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Antagonist then Protagonist? – the dual role of neutrophils in lung injury and repair 
 

Dr Frances Grudzinska and Dr Elizabeth Sapey 

 

 

Our current understanding of the pathogenesis of acute lung injury (ALI) includes a paradox 

which incorporates the following four pieces of evidence.  

First,  in human and animal studies, neutrophil numbers in bronchoalveolar lavage fluid 

(BALF) correlate with ALI severity1 and are predictive of mortality2. Furthermore, there is 

evidence of increased neutrophil proteinase (especially neutrophil elastase)3  and oxidant4 

activity in ALI which correlates with the severity of the clinical syndrome. This suggests that 

neutrophils are centrally implicated in the onset and progression of ALI ,where endothelial 

and epithelial injury is associated with microvascular permeability, increased tissue 

oedema5 and an early accumulation of activated neutrophils to the lung6.   

Second,  in animal models of ALI, reducing neutrophil accumulation to the lung (for 

example, by targeting CXCR27) or/and inhibiting the neutrophil respiratory burst or 

proteinase activity are consistently associated with improved outcomes8-10. Sivelestat, a 

small molecular weight inhibitor of neutrophil elastase, has been associated with a 

reduction in the clinical features of ALI and improved survival in a number of animal models 

of ALI (for example, 11).  This protective effect was enhanced when Sivelestat was given with 

Edaravone  (a free radical scavenger)12, targeting neutrophilic products by combining an 

anti-proteinase with an anti-oxidant.  Together, these data suggest that not only are 

neutrophils injurious in ALI, they may form a therapeutic target to improve outcomes.   

However, third and unfailingly, ALI outcomes are worse in neutropenic patients13,14 

suggesting neutrophils are not needed for ALI onset and may be protective.   

Fourth, interventional trials aimed at reducing neutrophil recruitment to the lungs or 

inhibiting neutrophilic products (which have been shown to be beneficial in animal models 

of ALI) have not, in the main, been efficacious in humans.  For example, the STRIVE trial of 

Sivelestat in 492 mechanically ventilated adults with ALI showed no reduction in 

inflammation and no clinical benefit acutely and was associated with an increased 180 day 

mortality15.  Similarly, N acetylcysteine given as an anti-oxidant either pre-emptively 16 or 

following the establishment of ALI 17 has not been associated with a reduction in 



inflammation, oxidant burden or mortality.  Together, these studies do not support the 

neutrophil being a therapeutic target in ALI. 

 

This has led to a confusion of therapeutic strategies in ALI.  There is considerable 

uncertainty as to whether the neutrophil is an antagonist or protagonist in the development 

of this condition.  The current paper by Blázquez-Prieto et al18 , in a series of elegant 

experiments, provides mechanistic insight into this dilemma and suggests neutrophils might 

be both. 

 

In previous work in a murine model, the authors noted that acute ventilator induced lung 

injury (VILI) was associated with neutrophil accumulation to lung tissue. Survivors 

experienced a sustained rise in matrix metalloproteinases (MMP)-2 and -9, with MMP-9 

associated with a continuing presence of inflammatory cells during lung repair but a 

reduction in other measured inflammatory mediators.  Furthermore, a pan-MMP inhibitor 

or selective MMP-2 inhibitor delayed epithelial repair in a cellular wound model19. Together, 

these results suggested that neutrophil accumulation and MMP-release were important 

components of the reparative process. 

 

The current paper18 builds on this finding, by studying the effects of neutropenia when 

induced twenty four hours following a VILI. Histological lung injury scores were significantly 

higher in the VILI and the neutrophil depleted mice at 48 hours recovery, as were the pro-

inflammatory mediators TNFα, IFNγ and MIP-2, compared with the VILI and neutrophil 

replete group.  Levels of MMP-2 and MMP-8 were equal in both groups, but there was a 

decrease in both pro and active MMP-9 in the neutropenic animals.   

 

To assess the validity of this finding in humans, the authors then studied a small group of 

patients with and without neutropenia with ARDS.  The 4 neutropenic patients had received 

chemotherapy for haematological malignancies, had a median age of 54.4 years, were 

admitted with neutropenic sepsis and had a 50% survival rate (although time to death was 

unclear). The four subjects without neutropenia were more diverse; three had sepsis and 

one had poly-trauma, they were older (median age 79.5 years) and again had a 50% survival 

rate.    Concordant with the murine models, BALF from neutropenic patients showed higher 



levels of TNFα, IFNγ and CXCL8, with no significant differences in MMP-8 and MMP-2, but 

lower concentrations of pro- and active MMP-9.  

