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 30	  

Abstract 31	  

Most climate mitigation scenarios involve negative emissions, especially those that aim to 32	  

limit global temperature increase to 2°C or less. However, the carbon uptake potential in land-33	  

based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty 34	  

by using two land-based mitigation scenarios from two land-use models (IMAGE and 35	  

MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ-GUESS, 36	  

ORCHIDEE, JULES, LPJmL). Each of the four combinations of land-use models and 37	  

mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the 38	  

century, achieved either via the cultivation of bioenergy crops combined with carbon capture 39	  

and storage (BECCS) or avoided deforestation and afforestation (ADAFF). 40	  

Results suggest large uncertainty in simulated future land demand and carbon uptake rates, 41	  

depending on the assumptions related to land use and land management in the models. Total 42	  

cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, 43	  

ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of 44	  

mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than 45	  

achieved in the land-use models. The large differences in carbon uptake between the DGVMs 46	  

and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to 47	  



different model assumptions regarding bioenergy crop yields, and due to the simulation of soil 48	  

carbon response to land-use change. Differences between land-use models and DGVMs 49	  

regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, 50	  

on the results. Given the low confidence in simulated carbon uptake for a given land-based 51	  

mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower 52	  

than assumed in scenarios consistent with the 2°C target, relying on negative emissions to 53	  

mitigate climate change is a highly uncertain strategy. 54	  

 55	  

Introduction 56	  

“Negative emissions”, i.e. the removal of carbon dioxide (CDR) from the atmosphere, is an 57	  

important concept for climate change mitigation (Lenton and Vaughan, 2009). Scenarios 58	  

based on land-use (LU) models or Integrated Assessment Models (IAMs) tend to achieve an 59	  

end-of-century warming goal at or below 2°C only through negative emissions which 60	  

commence within the next 1-2 decades, and then increase and are sustained at considerable 61	  

rates during the second half of the 21st century (Anderson and Peters, 2016, Fuss et al., 2014, 62	  

Gasser et al., 2015, Riahi et al., 2017, Rogelj et al., 2015, Sanderson et al., 2016, Smith et al., 63	  

2016a). So far, negative emissions represented in IAMs are mainly land-based options (Popp 64	  

et al., 2017, Popp et al., 2014b). 65	  

IAMs currently focus on two land-based CDR technologies which both utilize the carbon (C) 66	  

uptake by plants via photosynthesis. One is large-scale cultivation of crops or trees for 67	  

bioenergy and capturing the C released upon combustion for long-term storage in geologic 68	  

formations (BECCS). The other is to maintain or increase terrestrial C stocks via avoided 69	  

deforestation and afforestation/reforestation (ADAFF). These are the two most widely-used 70	  

options in IAMs to achieve negative emissions because they do not have to rely on the 71	  



development of new, large-scale technology (ADAFF), or are regarded as the most prolific 72	  

option with the capability to supply energy (BECCS) (Humpenöder et al., 2014, Smith et al., 73	  

2016a). However, the land demand/availability of these approaches is highly uncertain 74	  

(Boysen et al., 2017a, Popp et al., 2017), and their potential to remove significant amounts of 75	  

C from the atmosphere is regarded as controversial (Fuss et al., 2014). Additionally, conflicts 76	  

with other LU, associated supply of ecosystem services, and maintenance/enhancement of 77	  

biodiversity are highly likely (Krause et al., 2017, Smith et al., 2016a, Williamson, 2016). 78	  

Considering typical time frames of decades involved in the planning and establishment of 79	  

climate mitigation projects, the quantification of their uncertainties in terms of achievable 80	  

CDR is important to inform policy makers about practicality and risks. 81	  

Here, we address the uncertainty of C uptake potential from land-based climate change 82	  

mitigation by using projections of future land-use change (LUC) from one IAM (IMAGE) 83	  

and one socio-economic LU model (MAgPIE; for simplicity we refer to IMAGE and 84	  

MAgPIE as land-use models - LUMs - in the following) as input to four dynamic global 85	  

vegetation models (DGVMs; LPJ-GUESS, ORCHIDEE, JULES, LPJmL). In these scenarios, 86	  

C uptake is achieved either via BECCS or via ADAFF. The cumulative additional C uptake 87	  

target in each mitigation LUC scenario is 130 GtC by year 2100 compared to a baseline LUC 88	  

scenario without additional land-based mitigation (BASE). We analyze total C uptake and the 89	  

relative contribution of vegetation, soils, and C storage via CCS in the four DGVMs and 90	  

compare it to the C uptake targeted and achieved in the LUMs. 91	  

 92	  

Materials and methods 93	  

Detailed information about the LUMs and the scenarios can be found in Krause et al. (2017). 94	  

In the following we provide a short description of the LUMs and the scenarios. 95	  



 96	  

Description of the land-use models 97	  

The Integrated Model to Assess the Global Environment (IMAGE) is an ecological-98	  

environmental model framework simulating the environmental consequences of human 99	  

activities worldwide (Stehfest et al., 2014). 100	  

The Model of Agricultural Production and its Impact on the Environment (MAgPIE) is a 101	  

global LU and agro-food system model. It optimizes spatial-explicit LU patterns and 102	  

intensification levels to satisfy a given food, feed, material, and bioenergy demand at minimal 103	  

production costs (Lotze-Campen et al., 2008, Popp et al., 2014a).  104	  

Climate change and CO2 impacts on forest growth and crop yields are accounted for in the 105	  

LUMs. The LPJmL DGVM (Bondeau et al., 2007) represents the crop/vegetation sub-model 106	  

in both IMAGE (where it is dynamically coupled) and MAgPIE (where it provides potential C 107	  

stocks, crop yields, irrigation water requirements, and blue water availability as input data). 108	  

We also use an offline version of LPJmL as one of our four DGVMs which differs from the 109	  

versions used in the LUMs mainly by not considering technological yield increases in the 110	  

future. 111	  

 112	  

Land-use scenarios 113	  

Both LUMs harmonized their pasture and cropland LU patterns to the HYDE 3.1 dataset 114	  

(Klein Goldewijk et al., 2011) in the years 2005 (IMAGE) or 1995 (MAgPIE) to create a 115	  

continuous historical-to-future time series. The simulation period was 1970-2100 for IMAGE 116	  

and 1995-2100 for MAgPIE, with LUC scenarios starting to diverge in year 2005. The spin-117	  

up in IMAGE was set to 700 years with natural vegetation cover followed by 300 years with 118	  



year 1970 land-cover map, climate and CO2. In MAgPIE, potential C densities from LPJmL 119	  

were used as initial (1995) values, with agricultural vegetation and litter C set to zero and soil 120	  

