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Abstract: In 2017, the Chinese government has issued a strategic policy of nationwide use of 

bioethanol as a gasoline-blending component by 2020 for the considerations of reducing smog and 

greenhouse gas (GHG) emissions. It is highly relevant to estimate the benefits of well-to-wheel 

(WTW) GHG emission savings using future engine technologies. However, literature about the 

WTW GHG emissions for ethanol blends did not cover the engine efficiency gains in engines with 

future technologies. In a previous publication from authors’ group, an empirical model was 

developed to predict the anti-knock property and engine thermal efficiency gains of ethanol blends in 

spark-ignition (SI) engines. This paper is a follow-up study, not only looking at the potential engine 

thermal efficiency gains, it also WTW GHG emissions in future engine technology. More specifically, 

a case study of adding bioethanol into two representative E10 fuels (main- and premium-octane grade 

fuel) from China was conducted. It is assumed that the future engine technology enables adjustable 

compression ratio (CR) according to the octane rating of ethanol blends, allowing the maximum 

extraction of the benefit of high anti-knock property of ethanol blends. In addition, the sensitivity of 

GHG intensity of bioethanol on WTW GHG emissions is analysed and discussed. It is found that the 

chemical and cooling effects of ethanol blends are the dominant factors contributing to engine 

thermal efficiency gains. For the ethanol blends with the RON84.5 base gasoline, the negative impact 

of lower heating value (LHV) of ethanol blends on the vehicle mileage range can be completely 



offset by the engine thermal efficiency gain enabled by higher octane rating of ethanol blends. 

Assuming that in China in the future bioethanol has a GHG intensity of 33 gCO2-eq/MJ (gram of 

CO2 equivalent per megajoules of lower heating value), compared to E10, E30 led to a 21.2% 

reduction of WTW GHG emissions in a turbocharged (TC) direct-injection spark-ignition (DISI) 

vehicle. Among this 21.2% reduction, one third is due to the thermal efficiency gain and two third is 

due to the use of renewable bioethanol. Reducing the GHG intensity of bioethanol is a key to lowing 

WTW GHG emissions. For the TC DISI engine technology, when E10 is used as the baseline fuel, 

every 1 gCO2-eq/MJ reduction in GHG intensity of bioethanol leads to a 0.239 gCO2-eq/MJ of 

WTW GHG emission saving for vehicles fuelled with E20. 
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ACRONYMS AND ABBREVIATIONS 
CFR   Cooperative Fuel Research 
CR   Compression Ratio 
DISI   Direct Injection Spark Ignition 
EOI    Effective Octane Index 
GHG   Greenhouse Gas 
LHV   Lower Heating Value 
MON    Motor Octane Number 
NA   Naturally Aspirated  
ONCE   Octane Number from Cooling Effect 
ONCEgasoline ONCE of Base Gasoline 
ONCEethanol ONCE of Ethanol 

PCCE    Partially Captured Cooling Effect 
PRFs   Primary Reference Fuels 
RON    Research Octane Number 
RONblend   RON of Ethanol Blend 
RONbase   RON of Base Gasoline  
RONethanol   RON of Ethanol 
SI   Spark-ignition 
TC   Turbo-Charged 
WTT   Well-to-tank 
WTW   Well-to-wheel 

 
 

 
 
DEFINITIONS 

E’x’  x vol.% ethanol in the blend 
K  A scaling factor used in the calculation of Octane Index 
S  Octane sensitivity (RON and MON) 
xvol  vol.% of ethanol in the blend 
 
Octane related parameter: 
EOI = chemical effect + octane sensitivity effect + cooling effect  
Chemical effect = RON-PCCE 
Octane sensitivity effect = -K*S 
Cooling effect = ONCE 
 

  



1 Introduction 

 Progressive research on biofuels has been conducted for improving the sustainability of energy 

supplies and reducing greenhouse gas (GHG) emissions1. Among the biofuel candidates for 

spark-ignition (SI) engines, bioethanol is the most widely. Studies have proven ethanol/blends in 

improving engine efficiency2, in reducing emissions, such as particulates and unburned 

hydrocarbons3-7, and in reducing deposit formation8. Ethanol has also been blended with diesel and 

used in compression ignition engines9, 10. By adopting optimized injection and exhaust gas circulation 

strategies, ethanol-diesel combustion maximized the utilization of low carbon fuels and reduced 

nitrogen oxides and particle emissions. 

