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ARTICLE

Functionally distinct disease-associated fibroblast
subsets in rheumatoid arthritis
Fumitaka Mizoguchi et al.#

Fibroblasts regulate tissue homeostasis, coordinate inflammatory responses, and mediate

tissue damage. In rheumatoid arthritis (RA), synovial fibroblasts maintain chronic inflam-

mation which leads to joint destruction. Little is known about fibroblast heterogeneity or if

aberrations in fibroblast subsets relate to pathology. Here, we show functional and tran-

scriptional differences between fibroblast subsets from human synovial tissues using bulk

transcriptomics of targeted subpopulations and single-cell transcriptomics. We identify seven

fibroblast subsets with distinct surface protein phenotypes, and collapse them into three

subsets by integrating transcriptomic data. One fibroblast subset, characterized by the

expression of proteins podoplanin, THY1 membrane glycoprotein and cadherin-11, but lacking

CD34, is threefold expanded in patients with RA relative to patients with osteoarthritis. These

fibroblasts localize to the perivascular zone in inflamed synovium, secrete proinflammatory

cytokines, are proliferative, and have an in vitro phenotype characteristic of invasive cells. Our

strategy may be used as a template to identify pathogenic stromal cellular subsets in other

complex diseases.
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F ibroblasts are important mediators of end-organ pathology
and inflammation in chronic inflammatory and fibrotic
diseases. Although these cells mediate normal matrix

deposition and inflammation in wound healing, chronically
activated fibroblasts can differentiate into myofibroblasts that
produce collagen and are required for fibrosis in lung, liver, gut,
skin, and other tissues1. Conversely, chronically activated fibro-
blasts are responsible for excessive matrix degradation that
destroys cartilage and causes permanent joint damage in rheu-
matoid arthritis (RA)2–4. Moreover, studies have emphasized the
role of fibroblasts as stromal cells that regulate immune responses
in lymph nodes and tumor stroma5,6. Unlike hematopoietic cell

types that are comprised of a variety of functionally distinct
cellular types and subsets, fibroblasts are generally considered to
have little heterogeneity; functionally distinct subpopulations
have yet to be clearly defined.

Advances in high-throughput technologies have enabled
investigators to query complex human diseases in new ways.
For example, global transcriptomic analysis has revealed
distinct activation states and cellular subsets of immune
cells7. These approaches offer an opportunity to examine how
stromal cells mediate various types of local tissue pathology.
Transcriptomics of small numbers of cells, and even single
cells, from human pathology samples can advance the
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Fig. 1 Distinct protein and mRNA expression between fibroblast subsets. a Gating strategy for synovial fibroblasts with heterogeneous expression of
surface proteins. b Analysis of variance (ANOVA) reveals 436 genes with significant (1% FDR) variation across seven gated populations that are measured
and statistically significant in both microarray and RNA-seq datasets. Each column in the heatmap corresponds to the average of multiple samples of a cell
sorting gate. Each square beneath a column represents a donor from which this sample was taken. c Principal component analysis (PCA) with 2,986 genes
(1% FDR, ANOVA) in microarray data separates the 32 microarray samples into three subsets: CD34–THY1–, CD34–THY1+, and CD34+. d Pairwise
Pearson's correlation of microarrays also suggests three major subsets of fibroblasts
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understanding of tissue dynamics in disease. For example,
single-cell RNA-sequencing (RNA-seq) identified heterogeneity
of tumor cells and a mechanism for drug resistance in
cancer8,9.

RA is a complex autoimmune disease affecting up to 1% of the
world’s population10. In RA, the synovium changes dramatically
as the thin membrane encapsulating the joint becomes an
inflamed, hyperplastic, and invasive tissue mass that causes joint
destruction4. Synovial fibroblasts secrete inflammatory cytokines
and chemokines, invade and degrade cartilage, and stimulate
osteoclasts that cause bone erosion2,4.

Here we show that these different functions might be carried
out by distinct cellular subsets of fibroblasts, analogous to func-
tionally distinct subsets of leukocytes. We propose that altered
proportions of fibroblast subsets might underlie pathological
changes in joint tissues11. We use flow cytometry to profile the
abundance of fibroblast subsets in fresh human tissues from
arthroplasty surgeries of patients with late-stage or early-stage
disease. We use transcriptomics to define gene signatures that
distinguish subpopulations of fibroblasts and predict their normal
and pathological activity. We use histological images with
immunofluorescence staining to visualize the microanatomy of
the synovial tissue and localize fibroblast subsets in the lining
layer, sublining layer, and perivascular regions. Finally, we per-
form functional experiments to identify which fibroblast subsets
are more likely to carry out different molecular functions such as
osteoclastogenesis and monocyte recruitment.

Results
Fibroblasts in synovial tissue have distinct surface markers. To
examine the heterogeneity of fibroblasts in joint tissue, synovial
cells were isolated from tissues collected from joint replacement
surgery of patients with RA or osteoarthritis (OA), and from
synovectomies of patients with RA. Osteoarthritic changes can be
present in RA patients at the late stage of disease when it is time
for joint replacement surgery. Taking this into consideration, we
reasoned that comparison with synovial tissue from OA patients
would reveal autoimmune changes specific to RA that were dif-
ferent from those found in comparator OA samples.