C depleted based on IPCC recommendations to account for real land cover at the start of the 121	  

simulation period (Humpenöder et al., 2014). Socioeconomic developments as input to the 122	  

LUMs were based on SSP2 (Popp et al., 2017). Food production in the mitigation scenarios 123	  

was maintained on the same levels as in BASE. 124	  

With respect to the rate of forest regrowth in the ADAFF scenarios, MAgPIE parameterizes 125	  

managed afforestation by climate region specific S-shaped growth curves towards potential 126	  

forest biomass, and litter and soil C recovering within 20 years (Humpenöder et al., 2014). In 127	  

contrast, forest regrowth in IMAGE is dynamically simulated by LPJmL, which is a sub-128	  

component of IMAGE. This means that similar C uptake rates following afforestation are to 129	  

be expected for IMAGE and the stand-alone LPJmL DGVM. Forest regrowth in IMAGE 130	  

partly takes place on degraded forest lands, which are assumed to be completely deforested 131	  

(Doelman et al., 2018). 132	  

The degraded forest land-cover class was implemented in IMAGE due to a mismatch between 133	  

deforestation rates reported by the FAO’s 2015 Forest Resource Assessment 134	  

(http://www.fao.org/3/a-i4793e.pdf, last accessed September 2017) and historical expansions 135	  

of cropland and pasture area reported by FAO. These differences are assumed to be caused by 136	  

additional reasons (e.g. unsustainable forestry preventing regrowth of natural forests, mining, 137	  

or illegal logging) and accounted for by a historically calibrated rate of forest degradation, 138	  

which is extrapolated into the future (Doelman et al., 2018). 139	  

 140	  

Description of the Dynamic Global Vegetation Models 141	  



The LUC scenarios were used as input to four DGVMs: LPJ-GUESS (Olin et al., 2015, Smith 142	  

et al., 2014), ORCHIDEE (Krinner et al., 2005), JULES (Best et al., 2011, Clark et al., 2011), 143	  

and LPJmL (Bondeau et al., 2007, Sitch et al., 2003). The models have different heritages; 144	  

while ORCHIDEE and JULES were developed as land components of global climate models 145	  

(IPSL and UKESM), LPJ-GUESS and LPJmL were originally designed as stand-alone offline 146	  

models to simulate vegetation dynamics and associated C and water fluxes. All DGVMs 147	  

represent vegetation using a number of plant functional types (PFTs), with LPJ-GUESS and 148	  

LPJmL also representing dedicated crop PFTs. LPJ-GUESS is different from the other 149	  

DGVMs by its explicit representation of forest demography and by having nitrogen cycling as 150	  

an additional constraint on ecosystem C processes (in addition to soil water availability which 151	  

is accounted for in all DGVMs). All DGVMs represent LUC and land management explicitly 152	  

even though the models differ in terms of implemented processes and level of detail. Table 1 153	  

and the extended Table S1 provide an overview of model differences which are important for 154	  

this study. 155	  

 156	  

Simulation setup 157	  

The DGVM simulation period was 1901-2099. DGVMs were first spun up to pre-industrial 158	  

equilibrium state (1901), recycling 1950-1959 climatology to attain a stable equilibrium of C 159	  

pools and fluxes in each model using atmospheric CO2 concentration from 1901 160	  

(Meinshausen et al., 2011). Climate from the 1950-1959 period was used for the spin-up 161	  

because these were the first years in the climate data set, a common practice in this kind of 162	  

set-up. DGVMs were then applied over the transient period 1901-2099 using transient CO2 163	  

(Meinshausen et al., 2011) and climate data (1950-2099) simulated by the IPSL-CM5A-LR 164	  

climate model for the representative concentration pathway RCP2.6 from the ISI-MIP project, 165	  



bias-corrected as in Hempel et al. (2013). The temperature increase is 2°C by the end of the 166	  

21st century relative to the pre-industrial era. The climate data for the spin-up and the 1901-167	  

1949 period were randomly taken from the 1950-1959 period. Future atmospheric CO2 168	  

mixing ratio followed the RCP2.6 pathway, peaking at 443 ppmv in year 2052 (Meinshausen 169	  

et al., 2011). LUC was based on spatially explicit LU maps derived from the LUMs (for the 170	  

historic period based on HYDE3.1) and translated into the vegetation types of each DGVM 171	  

(see Table 1). The DGVMs aimed to be as consistent as possible with the LUMs when 172	  

implementing LU patterns from the LUM scenarios, e.g. for IMAGE scenarios all DGVMs 173	  

apart from JULES followed the IMAGE assumption of degraded forests being grasslands. 174	  

Management information (crop types, irrigation, and nitrogen fertilizers) were also provided 175	  

by the LUMs but were only used by some DGVMs which represented the relevant processes 176	  

explicitly (Table 1). LPJ-GUESS was the only model being able to use nitrogen fertilizers as 177	  

provided by the LUMs. Nitrogen application rates (synthetic plus manure) were available 178	  

from 1970/1995 on. They were derived to match assumed crop yields in the LUMs. A historic 179	  

hindcast (1901-1969/1901-1994) was calculated based on initial (1970/1995) fertilizer rates 180	  

from the LUMs and relative changes in the Land-Use Harmonization data set 181	  

(http://luh.umd.edu/index.shtml, see also Krause et al., 2017). The implementation of the LU 182	  

data into the DGVMs (e.g. mapping to DGVM vegetation types and defining rules by which 183	  

managed land expands over natural vegetation), land masks, and additional required input 184	  

variables (e.g. soil characteristics) were left to the responsibility of the individual DGVM 185	  

groups. Different model structures and implementations of the LU patterns can result e.g. in 186	  

differences in global forest area in the individual DGVMs (Fig. S1). The spatial resolution of 187	  

the DGVMs was the same as the resolution of the input data (0.5°x0.5°), except for 188	  

ORCHIDEE (2°x2°). In total, 24 combinations of DGVMs and LUC scenarios were 189	  

simulated, including 16 combinations of DGVMs and mitigation LUC scenarios. 190	  



 191	  

Results 192	  

Land-use scenarios 193	  

In both LUMs, LUC is generally greater for ADAFF scenarios than for BECCS scenarios 194	  

