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Note: Commercial SQUID magnetometer-compatible NMR probe and its
application for studying a quantum magnet
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CH-1015 Lausanne, Switzerland

(Dated: 5 March 2018)

We present a compact NMR probe which is compatible with a magnet of a commercial
SQUID magnetometer and demonstrate its application to the study of a quantum magnet.
We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature
measurements. Using a magnetic insulator MoOPO4 with S = 1/2 (Mo5+) as an example, we
show that the T -dependence of the circuit is weak enough to allow the ligand-ion NMR study
of magnetic systems. Our 31P NMR results are compatible with previous bulk susceptibility
and neutron scattering experiments, and furthermore reveal unconventional spin dynamics.

Nuclear Magnetic Resonance (NMR) is a versatile tool
for studying a wide variety of physical and chemical phe-
nomena.1 In particular, NMR is a powerful local probe of
static and dynamic aspects of magnetism in solids, and
has contributed critically to understanding magnetic and
superconducting materials.2 Although NMR is often re-
garded as a specialized technique requiring costly equip-
ment, recent developments including FPGA(Field Pro-
grammable Gate Arrays)-based compact spectrometers
and radio processors are lowering the barrier in terms
of cost and instrument complexity.3,4 Another source of
large cost is a high-homogeneity superconducting mag-
net. However, for magnetism research with inhomoge-
neously broadened spectral lines, the high-homogeneity
condition can be substantially relaxed.5 This motivated
us to use a magnet of a widely available, commercial
SQUID (Superconducting Quantum Interference Device)
magnetometer for NMR experiments. SQUID magne-
tometers can be expected to have a homogeneity of 100
ppm over 40 cm,6 which amounts to a few tens of ppm for
typical sample size of a few mm, and therefore provides
enough resolution for inhomogeneously broadened NMR
linewidths that easily exceed several hundreds of ppm.
The SQUID enables easy and precise measurements of

bulk magnetic susceptibility. A great number of mag-
netism laboratories across the world are equipped with
such instruments. However, it probes the bulk of a sam-
ple, providing only an averaged information. The spa-
tially varying or local properties remain essentially in-
accessible. An obvious example is an antiferromagnet
where the stagerred magnetization averages out. Another
frequent example would be a sample with a small amount
of unwanted (quasi-)free magnetic impurities whose sus-
ceptibility diverges as T is lowered and which may well
mask the intrinsic susceptibility. This further motivates
us to install an NMR probe into the SQUID magnet,

a)Electronic mail: m.chung@bham.ac.uk
b)Electronic mail: henrik.ronnow@epfl.ch

which would allow us to track the intrinsic spin suscep-
tibility,7 enabling direct comparison with the bulk one.

In this Note, we present the construction of an NMR
probe compatible with commercial SQUID magnetome-
ters, specifically the model MPMS-5 of Quantum De-
sign Inc., and its successful application for investigating
a quantum magnet. Our choice of material is a simple
square-lattice quantum antiferromagnet MoOPO4, being
already characterized by a variety of experimental tech-
niques,8 which allows us a check of consistency.
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FIG. 1. (a) Photograph of the NMR circuit and protective
can. (b) NMR circuit diagram. (c) Magnetic moment of a
chip capacitor as a function of T . (d) Resonance of the circuit
at 300 and 25 K as observed in S11 and (e) its polar plot.

Figure 1(a) shows the NMR tank circuit built with a
coil (L) and two trimmer chip capacitors, one for the res-
onant frequency tuning (C) and the other for impedance
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FIG. 2. (a) T -evolution of the 31P NMR spectrum of MoOPO4 in a magnetic field of 4 T applied along c axis and (b)
perpendicular to c axis. (c) K as a function of T . Solid line shows bulk susceptibiltiy (right axis) measured by the SQUID,
with the sample mounted into the NMR probe, in 4 T applied along the c axis. Inset shows K versus the bulk susceptibility
for T -range 17-290 K. (d) The line splitting as a function of T near the magnetic transition for the field along the c axis. (e)
1/T1 as a function of T . Inset shows the data over the whole measurement region. (f) T2 as a function of T .