We first examined freshly isolated synovial fibroblasts for
protein expression of a variety of surface markers that have been
reported to be expressed on fibroblasts12–17. After screening
many surface proteins, we chose podoplanin (PDPN) and
cadherin-11 (CDH11) because of their characteristic expression
on fibroblasts and THY1 (also known as CD90) and CD34 for
their ability to distinguish fibroblast subpopulations (Fig. 1a). We
isolated synovial fibroblasts by excluding other cells17. We
excluded hematopoietic lineage cells positive for protein tyrosine
phosphatase receptor type C (PTPRC, also known as CD45). We
excluded red blood cells positive for glycophorin A (GYPA, also
known as CD235a). We excluded endothelial cells positive for
platelet and endothelial cell adhesion molecule 1 (PECAM1, also
known as CD31). Finally, we excluded pericytes positive for cell
surface glycoprotein MUC18 (MCAM, also known as CD146).
The remaining stromal cells exhibited high protein PDPN
expression, consistent with fibroblasts within the synovium
(Fig. 1a). Two major fibroblast populations were identified based
on surface protein expression of CD34. In 42 donors (26 OA and
16 RA), we observed medians of 34.7% CD34+ and 54.7% CD34–

cells (Fig. 1a, Supplementary Table 1). CD34– and CD34+

fibroblasts could further be divided into four and three
populations, respectively, based on THY1 and CDH11
expression.

Fibroblast subpopulations have distinct mRNA signatures. To
test whether these subsets represent distinct fibroblast popula-
tions, we applied two complementary strategies to investigate
synovial fibroblast populations obtained after tissue disaggrega-
tion. The first strategy utilizes fluorescence sorting using a set of
candidate protein markers followed by transcriptomic profiling of
gated populations. The second strategy uses unbiased single-cell
transcriptomics without gating.

First, we assayed each of the seven gated populations from
three OA and three RA donors with the Affymetrix HuGene 2.0
ST microarray, using Robust Multichip Average to normalize
53,617 probesets and 20,452 genes. As expected, we observed that
all of the samples expressed genes typically expressed in
fibroblasts and lacked expression of other lineage-specific genes
(Supplementary Fig. 1A). However, after controlling for variation
between donor, we observed 2,986 genes with significant variation
across the seven distinct populations gated based on surface
protein marker expression (false discovery rate (FDR) <1%,
analysis of variance (ANOVA)), suggesting notable transcrip-
tional differences across these putative subsets. To validate these
microarray findings, we applied RNA-seq to the same seven
subsets from four independent RA donors. We prepared libraries
with Smart-Seq2, sequenced to an average depth of 5.6M
fragments per sample, and quantified expression for 19,532
genes. These samples were also enriched with fibroblast lineage
genes (Supplementary Fig. 1B). Those genes that were signifi-
cantly differentially expressed in the microarray experiment and
that overlapped with the RNA-seq experiment (n = 2,659 genes)
had similar expression profiles across the seven subsets
(Supplementary Fig. 2). In total, 436 genes were measured on
both platforms and had significant variation across the seven
putative subpopulations in both experiments (1% FDR, ANOVA)
(Fig. 1b). The concordance of these results suggests that the gene
expression differences reflect biological variation rather than
technical or stochastic artifacts. We reasoned that these expres-
sion profiles could serve as proxies for molecular functions to
define putative cellular subsets with distinct biological roles.

Principal component analysis (PCA) of the microarray data
revealed that seven phenotypic populations fall into three distinct
major subsets: CD34–THY1–, CD34–THY1+, and CD34+. Princi-
pal component 1 clearly separates CD34– and CD34+ samples
and PC2 separates the CD34– samples that are THY1+ and
CDH11+ (Fig. 1c). We observed the same pattern in the RNA-seq
data (Supplementary Fig. 3). The three subsets were also clearly
apparent by hierarchical clustering on pairwise Pearson's
correlations of gene expression profiles (Fig. 1d). CD34– samples
were positively correlated with each other and CD34+ samples
were also positively correlated with each other, but CD34– and
CD34+ samples were negatively correlated. CD34–THY1+ sample
correlations with the other samples were less consistent,
indicating that this subset may be more heterogeneous than the
CD34– subset or the CD34+ subset (Fig. 1d). We decided to group
CD34–THY1–CDH11– and CD34–THY1–CDH11+ samples
together because they had similar gene expression profiles overall.

