al., 2010) and in many 471	
  

cases grasslands even store more soil C than the replacing forests (Li et al., submitted; Guo 472	
  

and Gifford, 2002, Poeplau et al., 2011, Powers et al., 2011). Additionally, declines in soil C 473	
  

have been reported during the first years of forest regrowth before accumulation occurs and 474	
  

net accumulation is often only achieved after several decades (Paul et al., 2002, Poeplau et 475	
  

al., 2011). Consequently, the rapid soil C uptake in the LUMs for ADAFF is likely 476	
  

overoptimistic, while limited soil C accumulation (compared to vegetation C) in response to 477	
  

afforestation as simulated by some DGVMs seems to be more realistic. However, historic 478	
  

agriculture has likely resulted in substantial net soil C emissions (Sanderman et al., 2017, 479	
  

Smith et al., 2016b), so large soil C losses in response to afforestation as simulated by 480	
  

ORCHIDEE are also unlikely, especially for the MAgPIE ADAFF scenario (where croplands 481	
  

are preferentially afforested). 482	
  

One likely reason for the large discrepancy in simulated soil C changes in response to 483	
  

afforestation is the simulated change in ecosystem productivity. Todd-Brown et al. (2013) 484	
  



showed that soil C stocks in ESMs are closely coupled to simulated NPP. In our simulations, 485	
  

simulated changes in NPP in response to ADAFF activities are very different across models, 486	
  

which partly explains differences in soil C accumulation. Modelling work by DeFries (2002) 487	
  

suggests that regional impacts of LUC on NPP are highly variable, depending on management 488	
  

intensity and original vegetation cover, and that cropland productivity is higher compared to 489	
  

forests in temperate regions. The relatively high productivity of temperate crops seems to be 490	
  

confirmed for European studies (Ciais et al., 2010, Luyssaert et al., 2010), but estimates are 491	
  

highly dependent on the data source from which NPP is derived. In the tropics, observations 492	
  

suggest crop productivity at many locations to be lower than for forests (Cleveland et al., 493	
  

2015, Monfreda et al., 2008). As afforestation in our scenarios is mostly concentrated in the 494	
  

tropics, the NPP decrease following afforestation in most DGVMs seems to be unrealistic. 495	
  

A second potentially important reason for the large differences in simulated soil C uptake is 496	
  

different amounts of C removed from agricultural land. Soil C recovery following agricultural 497	
  

cessation has recently been simulated with a different version of LPJ-GUESS (croplands were 498	
  

represented by tilled, fertilized, and harvested grassland rather than specific crop PFTs) and 499	
  

showed reasonable agreement with observations (Krause et al., 2016). ORCHIDEE and 500	
  

JULES represent fewer management processes and therefore may underestimate soil C uptake 501	
  

potential in ADAFF (but also losses in BECCS); the incorporation of harvest (not included in 502	
  

ORCHIDEE pastures) and the representation of crops by specific crop PFTs (including 503	
  

tillage), instead of grasses, substantially increases soil C depletions on agricultural land in 504	
  

LPJ-GUESS (Pugh et al., 2015). However, there are also observations suggesting that 505	
  

moderately intensive grazing might actually increase soil C stocks in C4-dominated 506	
  

grasslands (McSherry and Ritchie, 2013, Navarrete et al., 2016), a process the DGVMs likely 507	
  

do not capture well. 508	
  



The LUMs did not include deforestation emissions ("carbon debt", Fargione et al., 2008) in 509	
  

their BECCS CDR target. This is a common procedure in BECCS scenarios (or at least LUC 510	
  

emissions are often not seperated from fossil fuel emissions, e.g. Smith et al., 2016a). For two 511	
  

bioenergy scenarios (600 and 800 Mha production area made available via either 512	
  

deforestation or agricultural abandonment, RCP2.6 climate) comparable in terms of area and 513	
  

climate changes to our scenarios, a modelling study by Wiltshire and Davies-Barnard (2015) 514	
  

estimated vegetation C losses of 70 and 0 GtC and, using average depletions from Guo and 515	
  

Gillford (2002), soil C losses of 20 and 60 GtC. In our simulations, vegetation and soil C 516	
  

emissions are relatively small, but our study still confirms that these emissions should not be 517	
  

neglected when considering bioenergy as an option to achieve negative emissions. 518	
  

Cumulative CCS in BECCS differs substantially across models, ranging between 37 GtC and 519	
  