 

Table 1 lists a summary of gasoline and ethanol properties. The high octane rating of ethanol reduces 

engine knock tendency. Thus high compression ratio (CR) can be used, leading to higher thermal 

efficiency11. Recent studies have shown that the high octane sensitivity of ethanol also contributes to 

suppressing knock in SI engines12-15.  

Table 1: Fuel properties 

 Unit Gasoline* Ethanol 

Formula  C4-C12 C2H6O 

RON  89+ 107 
(MON+RON)/2  84+ 89 
Oxygen content wt.% <2.7 34.78 

Stoichiometric air-fuel ratio   ~14.5 9 

Density @ 15ºC kg/m3 720-775 790 

Lower heating value  MJ/kg  42 26.9 

Heat of vaporization @ λ=1 kJ/kg_air 26 103 

Reid vapor pressure kPa  40-85 15.5 

* Typical gasoline available in the China market 

 There are two types of blending techniques for the use of bioethanol as a gasoline blending 

component: splash blending and RON-match blending techniques. Splash blending is a process that 



ethanol is directly added to base gasoline, leading to a final fuel with a higher RON rating. 

RON-match blending is a process that ethanol is added to base gasoline whose RON rating is 

adjusted according to the ethanol content, leading to a final fuel with a pre-determined RON rating. A 

blend with a higher ethanol content means that the requirement of RON for the base gasoline is lower. 

The RON-match blended ethanol fuels lead to a limited fuel efficiency gain. In the following paper, 

only splash blended ethanol are discussed. 

 In 2016, China only used three million tons of renewable fuels, less than one percent of total fuel 

consumption and approximately 2% of total gasoline consumption16. In 2017, for the considerations 

of reducing smog and GHG emissions, the Chinese government has issued a strategic policy of 

nationwide use of bioethanol as a gasoline blending component by 2020. China is the world's 

third-largest ethanol producer (2.1 million tons/year) behind Brazil and the United States. Currently, 

most of the bioethanol (64%) is produced from corn, followed by wheat and cassava. However, by 

2025 Chinese government aims to promote the large-scale domestic production of the second 

generation cellulosic bioethanol made from feedstocks such as grasses and crop waste. 

  There is literature available for the life cycle analysis (LCA) of bioethanol produced in China17-21. 

Zhang et al.17 investigated cassava-based bioethanol in China and concluded that the net energy and 

GHG emissions of cassava-based bioethanol were approximately 14 MJ/L and 69 gCO2-eq/MJ, 

respectively. Ethanol conversion process accounts for the most energy consumption and GHG 

emissions. The water footprint of cassava-based ethanol was 3000 m3/tons, among which the 

cassava-planting is the most water-intensive due to the grey-water from the use of fertilizer.  

 Yang and Chen22 studied GHG emissions of corn-based bioethanol in China, and they found that 

GHG intensity for corn-based ethanol can be as high as of 430 gCO2-eq/MJ_ethanol. However, they 

also pointed out that corn-based bioethanol might lead to a 98% GHG reduction compared to 

gasoline when an ecological system with production chain featuring constructed wetland, biogas and 



combined heat and power are fully employed. 

 Ren et al.18 examined bioethanol produced from various feedstock in China using a tool called 

Data Envelopment Analysis (DEA). The feedstock included wheat, corn, cassava and sweet potatoes, 

The status of each feedstock was classified as ‘old’, ‘new’, ‘wet’ and ‘dry’. They found that only 

wheat-based and sweet-potato-based bioethanols were energy-efficient in China. 

 Zhao et al.19 conducted LCA of corn-stover-based bioethanol in China, based on several 

scenarios using current and future technology for ethanol conversion process. They found that the 

GHG intensity of corn-stover-based bioethanol was approximately 40 gCO2-eq/MJ. Compared to 

gasoline, the WTW GHG emission reduction of corn-stover-based bioethanol was 52%-55%, and the 

savings of fossil fuel were approximately 72%-76%. GHG emissions from the ethanol conversion 

process and combustion process accounted for 51%-55%, and 36%-37% of the total lifecycle GHG 

emissions. Zhao et al. pointed out that the data presented in the study was sensitive to allocation 

methods used in LCA. 

Table 2 listed the GHG intensities of various types of bioethanol, which is published in Ref23. Overall, 

the 2G bioethanol has lower GHG intensity than the 1G bioethanol.  