Single-cell RNA-seq identifies three major fibroblast subsets.
Next, since our observation from gated fibroblast populations
may be potentially biased by our a priori selection of surface
markers, we performed single-cell mRNA sequencing to obtain
an unbiased characterization of transcriptional heterogeneity in
synovial fibroblasts. Single fibroblasts from four additional donors
(two RA and two OA) were isolated by flow cytometry (PTPRC–

GYPA– PECAM1– PDPN+), followed by single-cell library gen-
eration (Illumina Smart-Seq2) (Supplementary Fig. 1C). The
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average sequence depth was 5.4M fragments per cell, resulting in
detection of an average of 8,842 genes per cell with at least 1
transcript per million (TPM) (Supplementary Fig. 4). Three
hundred and thirty-seven cells with at least 5,000 detected genes
were used for single-cell differential expression to estimate error
models for each cell, normalize expression values, remove aspects
of variation due to library complexity, and correct for batch
effects across donors18. Simultaneous surface protein markers
were obtained on each single cell by flow cytometry at the time of
single-cell sorting. Remarkably, unbiased subsets (defined by
hierarchical clustering of single cells with 23 genes that show high
mean and variance across cells) were concordant with the three
subsets defined by protein levels of CD34 and THY1 surface
markers (P< 10−4; Permutation test) (Fig. 2a, b).

Next, we assessed whether the bulk and single-cell RNA-seq
profiles were marking similar cellular subpopulations. We trained
a linear discriminant analysis (LDA) classifier on 968 genes in the
bulk RNA-seq data and predicted the classes of single cells (see
Methods). The LDA classifier produced a probability of belonging
to each class (CD34–THY1–, CD34–THY1+, and CD34+). The
classifications were confident (median probability 0.8) and

consistent with the three subsets (Fig. 2a). We compared mRNA
classification with flow cytometric protein marker data recorded
at the time of unbiased single-cell sorting and found concordant
cell identities and proportions (Fig. 2c, Supplementary Fig. 5).
These single-cell RNA-seq results provide an unbiased and
independent validation of the three major subsets defined
with bulk transcriptomics of samples gated by protein surface
markers.

Fibroblast subsets localize to specific regions in the synovium.
Since fibroblast identity is highly dependent on the micro-
environment, we sought to determine whether anatomical loca-
lization of fibroblast subsets could contribute to transcriptomic
heterogeneity in OA and RA synovial tissue (Fig. 3a, b, and
Supplementary Fig. 6). Interestingly, CD34–THY1+ fibroblasts in
RA form a discrete perivascular zone surrounding capillary
structures in the deep sublining layer of the synovium, especially
near accumulations of lymphocytes. In contrast, CD34–THY1+

fibroblasts comprise a thin layer with fewer cells surrounding
blood vessels in OA (Fig. 3a). CD34+ fibroblasts were observed in
both superficial lining and deeper sublining areas of the
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synovium. CD34–THY1– fibroblasts were mostly observed in
lining area. The expression of CDH11 were observed in the
majority of fibroblasts, with highest expression observed in the
lining layer (Fig. 3b, Supplementary Fig. 7).

Fibroblast subset proportions are altered in RA. We hypothe-
sized that if pathological fibroblast subsets exist, then some

subsets might be more or less abundant in RA relative to OA
synovial tissues. Indeed, proportions of fibroblast subsets defined
by flow cytometry with protein surface markers were different
between RA synovial tissue (n = 16) and OA (n = 26) (Fig. 3c,
Supplementary Table 1). To account for testing three subsets of
fibroblasts, we consider a P value of 0.05/3 = 0.017 to be sig-
nificant. The proportion of CD34–THY1+ fibroblasts comprised a
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median of 22% of total fibroblasts in RA compared to 8% in OA
(odds ratio (OR) = 3 (95% confidence interval (CI): 1.33–6.48), P
= 0.007 (Wilcoxon's rank-sum test)). By contrast, CD34–THY1–

cells were less abundant in RA at 15% compared to 48% in OA
(OR = 0.48 (95% CI: 0.23–1.03), P = 0.06 (Wilcoxon's rank-sum
test)). Within 12 RA samples, 7 samples were obtained from
swollen joints according to a rheumatologist’s assessment, and
5 samples were from non-swollen joints (Supplementary Fig. 8).
Although we acknowledge that the presence or absence of swel-
ling is not a robust parameter to reflect joint inflammation, we
found that the swollen joints had fewer CD34–THY1– (P = 0.02),
more CD34–THY1+ (P = 0.09), and more CD34+ fibroblasts (P =
0.01 (Wilcoxon's rank-sum test)). Notably, most cells in the
expanded CD34–THY1+ population in RA also were positive for
surface protein levels of CDH11 (median 84%), and CDH11 was
also expressed on the other fibroblast subsets including CD34–

THY1– (median 64%) and CD34+ (median 94%) cells (Fig. 3d).
These results suggest that synovial fibroblast subpopulation pro-
portions are closely related to disease type and activity.