(Fig. S2) because the former is simulated with LUMs to be less efficient at CDR than the 195	  

latter (Humpenöder, et al., 2014). The different C accumulation trajectories in ADAFF (see 196	  

methods) result in ADAFF activities starting earlier in IMAGE but avoided 197	  

deforestation/afforestation area being slightly larger in MAgPIE by the end of the century 198	  

(Figs. S1, S2a,b, Table S2). Forest area by year 2099 is 1040 Mha larger in ADAFF than in 199	  

BASE for IMAGE and 1103 Mha larger for MAgPIE. For IMAGE, ~42% of this difference in 200	  

forest area can be attributed to avoided deforestation and 58% to afforestation. For MAgPIE, 201	  

the corresponding numbers are only 4% for avoided deforestation and 96% for afforestation, 202	  

emphasizing the much larger role of afforestation compared to avoided deforestation in 203	  

MAgPIE. The LUMs also differ in terms of land-cover classes affected by ADAFF activities. 204	  

In IMAGE, forest maintenance and expansion usually takes place on pastures or degraded 205	  

forests (ADAFF compared to BASE), but in MAgPIE afforestation on abandoned croplands is 206	  

also relevant, particularly after year 2070 (see Table S2; note that some of the abandoned 207	  

cropland in MAgPIE ADAFF is not afforested but instead converted to pasture while at other 208	  

locations pastures are converted to forests, resulting in small net changes in pasture area by 209	  

the end of the century).  210	  

The area needed for bioenergy production is mainly taken from natural vegetation in IMAGE 211	  

but also from existing agricultural land in MAgPIE. IMAGE has a larger bioenergy land 212	  

demand to fulfil the same CCS target as MAgPIE (Fig. S2c,d). This reflects different 213	  

modelling approaches: in IMAGE, land allocation for bioenergy cultivation follows a rule-214	  



based approach according to sustainability criteria, implying that only marginal land not 215	  

needed for food production is available for bioenergy. In MAgPIE, bioenergy and food 216	  

production compete for fertile land based on a cost minimization procedure. Consequently, 217	  

average bioenergy yields are lower in IMAGE than in MAgPIE, thereby increasing the 218	  

required area to deliver the same annual CCS rates. 219	  

 220	  

Present-day carbon pools and future changes in the baseline scenarios 221	  

Present-day C pools as simulated by IMAGE and MAgPIE are 440 and 484 GtC in global 222	  

vegetation, and 1121 and 1981 GtC in the soils (including litter), respectively. The large 223	  

divergence in soil C between the two LUMs is likely mainly due to the representation of 224	  

permafrost in MAgPIE. Vegetation C simulated by the DGVMs ranges between 275 and 425 225	  

GtC, and soil C between 1315 and 1954 GtC (Fig. S3). For the two non-mitigation BASE 226	  

scenarios, in all DGVMs except LPJmL the land acts as a net C sink between year 2000 and 227	  

2099 (Fig. S3). The magnitude and direction of change in C pools is determined by the 228	  

DGVM’s response to RCP2.6 climate change, CO2 fertilization, and baseline LUC. 229	  

 230	  

Total carbon uptake in the mitigation scenarios 231	  

Total additional C uptake in the mitigation scenarios is here calculated as the sum of changes 232	  

in vegetation C, litter and soil C, and (relatively negligible) product pool C, plus cumulative 233	  

CCS (all relative to BASE). While an uptake target of 130 GtC was set in both LUMs, actual 234	  

C uptake in the LUMs in most cases deviates somewhat from this number. For the ADAFF 235	  

scenarios, the simplicity of the afforestation implementation in IMAGE was unable to exactly 236	  

meet the target. In MAgPIE, afforestation decision-making was based on present-day 237	  



potential C pools. Potential impacts of climate change on the terrestrial C storage capacity 238	  

were therefore not considered which leads to a mismatch between intended and actual 239	  

sequestration. The realized C uptake in ADAFF between year 2005 and 2099 is 141 GtC in 240	  

IMAGE and 120 GtC in MAgPIE (Figs. 1a,b, 2a). Around 49% of the total C increase in 241	  

IMAGE ADAFF can be attributed to avoided deforestation and 51% to afforestation (for 242	  

MAgPIE spatial C stocks were not available but afforestation is certainly much more 243	  

important due to the limited decline in forest area in MAgPIE BASE). For BECCS, in both 244	  

LUMs the CDR target was implemented as a gross CCS target which included the harvested 245	  

C from bioenergy crops and a fractional (80%; Klein et al., 2014) capture and storage of this 246	  

harvest. Cumulative CCS reaches 128 GtC in year 2099 in both LUMs (see subsection 247	  

“Cumulative CCS”) so the implemented CDR/CSS target is achieved. However, calculations 248	  

of the target in the LUMs originally neglected terrestrial C losses from deforestation for 249	  

bioenergy cultivation. When these are included, cumulative CCS combined with ecosystem C 250	  

losses from deforestation result in a net total C uptake of 86 and 107 GtC, thus below the 251	  

sought target due to emissions from LUC. 252	  

In contrast to the two LUMs, total C uptake (relative to BASE) is typically lower in the 253	  

DGVM simulations forced by the same LU patterns, with total C uptake in the DGVMs 254	  

ranging between 19 and 130 GtC (Figs. 1a,b, 2a). Unsurprisingly (as LPJmL represents the 255	  

vegetation component of the LUMs), the closest agreement exists between the LUMs and 256	  

LPJmL. ORCHIDEE simulates the lowest uptake for ADAFF and JULES the lowest uptake 257	  

for BECCS. The maximum yearly total C uptake per decade within the 21st century ranges 258	  

from 1.9 GtC yr-1 (IMAGE ADAFF) to 3.5 GtC yr-1 (MAgPIE ADAFF) in the LUMs and 259	  

from 0.4 GtC yr-1 (ORCHIDEE IMAGE-ADAFF) to 2.0 GtC yr-1 (LPJmL IMAGE-BECCS) 260	  

in the DGVMs. Spatially, total C uptake is concentrated in the tropics for ADAFF (except in 261	  

ORCHIDEE, which simulates substantial emissions in some regions), while patterns are more 262	  



diverse for BECCS (Fig. 3). The largest agreement in total C uptake across DGVMs is found 263	  

in tropical Africa for the ADAFF scenarios (Fig. S4). The contributions of vegetation, soil, 264	  

and cumulative CCS to model discrepancies in total C uptake are analyzed in the following 265	  

subsections. 266	  

 267	  

Vegetation carbon 268	  

As intended, the simulations with the ADAFF scenarios result in increasing biomass over the 269	  