Table 2: GHG (CO2 equivalent) intensity of various ethanol (Data from Ref23) 

 Ethanol type GHG Intensity 
(gCO2-eq/MJ) 

1G 
ethanol 

sugar beet ethanol 33 
wheat ethanol (natural gas as process fuel in a 
conventional boiler 46 
wheat ethanol (straw as process fuel in combined heat & 
power plant) 39 
wheat ethanol (natural gas as process fuel in combined 
heat & power plant) 26 
corn ethanol (natural gas as process fuel in combined 
heat & power plant) 37 

Sugarcane ethanol 24 

2G 
ethanol 

wheat straw ethanol 11 
waste wood ethanol 17 
farmed wood ethanol 20 

 The literature17-21 agrees that the LCA GHG results are highly dependent on methods and data 

such as bioethanol yield rate, energy inputs. Therefore, the results have large uncertainties. On the 



other hand, the above literature mainly focuses on the feedstock planting and bioethanol conversion 

processes. While the engine efficiency gains of bioethanol blends in future engine technology are not 

studied. It is important to estimate the engine thermal efficiency gain and the GHG emission savings 

when using bioethanol blends in future engines. On the other hand, most current engines do not fully 

make use of the high octane of ethanol blends, because only active ignition management system is 

used. If engine CR is adjustable to suit the high octane of ethanol blends, more benefits would be 

extracted.  

 In the previous publication24 from authors’ group, a model was developed to predict RON, 

cooling effect and CR gain using ethanol blends. The model assumes that the engine CR is adjustable 

for the purpose of maximising the advantage of high octane rating of ethanol blends. In this paper, 

this model is used for a case study of adding bioethanol into two representative base gasoline in 

China (main- and premium-octane grade), with the focuses on the engine thermal efficiency gain and 

well to wheel (WTW) GHG savings. 

The novelty of this paper is that it uses an empirical model to estimate the engine thermal 

efficiency gains of ethanol-gasoline blends under future engine technology. In addition, using GHG 

emission data of bioethanol and gasoline in China from the literature, and the aforementioned engine 

thermal efficiency gains, this paper presents the estimated WTW GHG savings. 

In the following section, a brief overview of the empirical model will be presented, followed by 

a discussion of engine thermal efficiency gains and GHG savings from ethanol blends using two 

octane-grade Chinese gasolines as base fuels. In the end, limitation of this work is presented. 

 
 

2 Brief Overview of Ethanol Blends Model 

Figure 1 briefly described the empirical model for SI engines fuelled with ethanol blends, 

capable of predicting RON, octane sensitivity, cooling effect, and engine thermal efficiency 



improvement24. An effective octane index (EOI), which considers RON, octane sensitivity and cooling 

effect (heat of vaporisation), is used to determine ethanol blends’ anti-knock properties. Additionally, 

the high flame speed and engine downsizing also improve engine thermal efficiency. It should be noted 

that the empirical model was built using E0-E70 data, and no blends beyond E70 were included due to 

uncertainty in octane measurement for ethanol blends beyond E70. Therefore, this model can only be 

applied for up to 70 vol.% ethanol blends. 

 
Figure 1: Empirical model for SI engines using ethanol blends 

RON of ethanol blend is calculated via: 

Equation 1: RONblend = (−0.01983𝑥𝑣𝑣𝑣2+2.8512𝑥𝑣𝑣𝑣)× (RONethanol−RONbase)
100

+ RONbase 

where RONblend, RONethanol and RONbase are the RON of ethanol blend, ethanol and base gasoline, 

respectively; xvol is the volumetric content of ethanol. 

In direct-injection spark-ignition (DISI) engines, apart from the fuel’s octane rating, the charge 

cooling effect (heat of vaporisation) of the fuel is another important contributor in suppressing knock. 