We note that all OA samples were taken from the knee, while
RA samples included those from the knee (n = 8) as well as other
smaller joints (n = 8) (Supplementary Table 1). To confirm that
the altered proportion of fibroblast subsets in RA reflects the level
of tissue inflammation, rather than joint location of origin, we
collected 10 independent RA synovial tissue biopsies from only
knee joints and examined the proportion of fibroblast subsets and
infiltrated leukocytes by flow cytometry (Supplementary Table 2).
We selected only samples with synovial hypertrophy on
ultrasound images. Though our sample size (n = 10) was limited,
we saw that the proportion of CD34–THY1+ fibroblasts is
positively correlated with the proportion of infiltrated leukocytes
by flow cytometry (Fig. 4a). In addition, the proportion of CD34–

THY1+ fibroblasts correlated with both histological synovitis and
synovial hypertrophy assessed by ultrasound (Fig. 4b, c). These
results indicate that the altered proportion of fibroblast subsets in
RA reflects tissue inflammation at both the molecular and clinical
level. In contrast, the correlation between the proportion of
CD34–THY1+ fibroblasts and disease duration was not observed,
suggesting that the altered proportion of fibroblast subsets is not a
secondary effect of chronic tissue damage (Fig. 4d).

Transcriptomics predicts distinct fibroblast functions. We
hypothesize that several key effector molecules differentially
expressed by fibroblast subsets may represent key transcriptional
modules that could predict distinct cellular functions among
fibroblast subsets (Fig. 5a). To test whether these transcriptional
modules correlate with cellular functions in vitro, fibroblast
subsets were isolated and maintained as primary cells and the
predicted function associated with each module was examined.

First, gene set enrichment analysis revealed significant enrich-
ment of mitotic and proliferative genes among the CD34–THY1+

subset (Fig. 5b). Consistent with an actively proliferative state,
both CD34–THY1+ and CD34+ populations exhibited signifi-
cantly higher proportion of Ki67-positive cells compared to
CD34–THY1– fibroblasts (Fig. 5c). Next, we found that genes
implicated in fibroblast migratory response, including CTHRC1,
TWIST1, POSTN, LOXL2, PDGFRB, and MMP1419–23, were
elevated in CD34–THY1+ and CD34+ fibroblasts (Fig. 5a, d),
suggesting elevated migratory and invasive behavior. Indeed,
CD34–THY1+ and CD34+ fibroblasts exhibited enhanced in vitro
invasion and migration in response to platelet derived growth
factor BB (PDGFBB) in a transwell matrix invasion assay
(Fig. 5e).

In RA, an important pathogenic effector function of synovial
fibroblasts is modulation of osteoclastogenesis, a process
predominantly driven by TNFSF11 (also known as receptor
activator of nuclear factor-κΒ ligand (RANKL)) and opposed by
TNFRSF11B (also known as osteoprotegerin (OPG)), which is a
decoy receptor for TNFSF1124–27. Analysis of genes related to
osteoclastogenesis revealed high expression of TNFSF11 and low
expression of TNFRSF11B in CD34–THY1+ fibroblasts (Fig. 5a, f).
Low expression of TNFRSF11B in CD34–THY1– fibroblasts and
CD34–THY1+ fibroblasts was confirmed by direct protein
measurement from supernatant of fibroblast subset (Fig. 5g). In
support of their role in promoting osteoclast differentiation, co-
culture of CD34–THY1+ or CD34–THY1– fibroblasts with
peripheral blood monocytes led to increased number of
tartrate-resistant acid phosphatase (TRAP)-positive osteoclastic
cells in vitro (Fig. 5h).

Chemokine secretion and recruitment of leukocytes to
inflamed tissue is a major function of synovial fibroblasts2,4.
CD34+ fibroblasts have a transcriptomic profile characterized by
the expression of inflammatory cytokine genes IL6, CXCL12, and
CCL2 (Fig. 5a). We also confirmed that CD34+ fibroblasts secrete
large amounts of proteins IL-6, CXCL12, and CCL2 when
stimulated with tumor necrosis factor (TNF) in vitro (Fig. 5i).
Furthermore, their enhanced secretory phenotype was reflected
by their ability to recruit significantly higher number of
peripheral blood monocytes in a transwell leukocyte recruitment
assay (Fig. 5j). Taken together, these results suggest a greater role
for CD34+ fibroblasts in monocyte recruitment in inflamed
synovial tissue.

Finally, we examined the expression of genes that have been
reported to be highly expressed in lining fibroblasts. We found
that CD34–THY1– fibroblasts express high levels of genes MMP1,
MMP3, PRG4, HAS1, and CD55 (Fig. 5a). High expression levels
of proteins MMP1 and MMP3 in CD34–THY1– fibroblasts were
also confirmed (Fig. 5i). These results indicate that at least some
of the CD34–THY1– fibroblasts are lining fibroblasts.

Discussion
This study identifies subsets of fibroblasts in fresh human syno-
vium, including a distinct subset of PDPN+CD34–THY1+ fibro-
blasts that is expanded in RA and may be pathogenic. These cells
are enriched around blood vessels in RA synovium, and their
expression profile reveals potential pathogenic roles in matrix
invasion, immune cell recruitment, and osteoclastogenesis. We
note that almost all of these cells are positive for protein CDH11,
which we have previously shown to be associated with patholo-
gical behavior of fibroblasts in in vitro studies and RA mouse
models3.