 

To assess the effects of MMP-9 in tissue repair, the immortalised bronchial epithelial cell 

line, BEAS-2B, were used in wound closure studies in the presence of BALF from the 

previously described patients with and without neutropenia, ventilated for ARDS.  BALF 

from neutropenic patients slowed wound recovery times, but this could be restored by the 

addition of MMP-9.  The authors finally back-translated this into mice, demonstrating that 

inhaled exogenous (active) MMP-9 could improve tissue repair in their murine model of VILI 

and subsequent neutrophil depletion. 

 

MMP-9 is a proteolytic enzyme which cleaves denatured collagens (gelatins) and type IV 

collagen present in basement membranes.  It has long been associated with tissue repair, as 

MMP activity is associated with subsequent release of proangiogenic factors such as 

vascular endothelial growth factors and fibroblast growth factors20.  The same mechanisms 

have also been associated with tumour angiogenesis and intravasation, so MMP-9 activity is 

not universally beneficial20.  MMP-9 is secreted as a latent pro-enzyme that requires 

activation in the extracellular space, by cleavage of a cysteine and zinc interaction which 

exposes its catalytic site21. Activators of MMP-9 include all neutrophil derived proteinases22 

including neutrophil elastase23, cathepsin G, proteinase 3, but also a number of other MMPs 

(for example,  MMP-224 MMP-325).   MMP-9 is not expressed in healthy lungs, but is 

released under inflammatory conditions by macrophages, mast cells, fibroblasts and 

lymphocytes, however, in a major inflammatory event such as ALI, the predominant source 

is the neutrophil.  There is thought to be a positive feedback loop between MMP-9 and 

neutrophil recruitment, as MMP-9 also enhances neutrophil migration into the respiratory 

tract in response to TLR-induced chemotactic factors26 and by cleaving interleukin-8 to its 

more potent truncated form27.  But what sort of neutrophils might MMP-9 activity attract?   

 

There is growing recognition of the complexity of neutrophils.  These cells have an 

adaptable life expectancy28, can release a large array of products29 and are more 

transcriptionally active than initially thought30.  Furthermore, a number of neutrophil 

phenotypes have been identified in different experimental models, and these phenotypes 



seem to display different functional characteristics.  For example, neutrophils have been 

described as senescent31, immunosuppressive32 (thought to potentially contribute to the 

immunosuppression seen after sepsis33), reverse transmigrated34, to name but a few.  A 

neutrophil phenotype of potential relevance to the current study18 is the so called 

“angiogenic neutrophil”; a subset which makes up 3% of neutrophils, identified by being  

CD49d+VEGFR1highCXCR4high and characterised by increased MMP-9 release.  

The angiogenic neutrophil is found in hypoxic tissues (as seen during ALI) where it is 

hypothesized to help restore oxygenation through new vessel formation35,36.    Placed in 

tertiary granules, proMMP-9 is released more readily, and at a lower activation status than 

contents of secondary or primary granules37, and this might favour tissue repair after the 

cytokine storm of injury or infection has subsided.     

 

It is possible that neutrophil recruitment to the lungs in ALI comes in two waves, the first 

being a more pro-inflammatory sub-population to clear infection or necrotic tissue and the 

second being a less inflammatory, MMP-9 producing sub-population, involved in tissue 

repair;  and this second sub-population was depleted in the current study18 (see figure 1).   

 

Neutrophil phenotypes aside, there are many other reasons for the divergence of animal 

and cell-based experimental results and clinical observations which this paper cannot 

address. It is clear from neutropenic adults that ALI can occur without a functional 

neutrophil response, and most adults with acquired neutropenia who go on to develop ALI 

also have deficits in other immune cells, which might alter clinical outcomes. 

ALI is most commonly seen in older adults with multi-morbidites38.   Also,  ALI in humans is 

often associated with an infective origin and sepsis38 and both age and infections have been 

associated with reduced neutrophilic responses which might impede bacterial clearance and 

amplify tissue injury33,39.   In contrast, most murine models do not include bacterial infection 

and most studies are performed in young adult mice, where immunosenescence 

(impairments in the immune response associated with age) cannot be studied.    

Additionally, there are well documented differences in the biology of mice and men which 

might account for the disparities in murine and human studies of ALI (reviewed in 40). 

Furthermore, the doses and timings of investigative medicines have been different in mice 

and men.  For example, in STRIVE, patients received a continuous effusion of 



0.16mg/kg/hour of Sivelestat after the onset of established ALI15, in murine studies the 

doses utilised tend to be much higher (for example, 3mg/kg/hour 11) and dosing regimens 

started much earlier after the initial insult41.  

 

In summary, this paper highlights the potential of neutrophils to be involved in tissue repair 

(via MMP-9 activity) as well as tissue damage in ALI. The next challenge is to understand 

why and how neutrophils are able to develop these separate functions during ALI and then 

develop treatments that maintain the bacteriocidal functions of neutrophils while reducing 

host tissue damage or harnessing their potential for repair.  
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