21st century compared to the BASE simulations for all LUMs and DGVMs. Vegetation C 270	  

uptake in year 2099 is 79 and 66 GtC in IMAGE and MAgPIE and ranges between 39 and 73 271	  

GtC in the DGVMs (Figs. 1c,d, 2b), with generally larger uptake for IMAGE scenarios than 272	  

for MAgPIE scenarios due to the earlier start of ADAFF activities in IMAGE (Table S2). 273	  

Biomass accumulation occurs at a relatively steady rate in the DGVMs but accelerates during 274	  

the second half of the century in the LUMs (Fig. 1c,d). There is a drop in vegetation C for 275	  

LPJmL MAgPIE-ADAFF around mid-century. As agricultural land has low vegetation C 276	  

pools in LPJmL this is related to a decreasing vegetation C density in forests, which is not 277	  

compensated for by the simultaneous increase in forest area. Tree PFTs in LPJmL are 278	  

represented by average individuals (representing all trees belonging to this PFT), and the 279	  

individual’s properties are changed when afforestation occurs in a grid-cell. These changes in 280	  

the PFT’s properties might in some regions reduce its ability to compete or make it more 281	  

vulnerable to disturbances so that tree mortality is increased compared to the BASE scenario 282	  

in which no afforestation took place. 283	  

The vegetation C uptake in IMAGE can be equally attributed to avoided deforestation and to 284	  

afforestation (Table S3). No quantification is possible in MAgPIE because spatial C stocks 285	  

were not available. In the DGVMs, the contribution of avoided deforestation to the vegetation 286	  



C uptake in ADAFF is generally larger for IMAGE-LU than for MAgPIE-LU (Table S3), 287	  

confirming the much larger role of afforestation compared to avoided deforestation in 288	  

MAgPIE. For BECCS, all LUMs and DGVMs simulate deforestation-driven decreases in 289	  

vegetation C. JULES simulates the largest biomass losses upon deforestation and ORCHIDEE 290	  

the smallest losses. Since global vegetation C stocks are similar across DGVMs (with the 291	  

exception of ORCHIDEE, Fig. S3), differences in C losses arise from spatial variations in 292	  

biomass which DGVMs (and presumably LUMs) are known to not capture well (Johnson et 293	  

al., 2016). BECCS deforestation emissions are generally larger for IMAGE-LU patterns than 294	  

for MAgPIE-LU patterns, reflecting the much larger decline in forest area (Fig. S1, Table S2). 295	  

Site-level comparisons can help us to better understand differences across models. Therefore, 296	  

in order to understand local responses better and to use these to interpret the simulated global 297	  

totals, we extracted grid-cells from the global simulations (for IMAGE scenarios as spatial 298	  

information were not available from MAgPIE), selected because a large fraction of the grid-299	  

cells’ area underwent land-cover transitions within the 21st century. However, there are 300	  

substantial variations in the models’ response to LUC across different sites, making it difficult 301	  

to choose representative grid-cells and to draw universal conclusions from this comparison. 302	  

Figure S5 shows three relatively representative example sites. As expected for a 0.5° 303	  

resolution, there are substantial differences on grid-cell level across models in terms of initial 304	  

vegetation C densities. All models simulate increasing biomass in response to afforestation 305	  

(Fig. S5a,b) and biomass losses upon deforestation (Fig. S5c). However, JULES does not 306	  

simulate forest degradation (Fig. S5c; see methods for more information about degraded 307	  

forests), contributing to the lower vegetation C uptake compared to the other DGVMs for the 308	  

IMAGE ADAFF scenario. 309	  

For MAgPIE scenarios, site-level comparisons are not shown because MAgPIE only reported 310	  

global C pools. For the MAgPIE ADAFF scenario, global vegetation C uptake is very similar 311	  



in all DGVMs but lower than in MAgPIE (Fig. 1d). It seems that one reason for this 312	  

divergence is different assumptions about potential vegetation C stocks (available for 313	  

MAgPIE and LPJ-GUESS; see Fig. S6). An additional factor explaining the divergence is the 314	  

pace of the regrowth curve. In contrast to the other models, MAgPIE assumes a single 315	  

response function per biome, irrespective of spatial differences in climate and soil conditions 316	  

within a biome, and thus ignores the effects of spatial differences within a biome, e.g. in terms 317	  

of annual precipitation or soil fertility on forest regrowth (Poorter et al., 2016). Additionally, 318	  

MAgPIE does not account for disturbances. When looking at forest regrowth rates averaged 319	  

over different biomes it seems that tropical regrowth occurs much faster in MAgPIE than, for 320	  

example, in LPJ-GUESS (Fig. S7a). 321	  

 322	  

Soil carbon 323	  

Compared to vegetation, modelled soil C changes in response to ADAFF activities are much 324	  

more diverse, with some DGVMs simulating net soil C losses upon afforestation (Figs. 1e,f, 325	  

2c). Soil C uptake in ADAFF is 62 GtC in IMAGE and 54 GtC in MAgPIE, which is 326	  

comparable to vegetation C uptake. In contrast, soil C changes in the DGVMs range between 327	  

-33 and +57 GtC. Soil C accumulation in LPJmL for the MAgPIE ADAFF scenario starts 328	  

significantly earlier than in the other models. As afforestation on pastures is common in 329	  

MAgPIE until around year 2070, this indicates a large soil C uptake potential in LPJmL for 330	  

pasture-forests transitions, which is also apparent in the LPJmL simulations driven by the 331	  

IMAGE ADAFF LU patterns. For BECCS, all models simulate small soil C losses (up to -16 332	  

GtC) which are generally larger in the LUMs than in the DGVMs. In both ADAFF and 333	  

BECCS, differences between LUMs and DGVMs in terms of soil C changes are more 334	  

pronounced for IMAGE-LU patterns than for MAgPIE-LU patterns. 335	  



The soil C emissions in JULES and ORCHIDEE for the ADAFF scenarios (and the relatively 336	  

low emissions for BECCS) might be partly caused by the simplistic representation of 337	  

agricultural management processes in these models. While LPJmL and LPJ-GUESS represent 338	  

croplands by specific crop PFTs and growing seasons, ORCHIDEE and JULES grow crops as 339	  

harvested grass (modified natural grass in ORCHIDEE, natural grass in JULES; see Table 1). 340	  