Expansion of fibroblasts is a dynamic component of RA
synovitis. An increase in synovial lining fibroblasts was noted
previously to correlate with disease activity score in 28 joints
(DAS28), disease duration, and the level of macrophage infiltra-
tion28. Expansion of synovial sublining fibroblasts is also
observed in RA, but no previous literature reports significant
correlation between sublining fibroblasts and other clinical or
pathological findings, except for a negative correlation with
DAS28 in one study28. Here, by separating fibroblasts into subsets
based on the expression patterns of multiple markers, we found
that the increase of CD34–THY1+ fibroblasts around blood ves-
sels in the sublining area is a dominant change in fibroblasts in
RA synovium. Moreover, this expansion distinguishes RA from
OA, reflects RA disease activity, and correlates with immune cell
infiltration in the synovium. Previous studies have shown that
mesenchymal CDH11 determines adhesion between fibroblasts,
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increases their migration and invasion, and synergizes in the
activation of fibroblasts to produce MMPs, cytokines, and che-
mokines3,29,30. Since a large majority of the expanded fibroblast
population expresses this cadherin, it also may contribute to their
pathologic behavior in RA (Fig. 3d).

High TNFSF11 and low TNFRSF11B gene expression in freshly
isolated CD34–THY1+ fibroblasts suggest that the increased
number of CD34–THY1+ fibroblasts in RA is involved in the
increased bone destruction in RA. However, CD34–THY1– and
CD34–THY1+ fibroblasts did not differ in their abilities to pro-
mote osteoclastogenesis in vitro. We believe that the in vivo
synovial environment might be required for CD34–THY1+

fibroblasts to fully function as stromal cells that promote osteo-
clastogenesis. This subset may also be responsible for the accu-
mulation of lymphocytes in RA synovial tissue, since TNFSF11 is
involved in T cell trafficking in autoimmune inflammation31. In
addition, reduced proportions of CD34–THY1– fibroblasts may
explain the decreased bone formation activity in RA, since they
also express BMP-6, known to promote osteoblastic bone for-
mation32. Taken together, the altered proportions of fibroblast
subsets in RA may cause aberrant homeostasis in the joint that
supports joint destruction.

We noticed that differential expression of a number of genes
among freshly isolated fibroblast subsets were not retained ex vivo
or did not translate to functional differences in vitro. These dif-
ferences between fresh cells and cultured cells are likely due to the
effects of the culture conditions and loss of local factors in the
microenvironment. Identification of key signaling pathways
relevant in maintaining fibroblast subset identity in in vitro cul-
ture would greatly facilitate in-depth functional analysis and
further shed light on the biological significance of fibroblast
heterogeneity.

We also recognize that the response to enzymatic digestion
might be different between fibroblast subsets, and this could lead
to differences in gene expression profiles. However, all samples
were digested with the same procedure, and we observed similar
differences in gene expression across three types of expression
data, including microarray and RNA-seq assays of sorted fibro-
blasts as well as single-cell RNA-seq of freshly isolated single cells.
Further, in vitro assays with expanded cells showed functional
differences consistent with gene expression data. In previous
studies, others have now shown that cells isolated from organ
tissues retain distinct transcriptional profiles33,34. Thus, the
analysis of freshly isolated cells from affected organs in diseases is
useful to identify pathogenic subsets of cells and their functions in
the pathogenesis.

Our gene expression data is limited to synovial specimens from
the latest stages of RA and therefore represent changes in chronic
late-stage RA. Gene expression analysis of synovial biopsy spe-
cimens from early stage of RA are needed to learn more about
pathogenesis at early stages of disease.

There is a real need for strategies to define fibroblast hetero-
geneity and pathogenic fibroblast populations in order to
understand the complex nature of tissue pathology and the role of
tissue resident cells in end-organ damage. Our approach involves
an integrative analysis of cell surface markers, bulk tran-
scriptomes, single-cell transcriptomics, and histological imaging
of human tissues that identified a disease-related fibroblast sub-
population that may ultimately serve as a specific target for
therapy. As there are no approved drugs that directly target
fibroblasts, identifying pathogenic fibroblast subsets may reveal
therapeutic targets broadly applicable across a range of diseases.
In RA, targeting fibroblast subsets might complement anti-
inflammatory therapies that target leukocytes and their
cytokines4.

Additional clinical studies are required to understand how the
alteration of these subsets are involved in a variety of clinical
contexts in RA including the severity of disease activities, prog-
nosis of joint destruction, and response to therapies. We antici-
pate that this study will serve as a roadmap for these studies, and
may serve as a template for future studies to identify pathogenic
subsets of tissue cells in other human diseases.