130 GtC in the DGVMs, and reaching 128 GtC in both LUMs. By comparison, Wiltshire and 520	
  

Davies-Barnard (2015) found 75 and 200 GtC for the two comparable scenarios, which is 521	
  

similar to the 100-230 GtC range reported by Smith et al. (2016a) for IAM scenarios 522	
  

consistent with the 2°C target. Recently, Boysen et al. (2017a) estimated land availability for 523	
  

bioenergy production in LPJmL. They found that in the best case scenario, biomass 524	
  

plantations on abandoned agricultural land could deliver up to 350 GtC by 2100 (but likely 525	
  

much less), and potentially more if plantations would replace natural ecosystems. In our 526	
  

study, bioenergy area was prescribed by the LUMs and differences in CCS across models 527	
  

originate from simulated bioenergy crop yields. The LUMs and LPJmL represent these crops 528	
  

as dedicated bioenergy crops, mimicking characteristics of perennial energy crops like 529	
  

switchgrass or Miscanthus. Bioenergy yields in LPJmL have recently been evaluated against 530	
  

observations and showed reasonable results but were hindered by limited experimental data in 531	
  

the tropics (Heck et al., 2016). The other DGVMs grow bioenergy crops as maize (LPJ-532	
  

GUESS), productive grass (ORCHIDEE), or natural grass (JULES). JULES and ORCHIDEE 533	
  



also do not increase the harvest index for bioenergy crops relative to food crops. Additionally, 534	
  

the LUMs assume technological yield increases over time, resulting in higher average yields 535	
  

than in most DGVMs. While research of dedicated bioenergy crops is just in its infancy and 536	
  

thus on the one hand promises high potential, there is also evidence that yield increases 537	
  

observed over the last decades for cereals have recently slowed down (Alexandratos and 538	
  

Bruinsma, 2012). In fact, much of the historic yield increase was achieved via increasing the 539	
  

harvest index and fertilizer application, processes that are unlikely to substantially affect 540	
  

bioenergy yields (Searle and Malins, 2014). It also remains to be seen what bioenergy yield 541	
  

will be attainable in more marginal lands compared to sites where these crops are typically 542	
  

grown today (Searle and Malins, 2014). Consequently, what bioenergy yields we can expect 543	
  

in the future is controversial, with the optimistic assumptions made in IAMs/LUMs being 544	
  

plausible, but towards the upper bound of uncertainty (Creutzig, 2016). 545	
  

We conclude that forest maintenance and expansion, as well as large-scale bioenergy 546	
  

production combined with CCS, offer the potential to remove substantial amounts of C from 547	
  

the atmosphere and thus can help to mitigate climate change. However, the size of the 548	
  

removal is highly uncertain, and may be much less than previously assumed in IAM/LUM 549	
  

scenarios consistent with the 2°C target (Boysen et al., 2017b, Rogelj et al., 2015, Smith et 550	
  

al., 2016a, Tavoni and Socolow, 2013, Wiltshire and Davies-Barnard, 2015); the C uptake 551	
  

simulated by the LUMs is only achieved in one out of 16 combinations of mitigation LUC 552	
  

scenarios and DGVMs. The main reasons for the typically lower C uptake in the DGVMs as 553	
  

initially implemented in the LUMs are slower soil C accumulation (or even losses) following 554	
  

afforestation, different assumptions on potential vegetation C stocks, lower growth rates of 555	
  

forests, and lower bioenergy yields. Clearly the per-area C uptake (and thus the land demand) 556	
  

in land-based mitigation scenarios depends on assumptions made about vegetation and soil 557	
  

processes in the IAMs/LUMs. An improved implementation of land-based CDR options in 558	
  



both kinds of models, LUMs and DGVMs, as well as a deeper interaction between both is 559	
  

necessary to draw more robust conclusions about the potential contribution of land 560	
  

management to climate stabilization. While the LUMs should emphasize the large uncertainty 561	
  

in assumed yields from bioenergy plantations, the DGVMs need to improve the 562	
  

parameterizations of managed herbaceous vegetation, particularly bioenergy crops (and also 563	
  

woody bioenergy), as well as regrowth of managed forests for afforestation. Field 564	
  

observations should focus on studying bioenergy crop productivity under commercial 565	
  

production conditions. Additionally, the LUMs and some DGVMs need to reconsider their 566	
  

assumptions about soil C sequestration rates following afforestation. More detailed 567	
  

information about grazing intensities on grasslands, and a clear differentiation between 568	
  

natural grasslands and intensively managed pastures in observational studies might also help 569	
  

to reduce the uncertainty in soil C changes following LUC (Navarrete et al., 2016). 570	
  

In this study we only address the uncertainty in land-based mitigation arising from potential C 571	
  

uptake for a prescribed available area. However, the establishment of negative emissions from 572	
  

land management could also be hindered by unacceptable social or ecological side-effects 573	
  

(Kartha and Dooley, 2016, Krause et al., 2017, Smith et al., 2016a), biophysical and 574	
  

biogeochemical climate impacts beyond C (Boysen et al., 2017a, Krause et al., 2017, Smith et 575	
  

al., 2016a), irreversible effects of overshooting CO2 concentrations (Kartha and Dooley, 576	
  