The charge cooling effect is quantitatively converted into equivalent octane number. ONCE is 

abbreviated from octane number from the cooling effect. △ONCE between ethanol blends and base 

gasoline can be expressed by the following equation24: 

Equation 2: △ ONCE = ONCEblend − ONCEbase = 0.1543 × xvol 



The charge cooling effect is partially captured in the RON test in cooperative fuels research 

(CFR) engine. The partially captured cooling effect (PCCE) in the standard RON test is quantified as:  

Equation 3:  PCCE =  0.00028 × 𝑥𝑣𝑜𝑜2 +  0.0200 × xvol 

To reflect octane effect, cooling effect and octane sensitivity effect of ethanol in modern DISI 

engines, EOI is used to describe ethanol’s anti-knock property24: 

Equation 4: EOI = (RON − K × S) + (ONCE − PCCE) 
= (RON − PCCE) − K × S +  ONCE 

where K is a scaling factor depending solely on the in-cylinder temperature and pressure history 

experienced by the end-gas prior to the onset of auto-ignition. The typical octane sensitivity 

(S=RON-MON) for gasoline is 10. The octane sensitivity for ethanol is 18. The octane sensitivity of 

ethanol blends can be linearly estimated from the octane sensitivity of gasoline and ethanol24. Thus, 

EOI considers: (1) chemical effect (RON-PCCE); (2) octane sensitivity effect (-K*S); (3) cooling 

effect (ONCE). An engine survey revealed that the average K values across a wide range of engine 

operating conditions were 0 and -0.3 for current natural aspirated (NA) SI engines and current 

turbocharged (TC) DISI engines, respectively25. A recent publication shows that K value for modern 

engines can be -1.1 at certain load conditions26.  

Ref27 suggested ΔEOI/ΔCR=3. In authors’ review paper24, after collecting data from more than 

ten publications, it recommended ΔEOI/ΔCR=4. More detailed experimental data regarding CR and 

octane number are available in Ref.24 In this paper, to reflect different engine types and technologies, 

ΔEOI/ΔCR=3~4 is used. 

The marginal benefit of CR on engine thermal efficiency (η) gain reduces with the increasing of 

CR. However, as presented in authors’ review paper24, for CR in the range of 8:1-14:1, the thermal 

efficiency gain with CR is almost linear (Δη/ΔCR=1.8%). The contribution of the high flame speed of 

ethanol to thermal efficiency is Δη=0.20% for every 10 vol.% ethanol content in blends24. Engine 

downsizing is a technology that increases engine thermal efficiency by allowing an engine to operate at 



more efficient high load regimes, instead of at low load regimes where pumping losses significantly 

reduce engine thermal efficiencies. In Ref.27, it is suggested that the thermal efficiency increase 

multiplier from additional engine downsizing for TC DISI engines is 1.1. More detail of this empirical 

model is available in Ref.24. 

 
3 Results and discussion 

      This section contains two parts. In part one, the engine thermal efficiency gain is modelled for 

various ethanol blends. The CR of engines is generally not adjustable, however, in this study, it is 

assumed that the future engine technology allows adjustable CR to match the octane rating of the fuel. 

Therefore, a high CR is used for a high octane fuel. It should be noted the adjustable CR technology 

mentioned here does not mean that CR will be adjusted based on engine load. In part two, the WTW 

GHG emission savings from ethanol blends are investigated, along with the discussion of the 

sensitivity of GHG intensity bioethanol.  

3.1 Engine Thermal Efficiency 

 
Figure 2: RON of ethanol blends using two base gasoline fuels 

RON of ethanol blends: Figure 2 shows the RON of ethanol blends using two base gasoline fuels, 

RON82.5 and RON94.5, which is calculated using Equation 1. Adding 10 vol.% ethanol into these two 

base gasoline fuels produces E10 with RON of 89 and 98, respectively, representing the regular- and 
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premium-octane grade gasoline in the China Market. From Figure 2, it can be seen that: (1) RON of 

ethanol blends increases with ethanol content. However, the margin reduces especially at medium and 

high ethanol content; (2) at the same ethanol content RON gain is higher for the low RON base 

gasoline (RON84.5) than the high RON base gasoline (RON94.5). The RON gap of ethanol blends 

with the low- and high-RON gasoline base fuels narrowed from 12 at E0 to 2.5 at E40. In Figure 2, 

there is limited RON improvement when ethanol content is increased from 40 vol.% to 70 vol.%. As 

an octane improver, ethanol shows the best octane boosting effect at low blend ratios and in the low 

octane rating base gasoline. 

Thermal Efficiency Gain: Figure 3 shows engine thermal efficiency gain for ethanol blends in TC 

DISI engines (K=-0.3). The thermal efficiency gain is based on the EOI gain calculated based on 

Equation 4, which requires inputs calculated from Equation 1-3. Engine downsizing and flame speed 

boost from ethanol are also included. More details can be found in the Brief Overview of Ethanol 

Blends Model. 