Methods
Patient recruitment and isolation of synovial cells. We obtained synovial tissue
from joint replacement surgeries, synovectomy surgeries, or synovial biopsies of
OA or RA patients with appropriate informed consent as required. The study
protocols are Institutional Review Board approved at Partners HealthCare, Hos-
pital for Special Surgery, and the University of Birmingham Local Ethical Review
Committee. We collected all available RA samples for the studies. OA samples were
collected at random from joint replacement surgeries without any bias. We
modified previously described protocols to isolate synovial cells35,36. Briefly, we
obtained tissue immediately after the surgeries. We removed bone and adipose
tissues with scissors. We cut synovial tissues into small pieces, and then subjected
these pieces to enzymatic digestion. For microarray analysis, low input bulk RNA-
seq and in vitro assays, we digested tissues with 4 mg/mL collagenase type 4
(Worthington, NJ, USA), 0.8 mg/mL dispase II, 0.1 mg/mL DNaseI (Roche) in
Dulbecco’s modified Eagle’s medium (DMEM) at 37 °C. After 15 min, we collected
the supernatant and replaced with fresh enzyme mix. We repeated these proce-
dures every 15 min for total 1 h. For the analysis of synovial biopsy samples, we
digested the tissues with 0.05 mg/mL Liberase TM (Roche) and 0.04 mg/mL
DNaseI at 37 °C for 30 min. For single-cell RNA-seq, we digested tissues with 0.2
mg/mL Liberase TL (Roche), 0.1 mg/mL DNaseI in RPMI at 37 °C for 20 min to
minimize the cleavage of surface markers of lymphocytes during the enzymatic
digestion. After lysing red blood cells with ACK-lysing buffer, we stained cells with
antibodies, and sorted by FACSAria Fusion (BD) with 100 μm nozzle at 20 psi. For
the analysis with microarray and low input RNA-seq, the cells were sorted into 2%
fetal bovine serum (FBS) HBS+ buffer, spun down, and lysed with TRIzol (Invi-
trogen). We extracted RNA and cleaned up by RNeasy micro kit (Qiagen) with
DNaseI treatment. For single-cell RNA-seq, the cells were stained with antibodies
and directly sorted into 5 μl of TCL buffer (Qiagen) with 1% β-mercaptoethanol
(Sigma) in 96-well plates.

Antibodies and reagents. The following antibodies and reagents were used for the
analysis of synovial cells with flow cytometry and cell sorting: anti-CD45-APC-H7
(2D1, BD Pharmingen), anti-CD235a-APC-Alexa Fluor750 (11E4B-7-6(KC16),
Beckman Coulter), anti-CD31-PE-Cyanine7 (WM-59, eBioscience), anti-CD146-
BV450 (P1H12, BD Horizon), anti-CD34-PE (4H11, eBioscience), anti-PDPN-
PerCP-eFluor710 (NZ-1.3, eBioscience), anti-THY1-FITC (5E10, BD Pharmingen),
anti-cadherin-11-biotin (23C6), human TruStain FcX (BioLegend), streptavidin-
APC (Jackson ImmunoResearch), Live/Dead fixable aqua dead cell stain kits
(Molecular Probes). For immunofluorescence staining of synovial tissue, following
antibodies and reagents were used: anti-CD45 (135-4C5, AbD Serotec), anti-CD34
(EP373Y, Abcam), anti-PDPN (NZ-1.3, eBioscience), anti-THY1 (F15-42-1, Merck
Millipore, and clone Thy-1A1, R&D Systems), anti-cadherin-11-Biotin (23C6),
anti-Ki67 (16A8, BioLegend), anti-mouse IgG1-FITC (Southern Biotech), anti-
mouse IgG2a FITC (Southern Biotech), anti-mouse IgG2b-Alexa Fluor 647 (Life
Technologies), anti-rat IgG-Alexa Fluor 594 (Life Technologies), anti-rat IgG-
Alexa Fluor 647, anti-rabbit IgG-Alexa Fluor 546 (Life Technologies), Hoechst
33258 (Life Technologies), and anti-FITC Alexa Fluor 488 (Life Technologies).

Gene expression microarrays. We evaluated the integrity of RNA with Bioana-
lyzer or by Tapestation (Agilent). We used only RNA with more than RNA
integrity number score of 7. We prepared complementary DNA (cDNA) from 38.1
g total RNA using Ovation Pico WTA (NuGEN), followed by labeling 5 μg cDNA
using Biotin Module (Nugen). We assayed gene expression using the GeneChip
Human 2.0 ST microarray (Affymetrix). We normalized expression by Robust
Multiarray Averaging (RMA). We identified and removed two outlier arrays by
PCA. We assigned probes to Entrez Gene IDs using Ensembl BioMart on 17 March
2015. In the instance where there were multiple probesets assigned to a single gene,
we averaged them to obtain a single gene value.

RNA-seq library preparation and sequencing. We used 1,250 cells per sample for
library preparation. We prepared sequencing libraries using the Smart-Seq2 pro-
tocol. We pooled and sequenced libraries were pooled and sequenced with the
Illumina HiSeq 2500 to a depth of 8–14M reads per library.