matching (C ′), and a shielding can. The correspond-
ing circuit diagram of the series-parallel configuration9 is
shown in Fig. 1(b). We used JZ060HV and JZ200HV
capacitors of Voltronics Corp., having ranges of C = 2-6
pF and C ′ = 4.5-20 pF, respectively. Their dimensions
are 4.5×3.2×1.5 mm3. For the target frequency around
70 MHz the coil was wound around the sample with 25
turns using a 0.1 mm in diameter copper wire; the coil
had an oval-shaped cross section of about 3 mm by 1 mm.
The circuit is protected by the brass can which also

provides shielding from external noise. Three small holes
were made at the bottom and on the wall of the can to
allow the He gas to flow through in order to efficiently
cool and warm the sample within the VTI (Variable Tem-
perature Insert) of the MPMS-5. The outer diameter of
the can is 6 mm with a thickness of 1 mm, being slightly
smaller than the inner diameter of 9 mm of the VTI sam-
ple space. Its length is 4 cm allowing for the sample to
sit away from the capacitors. The stick part of the probe
consists of a 1.3 m long hollow steel rod with an outer di-
ameter of 3 mm in order to fit into the MPMS-5. Inside
this rod is placed a 1.4 m long UT85-SS-SS semi-rigid
coaxial cable from micro-coax of outer diameter 2.2 mm.
At the top of the stick the coaxial cable protrudes by
about 9 mm and is soldered to the hollow steel in an air-
tight way. It ends in a standard female SMA connector.
At the bottom the circuit is soldered directly onto the
coaxial cable, and the steel rod is soldered to a threaded
brass piece onto which the can is screwed [Fig. 1(a)].
The radio-frequency pulse was generated by SpinCore

RadioProcessor using MXG Analog signal generator, Ag-
ilent, as a continuous source and amplified by a 57 dB
power amplifier BT00500-Gamma, TOMCO Technolo-
gies. The NMR signal from the probe was demodulated
and then acquired usingOscar Express 4427 CompuScope

digitizer, GaGe. The mixing, modulation and demodu-
lation was controlled by a home-built spectrometer.

Ideally the capacitors should not show any magnetism,
but the ones used, made of a ceramic dielectric, show a
slight magnetism. In Fig. 1(c) the magnetic moment as a
function of T in an applied field of 500 Oe shows a Curie-
like behavior with 8×10−4 emu at 5 K. However, the field
they create at the sample location, about 1 cm away, is
negligible. It only amounts to 0.1 Oe for an applied field
of 500 Oe at 5 K. On the other hand, the T -dependence
of the capacitance and resistance of the circuit impacts
the conditions for NMR experiments more directly. Fig-
ure 1(d) shows the circuit resonance in terms of the re-
flection coefficient S11 against frequency at 300 and 25
K. The capacitance of each capacitor is adjusted at room
temperature before closing the shielding can such that
the circuit is intentionally under-matched and the reso-
nance frequency lies somewhat below the target value.
The S11 minimum corresponding to the resonance at 300
K is only about -5 dB but grows into a good match-
ing of -25 dB at 25 K [see the polar plot in Fig. 1(e) as
well]. The impedance at resonance (Z) was matched to
a standard 50 Ω generator impedance. Z improved from
27.3 − 35.2i Ω at 300 K to 51.6 + 5.6i Ω at 25 K. The
resonance frequency shifted from 70 MHz at 300 K to 72
MHz at 25 K, which was taken into account by changing
the magnetic field accordingly, assuring that the mea-
surement was always performed with a matched circuit.