2016, Tokarska and Zickfeld, 2015), or simply because CCS turns out to be technologically 577	
  

infeasible at commercial scale. There is also strong evidence that the timescales for shifts in 578	
  

farming systems to be realized may be of the order of several decades, substantially delaying 579	
  

the onset of negative emissions from BECCS (Alexander et al., 2013; Brown et al., 580	
  

submitted). Combining these unknowns and caveats with the large uncertainty in uptake 581	
  

potential identified in this study suggests that relying on negative emissions to mitigate 582	
  

climate change is a very high-risk strategy. 583	
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Tables 815	
  

Table 1: Overview of major DGVM differences relevant to this study. A more detailed 816	
  

version of the table can be found in the supplement (Table S1). 817	
  

Variable or process DGVM 
LPJ-GUESS ORCHIDEE JULES LPJmL 

Spatial resolution 0.5o x 0.5o 2° x 2° 0.5° x 0.5° 
Nitrogen cycle yes no 
Implementation of 
LU patterns from the 
LUMs into the 
DGVM 

absolute 
cropland, 

pasture, and 
natural area 

prescribed by 
LUMs, PFT 

distribution on 
natural land is 

simulated 
dynamically 

changes in 
cropland, 

pasture, and 
forest vs. other 

natural area 
prescribed by 
LUMs, forest 
area and PFT 
distribution 
(static on 

natural land) in 
year 2005 

according to 
internal map 

(from European 
Space Agency) 

absolute cropland, pasture, and 
natural area prescribed by LUMs, 
PFT distribution on natural land 

is simulated dynamically 
 

Implementation of 
agricultural 
expansion 

all natural PFTs are reduced 
proportionally 

grasslands are 
reduced first, 
then shrubs, 
then forests 

all natural PFTs 
are reduced 

proportionally 

Representation of 
degraded forests (for 
IMAGE-LU patterns 
only) 

as pasture as natural 
grassland 

as natural 
vegetation 
(forests or 

natural 
grassland) 

as pasture 

Forest (re)growth 
dynamics 

cohort 
approach 

(competition 
between 

different age 
classes), natural 

regrowth 

dilution approach (one average individual per PFT), 
natural regrowth 

Pasture management harvest, woody 
vegetation is 

prevented from 
growing 

no harvest, 
woody 

vegetation is 
prevented from 

growing 

harvest*, 
woody 

vegetation is 
prevented from 

growing 

harvest with 
variable 
intensity, 
woody 

vegetation is 
prevented from 



growing 
Cropland 
management 

four crop PFTs 
(temperate 

wheat, maize, 
rice, temperate 
other), variable 

sowing and 
harvest date, 

tillage, 
irrigation, 

fertilization, 
dynamic 

potential heat 
unit 

calculation, 
woody 

vegetation is 
prevented from 

growing 

C3 + C4 crop 
grass (similar 
phenology as 
natural grass 
but adapted 

maximum LAI 
and slightly 

modified 
critical 

temperature 
and humidity 
parameters), 

harvest, woody 
vegetation is 

prevented from 
growing 

C3 + C4 grass, 
harvest, woody 

vegetation is 
prevented from 

growing 

12 crop PFTs, 
variable sowing 

and harvest 
date, irrigation, 

woody 
vegetation is 

prevented from 
growing 

Dedicated bioenergy 
crop PFTs 

no (grown as 
maize) 

no (grown as 
C3 or C4 crop 

grass) 

no (grown as 
C3 or C4 grass) 

yes (fast-
growing C4 

grass, 
temperate and 
tropical short 

rotation 
coppices) 

*Pastures were treated as cropland in these JULES simulations. Normally pastures are not 818	
  

harvested in JULES. 819	
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Figure captions 827	
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Figure 1: Time-series (2010-2099) of simulated C uptake (total of all grid-cells) in the LUMs 829	
  

and DGVMs for the mitigation simulations (compared to the respective BASE simulation), 830	
  

for IMAGE-LU patterns (left, 5-year running means) and MAgPIE-LU patterns (right). a+b) 831	
  

total C (including cumulative CCS), c+d) vegetation C, e+f) litter and soil C, g+h) cumulative 832	
  

CCS. 833	
  

 834	
  

 835	
  



Figure 2: Simulated change in total C (a), vegetation C (b), litter and soil C (c), cumulative 836	
  

CCS (d), cumulative instant (oxidized in the same year) deforestation/degradation emissions 837	
  

(e), and cumulative NPP (f) between year 2005 and 2099 for the mitigation simulations 838	
  

(compared to the respective BASE simulation) in IMAGE/MAgPIE (as simulated by the 839	
  

LUMs in the LUC scenarios), LPJ-GUESS, ORCHIDEE, JULES and LPJmL. 840	
  

 841	
  

 842	
  

Figure 3: Spatial distribution of total C uptake in the LUMs (a-d) and DGVMs (e-t) for the 843	
  

mitigation scenarios (compared to BASE) between year 2005 and 2099 for IMAGE ADAFF 844	
  

(1st column), MAgPIE ADAFF (2nd column), IMAGE BECCS (3rd column) and MAgPIE 845	
  

BECCS (4th column). Numbers are global totals. 846	
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