As mentioned earlier in this paper, to reflect different engine types and technologies, ΔEOI/ΔCR is 

typically in the range of 3-4. Therefore, in this paper, ΔEOI/ΔCR of 3 and 4 are assumed. This 

assumption introduces some uncertainties to potential engine thermal efficiency gain. From Figure 3, it 

can be seen that ethanol blends using RON82.5 base gasoline lead to more engine thermal efficiency 

gain than that using RON94.5 base gasoline.  

Regardless the octane rating of the gasoline base fuel, adding ethanol into base gasoline leads to 

improvement of engine thermal efficiency mainly due to the octane-boost effect as shown in Figure 2. 

Using the base gasoline as the benchmark, in terms of engine thermal efficiency gain, a base gasoline 

with a lower RON (Figure 3(a)) benefits more from ethanol addition than base gasoline with a higher 

RON (Figure 3(b)). The marginal thermal efficiency gain reduces with the ethanol content, which is 

because of the diminished octane-boost effect at higher ethanol addition (see Figure 2). 



 

 
Figure 3: Engine thermal efficiency gain for ethanol blends in TC DISI engines: (a) base gasoline with 

RON82.5; (b) base gasoline with RON94.5 (K=-0.3) 
 

 
Figure 4: Breakdown of thermal efficiency gains for ethanol blends in TC DISI engines: (a) base 

gasoline with RON82.5; (b) base gasoline with RON94.5 (ΔEOI/ΔCR=4) 
 

Figure 4 shows break down thermal efficiency gains for ethanol blends in TC DISI engines. As 

mentioned earlier, EOI = chemical effect + octane sensitivity effect + cooling effect, where the 

chemical effect equals to RON-PCCE; the octane sensitivity effect equals to -K*S; the cooling effect 

equals to ONCE. According to Ref.25, the average K for the TC DISI engine is -0.3. Therefore, octane 

sensitivity effect is -0.3*S. It should be pointed out that K values vary in the knock-limited 

engine-operating map. The use of an average K value would underestimate the benefit of octane 

sensitivity at high-end knock-limited engine load, and it would overestimate the benefit at low-end of 

the knock-limited region. At knock-free region, K value does not apply. 

Figure 4 shows that with the addition of ethanol to base gasoline, engine thermal efficiency gains are 
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mainly due to chemical effect and cooling effect, both of which increases with ethanol content. The 

chemical effect is the most dominant, especially for the blend with a low RON base fuel (Figure 4(a)). 

The cooling effect also shows a significant effect for the blend with a low RON base fuel (Figure 4(b)). 

The contribution of engine downsizing, flame speed effect and octane sensitivity are comparable and 

are less than those of chemical and cooling effect. 

 
Figure 5: LHV reduction minus thermal efficiency gain for ethanol blends in NA DISI and TC DISI 

engines: (a) base gasoline with RON82.5; (b) base gasoline with RON94.5 

LHV reduction: Figure 5 shows the LHV reduction minus thermal efficiency gain for ethanol blends 

in NA DISI (K=0) and TC DISI (K=-0.3) engines using two base gasoline fuels, RON82.5 and 

RON94.5. The error bars reflect ΔEOI/ΔCR=3~4, and the solid points in Figure 5 represent the results 

for ΔEOI/ΔCR=3.5. Due to the low energy density of ethanol, adding ethanol to base gasoline linearly 

reduces LHV. Assuming that the fuel tank size is fixed, the vehicle mileage range reduction can be 

estimated by subtracting LHV reduction by the engine thermal efficiency gain.  

For the ethanol blends with the low RON base fuel, it can be seen that it is possible to use high ethanol 

blends without significantly deteriorating the vehicle mileage range (Figure 5(a)). In Figure 5(a), with 

a low ethanol addition, the improvement of engine thermal efficiency increases faster than the 

reduction of LHV. However, with a high ethanol addition the opposite is true due to the diminished 

gain in thermal efficiency with ethanol addition. This explains the results shown in Figure 5(a). 

For the ethanol blends with the high RON base fuel, it is difficult to make up the LHV difference for 
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higher ethanol blends via engine efficiency gains due to limited octane boost from the addition of 

ethanol (Figure 5(b)). It has to be pointed out that the LHVs of the two base gasoline fuels are assumed 

to be 42 MJ/kg, a typical value for gasoline fuels28. If the LHV of base gasoline is higher than 42 

MJ/kg, the reduction of LHV for ethanol blends presented in Figure 5 would be underestimated, and 

vice versa. Fuel tank size can be adjusted according to vehicles’ recommended fuel. However, the 

above analysis is based on the assumption that the fuel tank size is fixed. 