Additionally, ORCHIDEE does not include grazing of pastures, which means more biomass C 341	  

is transferred to the litter when the grass dies. Consequently, pastures and croplands have 342	  

larger soil C pools in ORCHIDEE and JULES, respectively, than if these processes were 343	  

accounted for, resulting in less soil C accumulation potential upon afforestation. To test 344	  

further how different representations of agriculture in the DGVMs affect soil C changes upon 345	  

afforestation we performed two sensitivity simulations with LPJ-GUESS in which we 346	  

simplified the representation of management processes following Pugh et al. (2015). In these 347	  

simulations, the rate of change in LPJ-GUESS soil C pools is reduced by 57% in the MAgPIE 348	  

ADAFF scenario (compared to the “standard” LPJ-GUESS simulations) when croplands are 349	  

represented by pastures (mimicking the representation of croplands in JULES), and by 49% in 350	  

the IMAGE ADAFF case when pastures are not harvested (mimicking the representation of 351	  

pastures in ORCHIDEE, not shown). Furthermore, LPJ-GUESS, JULES, and particularly 352	  

ORCHIDEE simulate a widespread decline in net primary productivity (NPP) upon 353	  

afforestation (Figs. 2f, S8) because in these models tropical grasslands (or croplands) are 354	  

often more productive than tropical forests. LPJmL, on the other hand, accounts for regional 355	  

yield gaps so cropland NPP is scaled down. Even though the fraction of NPP transferred to 356	  

the soil might differ across models (e.g. due to different mortality in secondary forests), this 357	  

suggests that the lower productivity of re-growing forests compared to agriculture also plays 358	  

an important role for the limited soil C accumulation (or emissions) in LPJ-GUESS, JULES, 359	  

and ORCHIDEE. 360	  



 361	  

Cumulative CCS 362	  

CCS is calculated by multiplying the harvested C of bioenergy crops by a capture efficiency 363	  

of 80% before geologic storage. A prescribed CCS trajectory was implemented in both 364	  

LUMs, which means that annual global CCS rates are the same in IMAGE and MAgPIE. 365	  

Cumulative CCS reaches 128 GtC in both LUMs by year 2099. In the DGVMs, cumulative 366	  

CCS ranges from 37 to 130 GtC by year 2099 (Figs. 1g,h, 2d). 367	  

As the DGVMs used bioenergy production area from the LUMs and also the same 368	  

assumptions about capture efficiency and storage capacity, the lower CCS calculated in most 369	  

of the DGMVs has to arise mainly from differences in simulated bioenergy yields, including 370	  

differences in the harvest index. Both LUMs assume rain-fed perennial and fast-growing 371	  

second generation bioenergy crops (such as Miscanthus) to fulfil the CCS demand. LPJmL is 372	  

the only DGVM representing dedicated bioenergy crops explicitly, but like the other DGVMs 373	  

does not assume technological yield increases. This implies that the slightly larger cumulative 374	  

CCS than in MAgPIE originates from higher initial yields. In contrast, LPJ-GUESS grows 375	  

bioenergy as maize (with residues included for CCS), ORCHIDEE as crop grass, and JULES 376	  

as natural grass (for harvest assumptions see Table S1). Consequently, average bioenergy 377	  

yields are highest in LPJmL followed by LPJ-GUESS and then ORCHIDEE and JULES (Fig. 378	  

S9). Cumulative CCS in all DGVMs apart from LPJmL is higher for IMAGE-LU patterns 379	  

than for MAgPIE-LU patterns (Figs. 1g,h, 2d) because the larger cultivation area in IMAGE 380	  

(Fig. S2c,d) outweighs lower average yields (Fig. S9). In the LUMs, the same trade-off 381	  

between land expansion and yields results in equivalent global CCS rates in both LUMs. 382	  

 383	  

Discussion 384	  



The C uptake potential of afforestation is largely restricted by historic C removal via 385	  

deforestation. Cumulative LUC emissions over the 1750-2015 period were ~190 GtC (Le 386	  

Quere et al., 2016), with a very large uncertainty arising from how different forms of land 387	  

management are considered in the simulations (Arneth et al., 2017) but also due to different 388	  

LUC hindcasts (Bayer et al., 2017). However, a possibly large fraction of agricultural area 389	  

will be needed for future food production (Boysen et al., 2017a, Popp et al., 2017) and CO2 390	  

fertilizing effects on forest growth will likely be limited in RCP2.6. This suggests that 391	  

achieving 130 GtC net uptake via ADAFF might be challenging, consistent with results from 392	  

the DGVMs here (especially for MAgPIE-LU where avoided deforestation only plays a minor 393	  

role compared to afforestation). A limited (<150 GtC) C uptake potential via afforestation 394	  

within this century was also estimated in previous studies, despite very different methods and 395	  

assumptions (Lenton, 2010, and references therein). However, one recent study (Sonntag et 396	  

al., 2016) found a much larger (215 GtC) uptake in a coupled Earth System Model (ESM) for 397	  

a high emission scenario (RCP8.5) when using RCP4.5 LU (afforestation, -700 Mha 398	  

agricultural land) instead of RCP8.5 LU (deforestation, +800 Mha agricultural land). The C 399	  

uptake was thus higher than in our study, but so were baseline deforestation rates, climate 400	  

impacts, and, particularly, differences in CO2 fertilization (RCP8.5 vs. RCP2.6 in our study); 401	  

the high levels of CO2 fertilization under RCP8.5 typically causes DGVMs to simulate much 402	  

larger C uptake in forests. 403	  

Some of the discrepancy in total C uptake between the LUMs and the DGVMs in the ADAFF 404	  

scenarios originates from differences in vegetation C uptake, especially for MAgPIE. Natural 405	  

forest regrowth upon agricultural abandonment is implemented in all DGVMs and IMAGE, 406	  

while MAgPIE assumes managed regrowth according to prescribed, region-specific growth 407	  

curves towards the biomass density of potential natural vegetation (Humpenöder et al., 2014). 408	  

Observational studies differ substantially in reported forest regrowth rates (Krause et al., 409	  



2016, and references therein). Biomass accumulation in tropical forests has often been 410	  

reported to slow down a few decades after agricultural cessation, with aboveground biomass 411	  

levels (representing ~80% of total biomass, Cairns et al., 1997) of mature tropical forests 412	  

being reached within ca. 66-90 years (Anderson-Teixeira et al., 2016, Poorter et al., 2016), 413	  

and belowground biomass needing more time to recover, especially following shifting 414	  

agriculture (Martin et al., 2013). Poorter et al. (2016) also found slower accumulation rates in 415	  

dry (<1500 mm) compared to wet (>2500 mm) environments. In comparison, tropical (22°S-416	  