Let us briefly outline the physical characteristics of
MoOPO4 that features a J1-J2 Heisenberg model with
S = 1/2 (Mo4+) on a stacked square lattice of a tetrago-
nal structure. It undergoes an antiferromagnetic transi-
tion around TN = 16.1 K, and the ground state is shown
by neutron diffraction to have a Néel-type collinear stag-
gered order (the ordered moments pointing parallel to the



3

crystallographic c axis) in the ab plane while the moments
between the planes align themselves ferromagnetically. A
spin-flop transition occurs around the applied field of 3.5
T for H ∥ c, but not for H ⊥ c, in the zero temperature
limit. The spin-flop field increases up to 4.5 T with in-
creasing T , terminated by the transition into a thermal
paramagnet. We have chosen 4 T as a target field to
explore both the collinear and spin-flopped phases while
scanning T . This field value for 31P nuclear spins with
γ/2π = 17.235 MHz/T corresponds to about 70 MHz.

Now we present the NMR results obtained with the
probe. The spectra and spin-spin relaxation times (T2)
were obtained using a spin-echo pulse sequence with a
π/2 pulse length of 1-3 µs and a power of ∼15 W. The
echo time τ was 10-40 µs for the spectra and 20-150 µs for
T2 measurements. It was shortened when T2 was small to
improve signal to noise ratio. The spin-lattice relaxation
rate 1/T1 measurements were done using a saturation
recovery, π/2-π/2-π sequence with waiting times after
saturation of 4-5000 µs and echo times of 10-40 µs . Fig-
ures 2(a) and (b) show the T -evolution of the spectrum
against reduced frequency (f − f0)/f0 with f0 = Hγ/2π,
for H ∥ c and H ⊥ c, respectively. In both cases, one
observes that a single NMR line at high T splits into two
well-separated lines as T is decreased across TN . This
signifies the appearance of two magnetic sublattices and
thus the staggered antiferromagnetic order,10 being con-
sistent with the neutron diffraction results.8 Figure 2(c)
plots the fractional NMR line shift K = (fres − f0)/f0
against T . Its inset shows K versus the bulk suscep-
tibility (χ) from an independent SQUID measurement.
K and χ show excellent agreement with a linear rela-
tion at T above TN , from which we extracted the trans-
ferred hyperfine constant A = 2.1 T/µB between the
Mo4+ and 31P nuclei. In addition, we find that the split-
ting for H ∥ c follows a power-law behavior near TN , as
shown in Fig. 2(d), where the obtained critical exponent
β = 0.39± 0.02, being compatible with a 3D Heisenberg
model,11 is larger than the value of 0.23 obtained from
the neutrons.8 However, a meaningful comparison would
require more data points in the vicinity of TN and more
careful analysis, e.g., substraction of critical fluctuations
from the neutron magnetic Bragg intensities.8

1/T1 decreases monotonically with lowering T , fol-
lowed by a tiny peak at TN , as can be seen in Figure
2(e). We note that these two observations are rather
atypical. As the measured T range extends more than
an order of magnitude higher than TN or the Weiss tem-
perature of 4-6 K,8 one would expect a motionally nar-
rowed, T -invariant 1/T1 in the high temperature limit, 12

unlike our observation. In addition, the peak is heavily
suppressed13 compared to the ones ordinarily observed
for an antiferromagnetic transition.14 Nevertheless, they

may be consistent with each other: the antiferromagnetic
correlations develop over a wide T range and thus little
correlations would remain to be developed at the transi-
tion. T2, shown in Figure 2(f), further corroborates the
unconventional spin dynamics by showing a smooth in-
crease15 across the transition in contrast to the ordinary
case of a sharp decrease.14 We leave a detailed study of
this unconventional dynamics for future work.

The same probe can be used to measure the bulk sus-
ceptibility of the sample while inside the SQUID magne-
tometer. It is then better to avoid using magnetic coax
cables or capacitors. However, even if the cable and ca-
pacitors show slight magnetism, one can use background
subtraction from the dipole curve to deduce the sample
susceptibility. Figure 2(c) shows the thus-obtained sus-
ceptibility of the sample mounted in the NMR circuit.

To summarize, we have shown that one can easily
install an NMR probe for the investigation of quan-
tum magnets into the magnet of a commercial, widely-
available SQUID magnetometer. This capability allows
to readily measure the intrinsic susceptibility and com-
pare it with the bulk one from the SQUID measurement.
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