 

3.2 Vehicle WTW GHG Emission Analysis 

In this section, to conduct an analysis of vehicle WTW GHG emissions, vehicle energy/fuel 

consumption data is required. In Ref.29, a fuel consumption survey was conducted for 2555 vehicles 

(2015 model year). It revealed that fuel consumption correlates well with the vehicle mass. When 

using main-grade gasoline in China (E10 with the RON 84.5 base gasoline), for a vehicle with a mass 

in the range of 1000-1500 kg and 1500-2000 kg, the average fuel consumptions are approximately 

6.9 and 9.0 L/100km, respectively. Therefore, these two average fuel consumptions are used as for 

scenario studies for the Vehicle A (6.9 L/km) and Vehicle B (9.0 L/km). Based on the fuel 

consumption, energy consumption per kilometre can be estimated from lower heating values of base 

gasoline and ethanol. In this part, the reduction of vehicle fuel consumption is estimated to be the 

same as the engine thermal efficiency gain. 

The CR of the engine of this vehicle is assumed to be adaptable for ethanol blends. Consequently, 

the engine thermal efficiency is improved, so as the fuel consumption and the WTW GHG emissions. 

In addition to engine thermal efficiency gain, the renewable bioethanol in the blend also contributes 

to the reduction of the WTW GHG emissions. The GHG intensity of ethanol needs to be defined. 

Currently, most of the bioethanol (64%) in China is produced from corn, followed by wheat and 

cassava. Literature shows that cassava-based and corn-stover-based bioethanol produced in China 



have GHG intensities of 69.3 and 40 gCO2-eq/MJ, respectively. In the following section, the GHG 

intensity of 33 gCO2-eq /MJ, corresponding to the value of sugar-beet-based bioethanol in China, is 

used. The sensitivity of GHG intensity of bioethanol on WTW GHG emissions is also studied. 

 
Figure 6: WTW GHG emissions (CO2 equivalent) for ethanol blends in a TC DISI passenger vehicle 

 

Figure 6 shows the WTW GHG emissions (CO2 equivalent) of ethanol blends for Vehicle A and 

B. It is assumed that two vehicles have different fuel economy, but their engines have the same 

efficiency gain for a given ethanol blend. The ethanol GHG intensity is assumed to be 33 

gCO2-eq/MJ23. The WTW GHG emission of gasoline produced in China is typically in the range of 

92-99 gCO2-eq/MJ, depending on the fossil oil sources, refinery technologies and gasoline quality19, 30. 

In this study, the value of 93.2 gCO2-eq/MJ for the base gasoline is used. Based on the fuel 

consumption, energy consumption per kilometre can be estimated from lower heating values of base 

gasoline and ethanol. Therefore, Vehicle A and Vehicle B have 187 and 244 g/km GHG emissions for 

E10, respectively. In Figure 6, the GHG emissions savings with/without engine thermal efficiency 

gains are presented for both Vehicle A and Vehicle B. The GHG emissions savings without engine 

thermal efficiency gains are presented to reflect the GHG emissions saving from an engine that is not 

optimized for bioethanol blends. From Figure 6, it can be seen that: (1) vehicle B with a higher fuel 

consumption leads to higher marginal GHG emission reduction when ethanol is added to the blend in 
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compared with Vehicle A with a lower fuel consumption; (2) The reduction is linear to ethanol 

content.  

  
Figure 7: Breakdown of WTW GHG savings with E10 as the reference case in a TC DISI passenger 

vehicle  

Figure 7 shows the breakdown of WTW GHG savings compared to the E10 case for ethanol 

blends in the TC DISI passenger vehicle. The number above the column in Figure 7 shows the total 

savings in comparison to E10. The marginal GHG saving from the improved engine thermal efficiency 

reduces with ethanol contents. It can be seen that the renewable bioethanol contributes to the majority 

of the GHG savings, and this dominance is enhanced with ethanol content. It should be noted that the 

values shown in Figure 7 are only for the specific vehicle and ethanol GHG intensity. Values will be 

changed if different vehicles or ethanol feedstocks are used.  
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Figure 8: Annual WTW GHG emissions (CO2 equivalent) for ethanol blends in a TC DISI passenger 

vehicle 

Figure 8 shows the annual WTW GHG savings (CO2 equivalent) for ethanol blends. It is 

assumed that the annual vehicle mileage range is 20,000 km. The annual WTW GHG saving is up to 

2000 kg in Vehicle B for E60.  