20°N as in Poorter et al.) afforestation in the MAgPIE ADAFF scenario occurs in relatively 417	  

dry regions, with an average precipitation of 1682 mm yr-1. While we can only quantify 418	  

tropical recovery times (90% of old forest biomass) for MAgPIE (47 years; Fig. S7a) and 419	  

LPJ-GUESS (~150 years in tropical Africa), the vegetation C uptake is similar across all 420	  

DGVMs. The observational studies point towards typical recovery times that lie in the middle 421	  

of this range. This suggests that, assuming that afforestation will mostly occur as natural 422	  

regrowth, tropical biomass accumulation rates might be overestimated in MAgPIE. The LPJ-423	  

GUESS recovery times of Krause et al. (2016) are, however, not directly comparable to these 424	  

observations, as the LPJ-GUESS simulations allowed natural stand-replacing disturbances 425	  

(e.g. fire, wind-throw) to occur in these recovering forests, slowing the recovery rate, whilst 426	  

this is not likely to be the case in the chronosequence observations, which typically age the 427	  

stand from last disturbance. Evaluation of forest regrowth rates in DGVMs, particularly in 428	  

tropical forests, will be important to constrain uncertainty in ADAFF potential. 429	  

Degraded forests also represent an uncertainty in our IMAGE scenarios. JULES represented 430	  

degraded forests as natural vegetation, whereas the other DGVMs, simply for consistency, 431	  

followed the IMAGE assumption of degraded forests being grassland. In reality, degraded 432	  

forests likely represents a mixture between both approaches, with aboveground biomass on 433	  

average being 70% lower than in undisturbed forests (Asner et al., 2010). Clearly, assuming a 434	  



degraded forest being a grassland will overestimate vegetation C uptake potential when 435	  

degraded forests are converted back to forests  (in IMAGE ~50% of the avoided deforestation 436	  

and afforestation area by end-century is from degraded forests; see Table S2). Additionally, 437	  

the mismatch between forest loss and agricultural gain reported by FAO (based on which the 438	  

degraded forest class was introduced in IMAGE) might be largely explained by shifting 439	  

cultivation (Houghton and Nassikas, 2017). However, most LUMs/DGVMs so far cannot 440	  

adequately simulate shifting cultivation due to not explicitly representing forest demography. 441	  

The representation of forest degradation thus remains a challenge for LUMs and DGVMs. 442	  

Soil C changes contribute most to variations in total C uptake across models. Differences in 443	  

simulated present-day soil C stocks are hardly surprising as global soil C estimates are very 444	  

uncertain (Scharlemann et al., 2014) and large variations across DGVMs and ESMs have 445	  

been reported before (Anav et al., 2013, Tian et al., 2015, Todd-Brown et al., 2013). 446	  

Numerous studies explored soil C changes following LUC (Smith et al., 2016b, and 447	  

references therein), but there is still substantial disagreement in terms of the magnitude of 448	  

change for most land-cover transitions. While studies agree that transitions from forests to 449	  

croplands reduce soil C (and vice versa), patterns are more diverse for conversions to/from 450	  

grassland, depending on management intensity, climate, and soils (McSherry and Ritchie, 451	  

2013, Powers et al., 2011). The picture is further complicated by evidence that the existing 452	  

field observations in the tropics might not be representative for many tropical landscapes 453	  

(Powers et al., 2011).  454	  

The LUC scenarios from the LUMs differ in terms of converted land-cover types: in 455	  

MAgPIE, afforestation partly takes place on former croplands (especially before year 2025 456	  

and after 2070). MAgPIE assumes initial litter C (both in croplands and pastures) to be 457	  

completely depleted and, based on IPCC guidelines, to be replenished within 20 years 458	  

following agricultural abandonment. Soil C in former croplands is assumed to increase from 459	  



the grid-cell specific average soil C density of cropland and natural vegetation towards the 460	  

soil C density of natural vegetation within 20 years (Humpenöder et al., 2014). However, a 461	  

litter C density of zero and an assumed time frame of 20 years until soil C reaches equilibrium 462	  

appear questionable. In fact, some studies report soil C to decrease during the first years after 463	  

cropland cessation (Deng et al., 2016), and subsequent C accumulation is usually slow and 464	  

proceeds over several decades or even centuries (Silver et al., 2000). In contrast to the 465	  

prescribed recovery implemented in MAgPIE, IMAGE simulates soil C changes dynamically 466	  

within LPJmL. However, the contribution of soils to total C uptake is comparable to MAgPIE 467	  

even though ADAFF activities in IMAGE are largely restricted to pasture-forest transitions. 468	  

In reality, afforestation on grasslands (or avoided conversion from forests to grasslands) has 469	  

even less soil C uptake potential than on croplands; soil C depletions in pastures/grasslands 470	  

relative to forests are generally low (Don et al., 2011, Laganiere et al., 2010) and in many 471	  

cases grasslands even store more soil C than the replacing forests (Li et al., submitted; Guo 472	  

and Gifford, 2002, Poeplau et al., 2011, Powers et al., 2011). Additionally, declines in soil C 473	  

have been reported during the first years of forest regrowth before accumulation occurs and 474	  

net accumulation is often only achieved after several decades (Paul et al., 2002, Poeplau et 475	  

al., 2011). Consequently, the rapid soil C uptake in the LUMs for ADAFF is likely 476	  

overoptimistic, while limited soil C accumulation (compared to vegetation C) in response to 477	  

afforestation as simulated by some DGVMs seems to be more realistic. However, historic 478	  

agriculture has likely resulted in substantial net soil C emissions (Sanderman et al., 2017, 479	  

Smith et al., 2016b), so large soil C losses in response to afforestation as simulated by 480	  

ORCHIDEE are also unlikely, especially for the MAgPIE ADAFF scenario (where croplands 481	  

are preferentially afforested). 482	  

One likely reason for the large discrepancy in simulated soil C changes in response to 483	  

afforestation is the simulated change in ecosystem productivity. Todd-Brown et al. (2013) 484	  



showed that soil C stocks in ESMs are closely coupled to simulated NPP. In our simulations, 485	  

simulated changes in NPP in response to ADAFF activities are very different across models, 486	  

which partly explains differences in soil C accumulation. Modelling work by DeFries (2002) 487	  

suggests that regional impacts of LUC on NPP are highly variable, depending on management 488	  

intensity and original vegetation cover, and that cropland productivity is higher compared to 489	  

forests in temperate regions. The relatively high productivity of temperate crops seems to be 490	  

confirmed for European studies (Ciais et al., 2010, Luyssaert et al., 2010), but estimates are 491	  

highly dependent on the data source from which NPP is derived. In the tropics, observations 492	  

suggest crop productivity at many locations to be lower than for forests (Cleveland et al., 493	  