Single-cell RNA-seq. We assayed 384 fibroblasts from four donors, two with OA
and two with RA. For each donor, we collected fresh synovial tissue, isolated
synovial cells by enzymatic digestion, and stained with antibodies against CD45,
CD235a, CD31, CD146, PDPN, CD34, THY1, and CDH11. We sorted 96 single
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CD45–CD235a–CD31–PDPN+ cells by FACSAria Fusion (BD), and assayed mRNA
expression with the Smart-Seq2 protocol37. Single-cell libraries were also prepared
with the same protocol, and we aimed to sequence to a depth of 200K–12M reads
per library38. On average, we sequenced 5.4M fragments and detected 8,153 genes
per cell with at least 1 TPM. We discarded 47 cells (12%) with fewer than 5,000
genes detected from further analysis.

RNA-seq gene expression quantification. We quantified cDNAs on canonical
chromosomes in Ensembl release 83 with Kallisto v0.42.439 in TPM and summed
to get gene-level expression values. We quantified gene expression the same way for
bulk and single-cell RNA-seq samples. For differential expression analysis, hier-
archical clustering, and PCA, we log (base 2)-transformed TPM values.

Lineage marker analysis. We selected lineage markers for fibroblast, endothelial,
and hematopoietic cells12 and checked their expression levels to confirm that our
samples are from the fibroblast lineage (Supplementary Fig. 1).

Differential expression analysis with microarrays. We used the R package
limma to assess differential expression analysis on RMA normalized expression
values40. Before performing differential expression analysis, donor-specific varia-
tion was regressed out by obtaining the residuals from linear models. In order to
regress out effects, we modeled each gene as a linear combination of donor-specific
effects. After using ordinary least squares to fit the donor-specific effects, we cal-
culated residuals for each gene. These residuals were then used for differential
expression analysis, hierarchical clustering, and PCA. We expected differences in
gene expression between RA and OA. However, we lacked power to see these
differences within fibroblast subsets.

Differential expression analysis with RNA-seq. RNA-seq data was analyzed the
same way as the microarray data, starting with log 2-transformed TPM expression
values. Donor-specific variation was similarly regressed out before differential
expression analysis, hierarchical clustering, and PCA.

Gene set enrichment analysis. Terms from MSigDB Hallmark Gene Signatures41

were used for enrichment analysis with LIGER42. We tested gene sets for enrich-
ment with differential expression between the three major subsets in order to assess
how they might differ from each other in terms of molecular pathways. MSigDB
hallmark pathways enriched with differential expression signal for CD34–THY1+

population, expanded in RA joints, include “epithelial-to-mesenchymal transition,”
“hypoxia,” and “glycolysis.”42

Principal components analysis. After gene selection by analysis of variance
(ANOVA) or differential expression analysis, we scaled each sample and then
scaled each gene across the samples to obtain a specificity of the gene to each
sample. Next, we used the prcomp function in R to perform PCA with centered
and scaled log 2 expression values.

Linear discriminant analysis. We checked if transcriptional profiles of single cells
are similar to profiles of the three major subsets we defined by bulk tran-
scriptomics. First, we selected 1,171 genes with significant (5% FDR) differential
expression between any pair of the three subsets in bulk RNA-seq data. We selected
a subset of 968 genes with high expression in single cells (mean log 2(TPM)> log 2
(10)). We used the bulk RNA-seq data to train an LDA model with these genes, and
then classified each single cell’s expression profile to predict each single cell’s
identity. The confidence of each classification is represented by a posterior
probability.

Histological analysis. RA synovial tissues were obtained by biopsies from RA
patients in the BEACON Birmingham early arthritis cohort, which is an early
arthritis cohort recruiting patients with new onset arthritis prior to treatment with
disease-modifying antirheumatic drugs. Synovial tissues for staining were frozen in
OCT compound. Sections were made in 6 μm thickness, fixed with acetone, and
frozen prior to use. Slides were rehydrated in phosphate-bufferred saline (PBS),
blocked with 10% normal goat or horse serum in PBS for 10 min, and then
incubated with primary antibodies, followed by secondary antibodies. Slides were
mounted using ProLong Diamond (Life Technologies), and imaged using a Zeiss
LSM 780 or 800 confocal microscope. Images were processed using Zen Black and
Zen lite (Zeiss). Representative images were shown. Synovial tissues for histological
analysis and hematoxylin and eosin staining were fixed in formaldehyde, then
mounted in paraffin, sectioned, and stained by the Hospital Pathology service.

Histological evaluation of inflammatory infiltrate. Hematoxylin-stained and
eosin-stained sections of knee synovial biopsy samples were examined histologi-
cally for the severity of inflammatory infiltrate using the inflammatory component
of the Krenn synovitis score43. Inflammatory infiltrates were graded from 0 to 3 (0
= no inflammatory infiltrate, 1 = few mostly perivascular situated lymphocytes or

plasma cells, 2 = numerous lymphocytes or plasma cells sometimes forming
follicle-like aggregates, and 3 = dense band-like inflammatory infiltrate or numer-
ous large follicle-like aggregates). The tissues were graded in a blinded manner by
two trained individuals and then provided consensus.