 
Figure 9: Effect of ethanol GHG intensity on WTW GHG emissions (CO2 equivalent) of ethanol 

blends (E20 and E30) in TC DISI vehicles 

Figure 9 presents the effect of ethanol GHG intensity on WTW GHG emissions (CO2 equivalent) 

of ethanol blends (E20 and E30) in TC DISI vehicles. The ethanol GHG intensity covers the range 

listed in Table 2. Compared to E10, every 1 gCO2-eq/MJ reduction in the bioethanol GHG intensity 

leads to 0.293 and 0.441 gCO2-eq/MJ savings in the WTW GHG emissions for E20 and E30, 
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respectively. Reducing ethanol GHG intensity can further reduce WTW GHG emissions of ethanol 

blends. It should be pointed out that bioethanol has a reduced GHG emission footprint than fossil fuels, 

thus using a blend with higher bioethanol content will reduce further vehicle WTW GHG emissions 

(see Figure 6). China heavily relies on coal to generate electricity, and on an average electric vehicle in 

China produces 259 g/km GHG emission, which is much higher than the values presented in Figure 9. 

Significant electricity GHG intensity reduction is needed to match GHG emissions from an electric car 

and the vehicle running on ethanol blends. More information about the average electric car GHG 

emissions per kilometre of various countries can be found in Figure 1A in Appendix.  

 

4 Conclusions 

 In this paper, an empirical model for spark ignition engines is used to study the engine 

thermal efficiency gain of ethanol blends using two base gasoline fuels, RON84.5 and RON94.5, 

typical regular- and premium-octane base gasolines available in China. In addition, using GHG 

emission data of bioethanol and gasoline in China from the literature, and the engine thermal 

efficiency gains, this paper presents the estimated WTW GHG savings of ethanol blends. The 

following are main conclusions drawn from results and discussion: 

1. For the ethanol blends with the RON84.5 base gasoline, the reduction of LHV is possibly offset 

by the gain of thermal efficiency due to the use of high octane ethanol blends. However, for ethanol 

blends with higher RON base gasoline, it is not possible to offset the reduced LHV. Consequently, fuel 

economy is reduced with high ethanol blends.   

2. Assuming that in China the future bioethanol has a GHG intensity of 33 gCO2-eq/MJ, 

compared to E10, E30 leads to a 21.2% reduction of WTW GHG emissions in a TC DISI vehicle. 

Among this 21.2% reduction, one third is due to the engine thermal efficiency gain and two third is 

due to the using of renewable bioethanol.  



3. Reducing the GHG footprint of bioethanol further reduces WTW GHG emissions of vehicles 

fuelled with gasoline-bioethanol blends. Every 1 gCO2-eq/MJ reduction in the bioethanol GHG 

intensity leads to 0.293 and 0.441 gCO2-eq/MJ savings in the WTW GHG emissions for E20 and E30 

in TC DISI vehicles, respectively. 

 

Limitation of this study 

 This paper does not intend to comment on the benefits of ethanol blends at specific engine 

operating conditions (load and speed). Instead, it used a model based on historical and literature data to 

evaluate statistical benefits of ethanol blends on the engine thermal efficiency gains and WTW GHG 

emissions. The real benefits would be dependent on engine hardware design, and actual vehicle testing 

cycles. The benefits presented in this paper would be underestimated if engines were operated at 

knock-limited high load conditions where high-octane ethanol blends are more resistant to knocking 

than the gasoline base fuel. The benefits would be overestimated if engines were operated at 

knock-free low load conditions. In addition, the reduction of vehicle fuel consumption is estimated to 

be the same as the engine thermal efficiency gain. This will introduce some errors in the estimation, 

especially when the engine is downsized (the vehicle weight is reduced). It should be pointed out that 

the GHG emissions of ethanol blends mentioned in this paper are estimated based on several 

assumptions, such as the GHG intensity of bioethanol and engine efficiency gains. Attention should be 

paid when using those values for further studies. 

  



Appendix 
 

 
Figure 1A: Electric vehicle GHG emissions (data extracted from Ref.31, which is originally from 

DEFRA and IEA et al.32-34 
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