2015, Monfreda et al., 2008). As afforestation in our scenarios is mostly concentrated in the 494	  

tropics, the NPP decrease following afforestation in most DGVMs seems to be unrealistic. 495	  

A second potentially important reason for the large differences in simulated soil C uptake is 496	  

different amounts of C removed from agricultural land. Soil C recovery following agricultural 497	  

cessation has recently been simulated with a different version of LPJ-GUESS (croplands were 498	  

represented by tilled, fertilized, and harvested grassland rather than specific crop PFTs) and 499	  

showed reasonable agreement with observations (Krause et al., 2016). ORCHIDEE and 500	  

JULES represent fewer management processes and therefore may underestimate soil C uptake 501	  

potential in ADAFF (but also losses in BECCS); the incorporation of harvest (not included in 502	  

ORCHIDEE pastures) and the representation of crops by specific crop PFTs (including 503	  

tillage), instead of grasses, substantially increases soil C depletions on agricultural land in 504	  

LPJ-GUESS (Pugh et al., 2015). However, there are also observations suggesting that 505	  

moderately intensive grazing might actually increase soil C stocks in C4-dominated 506	  

grasslands (McSherry and Ritchie, 2013, Navarrete et al., 2016), a process the DGVMs likely 507	  

do not capture well. 508	  



The LUMs did not include deforestation emissions ("carbon debt", Fargione et al., 2008) in 509	  

their BECCS CDR target. This is a common procedure in BECCS scenarios (or at least LUC 510	  

emissions are often not seperated from fossil fuel emissions, e.g. Smith et al., 2016a). For two 511	  

bioenergy scenarios (600 and 800 Mha production area made available via either 512	  

deforestation or agricultural abandonment, RCP2.6 climate) comparable in terms of area and 513	  

climate changes to our scenarios, a modelling study by Wiltshire and Davies-Barnard (2015) 514	  

estimated vegetation C losses of 70 and 0 GtC and, using average depletions from Guo and 515	  

Gillford (2002), soil C losses of 20 and 60 GtC. In our simulations, vegetation and soil C 516	  

emissions are relatively small, but our study still confirms that these emissions should not be 517	  

neglected when considering bioenergy as an option to achieve negative emissions. 518	  

Cumulative CCS in BECCS differs substantially across models, ranging between 37 GtC and 519	  

130 GtC in the DGVMs, and reaching 128 GtC in both LUMs. By comparison, Wiltshire and 520	  

Davies-Barnard (2015) found 75 and 200 GtC for the two comparable scenarios, which is 521	  

similar to the 100-230 GtC range reported by Smith et al. (2016a) for IAM scenarios 522	  

consistent with the 2°C target. Recently, Boysen et al. (2017a) estimated land availability for 523	  

bioenergy production in LPJmL. They found that in the best case scenario, biomass 524	  

plantations on abandoned agricultural land could deliver up to 350 GtC by 2100 (but likely 525	  

much less), and potentially more if plantations would replace natural ecosystems. In our 526	  

study, bioenergy area was prescribed by the LUMs and differences in CCS across models 527	  

originate from simulated bioenergy crop yields. The LUMs and LPJmL represent these crops 528	  

as dedicated bioenergy crops, mimicking characteristics of perennial energy crops like 529	  

switchgrass or Miscanthus. Bioenergy yields in LPJmL have recently been evaluated against 530	  

observations and showed reasonable results but were hindered by limited experimental data in 531	  

the tropics (Heck et al., 2016). The other DGVMs grow bioenergy crops as maize (LPJ-532	  

GUESS), productive grass (ORCHIDEE), or natural grass (JULES). JULES and ORCHIDEE 533	  



also do not increase the harvest index for bioenergy crops relative to food crops. Additionally, 534	  

the LUMs assume technological yield increases over time, resulting in higher average yields 535	  

than in most DGVMs. While research of dedicated bioenergy crops is just in its infancy and 536	  

thus on the one hand promises high potential, there is also evidence that yield increases 537	  

observed over the last decades for cereals have recently slowed down (Alexandratos and 538	  

Bruinsma, 2012). In fact, much of the historic yield increase was achieved via increasing the 539	  

harvest index and fertilizer application, processes that are unlikely to substantially affect 540	  

bioenergy yields (Searle and Malins, 2014). It also remains to be seen what bioenergy yield 541	  

will be attainable in more marginal lands compared to sites where these crops are typically 542	  

grown today (Searle and Malins, 2014). Consequently, what bioenergy yields we can expect 543	  

in the future is controversial, with the optimistic assumptions made in IAMs/LUMs being 544	  

plausible, but towards the upper bound of uncertainty (Creutzig, 2016). 545	  

We conclude that forest maintenance and expansion, as well as large-scale bioenergy 546	  

production combined with CCS, offer the potential to remove substantial amounts of C from 547	  

the atmosphere and thus can help to mitigate climate change. However, the size of the 548	  

removal is highly uncertain, and may be much less than previously assumed in IAM/LUM 549	  

scenarios consistent with the 2°C target (Boysen et al., 2017b, Rogelj et al., 2015, Smith et 550	  

al., 2016a, Tavoni and Socolow, 2013, Wiltshire and Davies-Barnard, 2015); the C uptake 551	  

simulated by the LUMs is only achieved in one out of 16 combinations of mitigation LUC 552	  

scenarios and DGVMs. The main reasons for the typically lower C uptake in the DGVMs as 553	  

initially implemented in the LUMs are slower soil C accumulation (or even losses) following 554	  

afforestation, different assumptions on potential vegetation C stocks, lower growth rates of 555	  

forests, and lower bioenergy yields. Clearly the per-area C uptake (and thus the land demand) 556	  

in land-based mitigation scenarios depends on assumptions made about vegetation and soil 557	  

processes in the IAMs/LUMs. An improved implementation of land-based CDR options in 558	  



both kinds of models, LUMs and DGVMs, as well as a deeper interaction between both is 559	  

necessary to draw more robust conclusions about the potential contribution of land 560	  

management to climate stabilization. While the LUMs should emphasize the large uncertainty 561	  

in assumed yields from bioenergy plantations, the DGVMs need to improve the 562	  

parameterizations of managed herbaceous vegetation, particularly bioenergy crops (and also 563	  

woody bioenergy), as well as regrowth of managed forests for afforestation. Field 564	  

observations should focus on studying bioenergy crop productivity under commercial 565	  

production conditions. Additionally, the LUMs and some DGVMs need to reconsider their 566	  

assumptions about soil C sequestration rates following afforestation. More detailed 567	  

information about grazing intensities on grasslands, and a clear differentiation between 568	  

natural grasslands and intensively managed pastures in observational studies might also help 569	  

to reduce the uncertainty in soil C changes following LUC (Navarrete et al., 2016). 570	  