Clinical evaluation of synovitis by ultrasound. The joint to be biopsied was
assessed using ultrasound immediately prior to the procedure using a Siemens
Acuson Antares scanner (Siemens PLC, Bracknell, UK) and multifrequency (5–13
MHz) linear array transducers. Synovitis and power Doppler (PD) positivity were
defined using consensus OMERACT definitions44. Gray-scale synovial hyper-
trophy and PD ultrasound variables were graded on 0–3 semi-quantitative scales as
previously reported45.

Cell culture. We sorted CD34–THY1– fibroblasts, CD34–THY1+CDH11+ fibro-
blasts, and CD34+THY1+CDH11+ fibroblasts, and cultured them in DMEM sup-
plemented with 10% FBS (Gemini), 2 mM L-glutamine, antibiotics (penicillin and
streptomycin), and essential and nonessential amino acids (Life Technologies). The
cells were expanded for 3–20 days for assays in vitro. The cells with one or two
passages were used. The cells were cultured in the presence or absence of 1 ng/mL
of TNF-α (R and D) for 24 h for enzyme-linked immunosorbent assay (ELISA) of
IL-6, CXCL12, MMP1, MMP3, and MMP14, or for 72 h for quantitative real-time
PCR (qPCR) of TNFSF11 and TNFRSF11B.

ELISA. The levels of IL-6, CXCL12, MMP1, MMP3 and TNFRSF11B in the
supernatant or the levels of MMP-14 in the cell lysate were evaluated by ELISA kit
as described in manufacturer’s instructions (Duo Set, R and D).

Quantitative real-time PCR. cDNA was synthesized with QuantiTect Reverse
Transcription kit (Qiagen). qPCR was performed with Brilliant III Ultra-Fast SYBR
Green qPCR master mix (Agilent Technologies) on a Mx3000 (Stratagene). The
following primers were used: TNFSF11, forward: 5′-GGA GAG GAA ATC AGC
ATC GAG and reverse: 5′-CCA AAC ATC CAG GAA ATA CAT AAC AC;
TNFRSF11B, forward: 5′-CAA CAC AGC TCA CAA GAA CAG and reverse: 5′-
GAA GGT GAG GTT AGC ATG TCC; GAPDH, forward: 5′-AAT CCC ATC
ACC ATC TTC CAG and reverse; 5′-AAA TGA GCC CCA GCC TTC.

Osteoclastogenesis assay. Osteoclast progenitors were prepared by culturing
peripheral blood mononuclear cell in the presence of 20 ng/mL of macrophage
colony-stimulating factor (M-CSF) (PeproTech) in DMEM supplemented with
10% FBS (GE Healthcare), 2 mM L-glutamine, and antibiotics for 5–6 days.
Expanded fibroblasts were seeded at 5,000 cells per well in 96-well plates. On the
next day, osteoclast progenitors were added at 5,000 cells per well, and were co-
cultures with fibroblasts in the presence of 20 ng/mL M-CSF and 5–20 ng/mL
RANKL (PeproTech). The media were replaced every 2 days. After 6 days of the
co-culture, the cells were fixed by 4% paraformaldehyde. After TRAP staining,
TRAP-positive multinucleated cells were counted as osteoclasts.

Ki67 staining. Disaggregated synovial cells were washed and stained with an
extraceullar panel, followed by fixation and permeabilization (Foxp3/Transcription
Factor Staining Buffer Set, eBioscience). Ki67-positive cells were quantified by flow
cytometry and the percentage of Ki67-positive cells were analyzed and calculated
through FlowJo.

Monocyte recruitment assay. A modified transwell migration assay was used to
assess monocyte recruitment by synovial fibroblasts. Supernatants from TNF-α-
stimulated synovial fibroblast subsets were collected, diluted 1:1 with RPMI, and
placed in the bottom chamber of 24-well plates. A total of 5 × 105 purified human
peripheral blood mononuclear cells from healthy donors were resuspended in
RPMI and placed in the top chamber of Transwell inserts (Corning). After 3 h, cells
that have migrated into the bottom chamber were collected and monocytes were
quantified through flow cytometric analysis.

Transwell matrix invasion assay. Transwell matrix invasion assay was conducted
using Corning Matrigel Invasion Chamber with 8.0 μm pore as per the manu-
facturer’s protocol. Expanded fibroblasts were resuspended in 0.5% bovine serum
albumin (BSA)/DMEM and seeded at 15,000 cells per well in upper chamber. Fifty
nanogram per mL of PDGFBB in 0.5% BSA/DMEM was used to promote invasion
and migration of fibroblasts. After the incubation for 48 h, the non-invading cells
were removed from the upper surface of the membrane. The cells on the lower
surface of the membrane were stained with Diff-Quick. The number of invaded
cells were counted with a microscope.

Code availability. The authors declare that R source code is available from the
corresponding authors upon request.
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Data availability. Microarray and RNA-seq expression data that support the
findings of this study have been deposited in GEO with the primary accession code
GSE109450.
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