In this study we only address the uncertainty in land-based mitigation arising from potential C 571	  

uptake for a prescribed available area. However, the establishment of negative emissions from 572	  

land management could also be hindered by unacceptable social or ecological side-effects 573	  

(Kartha and Dooley, 2016, Krause et al., 2017, Smith et al., 2016a), biophysical and 574	  

biogeochemical climate impacts beyond C (Boysen et al., 2017a, Krause et al., 2017, Smith et 575	  

al., 2016a), irreversible effects of overshooting CO2 concentrations (Kartha and Dooley, 576	  

2016, Tokarska and Zickfeld, 2015), or simply because CCS turns out to be technologically 577	  

infeasible at commercial scale. There is also strong evidence that the timescales for shifts in 578	  

farming systems to be realized may be of the order of several decades, substantially delaying 579	  

the onset of negative emissions from BECCS (Alexander et al., 2013; Brown et al., 580	  

submitted). Combining these unknowns and caveats with the large uncertainty in uptake 581	  

potential identified in this study suggests that relying on negative emissions to mitigate 582	  

climate change is a very high-risk strategy. 583	  
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Tables 815	  

Table 1: Overview of major DGVM differences relevant to this study. A more detailed 816	  

version of the table can be found in the supplement (Table S1). 817	  

Variable or process DGVM 
LPJ-GUESS ORCHIDEE JULES LPJmL 

Spatial resolution 0.5o x 0.5o 2° x 2° 0.5° x 0.5° 
Nitrogen cycle yes no 
Implementation of 
LU patterns from the 
LUMs into the 
DGVM 

absolute 
cropland, 

pasture, and 
natural area 

prescribed by 
LUMs, PFT 

distribution on 
natural land is 

simulated 
dynamically 

changes in 
cropland, 

pasture, and 
forest vs. other 

natural area 
prescribed by 
LUMs, forest 
area and PFT 
distribution 
(static on 

natural land) in 
year 2005 

according to 
internal map 

(from European 
Space Agency) 

absolute cropland, pasture, and 
natural area prescribed by LUMs, 
PFT distribution on natural land 

is simulated dynamically 
 

Implementation of 
agricultural 
expansion 

all natural PFTs are reduced 
proportionally 

grasslands are 
reduced first, 
then shrubs, 
then forests 

all natural PFTs 
are reduced 

proportionally 

Representation of 
degraded forests (for 
IMAGE-LU patterns 
only) 

as pasture as natural 
grassland 

as natural 
vegetation 
(forests or 

natural 
grassland) 

as pasture 

Forest (re)growth 
dynamics 

cohort 
approach 

(competition 
between 

different age 
classes), natural 

regrowth 

dilution approach (one average individual per PFT), 
natural regrowth 

Pasture management harvest, woody 
vegetation is 

prevented from 
growing 

no harvest, 
woody 

vegetation is 
prevented from 

growing 

harvest*, 
woody 

vegetation is 
prevented from 

growing 

harvest with 
variable 
intensity, 
woody 

vegetation is 
prevented from 



growing 
Cropland 
management 

four crop PFTs 
(temperate 

wheat, maize, 
rice, temperate 
other), variable 

sowing and 
harvest date, 

tillage, 
irrigation, 

fertilization, 
dynamic 

potential heat 
unit 

calculation, 
woody 

vegetation is 
prevented from 

growing 

C3 + C4 crop 
grass (similar 
phenology as 
natural grass 
but adapted 

maximum LAI 
and slightly 

modified 
critical 

temperature 
and humidity 
parameters), 

harvest, woody 
vegetation is 

prevented from 
growing 

C3 + C4 grass, 
harvest, woody 

vegetation is 
prevented from 

growing 

12 crop PFTs, 
variable sowing 

and harvest 
date, irrigation, 

woody 
vegetation is 

prevented from 
growing 

Dedicated bioenergy 
crop PFTs 

no (grown as 
maize) 

no (grown as 
C3 or C4 crop 

grass) 

no (grown as 
C3 or C4 grass) 

yes (fast-
growing C4 

grass, 
temperate and 
tropical short 

rotation 
coppices) 

*Pastures were treated as cropland in these JULES simulations. Normally pastures are not 818	  

harvested in JULES. 819	  
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Figure captions 827	  

 828	  



Figure 1: Time-series (2010-2099) of simulated C uptake (total of all grid-cells) in the LUMs 829	  

and DGVMs for the mitigation simulations (compared to the respective BASE simulation), 830	  

for IMAGE-LU patterns (left, 5-year running means) and MAgPIE-LU patterns (right). a+b) 831	  

total C (including cumulative CCS), c+d) vegetation C, e+f) litter and soil C, g+h) cumulative 832	  

CCS. 833	  

 834	  

 835	  



Figure 2: Simulated change in total C (a), vegetation C (b), litter and soil C (c), cumulative 836	  

CCS (d), cumulative instant (oxidized in the same year) deforestation/degradation emissions 837	  

(e), and cumulative NPP (f) between year 2005 and 2099 for the mitigation simulations 838	  

(compared to the respective BASE simulation) in IMAGE/MAgPIE (as simulated by the 839	  

LUMs in the LUC scenarios), LPJ-GUESS, ORCHIDEE, JULES and LPJmL. 840	  

 841	  

 842	  

Figure 3: Spatial distribution of total C uptake in the LUMs (a-d) and DGVMs (e-t) for the 843	  

mitigation scenarios (compared to BASE) between year 2005 and 2099 for IMAGE ADAFF 844	  

(1st column), MAgPIE ADAFF (2nd column), IMAGE BECCS (3rd column) and MAgPIE 845	  

BECCS (4th column). Numbers are global totals. 846	  
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