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Abstract A search is presented for long-lived particles
with a mass between 25 and 50 GeV/c2 and a lifetime
between 2 and 500 ps, using proton–proton collision data
corresponding to an integrated luminosity of 2.0 fb−1, col-
lected by the LHCb detector at centre-of-mass energies of 7
and 8 TeV. The particles are assumed to be pair-produced
in the decay of a 125 GeV/c2 Standard-Model-like Higgs
boson. The experimental signature is a single long-lived par-
ticle, identified by a displaced vertex with two associated jets.
No excess above background is observed and limits are set
on the production cross-section as a function of the mass and
lifetime of the long-lived particle.

1 Introduction

Various extensions of the Standard Model (SM) feature new
particles whose couplings to lighter states are sufficiently
small to result in detectable lifetimes. In this paper we report
on a search for such long-lived particles, which are assumed
to be pair-produced in the decay of a Standard-Model-like
Higgs boson, and subsequently decay into a quark–antiquark
pair. Such a signature is present in models with a hidden-
sector non-Abelian gauge group, where the Standard Model
Higgs boson acts as a portal [1–5]. The new scalar parti-
cle represents the lightest state in the hidden sector and is
called a hidden-valley pion (πv) throughout this paper. Exper-
imental constraints on the properties of the Higgs boson of
mass 125 GeV/c2 observed by the ATLAS and CMS collab-
orations [6,7] still allow for branching fractions of non-SM
decay modes of up to 30% [8].

Data collected with the LHCb experiment in 2011 and
2012 are used for this analysis, restricted to periods in
which suitable triggers were available. The data sample anal-
ysed corresponds to 0.62 fb−1 at a centre-of-mass energy of√
s = 7 TeV and 1.38 fb−1 at

√
s = 8 TeV. In simulated

events with πv pairs originating from a Higgs boson decay it

� e-mail: pieter.david@cern.ch

is found that in most cases no more than one of the two πv

decays occurs inside the LHCb acceptance. Consequently,
the experimental signature is a single πv particle. The candi-
date is identified by its decay to two hadronic jets originating
from a displaced vertex, with a transverse distance to the
proton-proton collision axis (Rxy) of at least 0.4 mm. The
vertex is required to have at least five tracks reconstructed
in the LHCb vertex detector. The analysis is sensitive to πv

particles with a mass between 25 and 50 GeV/c2 and a life-
time between 2 and 500 ps. The lifetime range is limited due
to the presence of large prompt backgrounds at short decay
times and the acceptance of the vertex detector for long decay
times. The lower boundary on the mass range arises from the
requirement to identify two hadronic jets while the upper
boundary is driven by the geometric acceptance of the detec-
tor.

This paper presents an update of an earlier analysis, which
considered only the data set corresponding to an integrated
luminosity of 0.62 fb−1 collected at

√
s = 7 TeV [9]. Simi-

lar searches for hidden-valley particles decaying to jet pairs
were performed by the D0 [10], CDF [11], ATLAS [12–14]
and CMS [15] collaborations. Compared to these analyses,
this search is sensitive to πv particles with relatively low mass
and lifetime. The LHCb collaboration has also performed a
search for events with two displaced high-multiplicity ver-
tices [16] and a search for events with a lepton from a high-
multiplicity displaced vertex [17] in the context of SUSY
models, and several searches for so far unknown long-lived
particles in B-meson decays [18–21].

2 Detector and event simulation

The LHCb detector [22,23] is a single-arm forward spec-
trometer covering the pseudorapidity range 2 < η < 5,
designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system con-
sisting of a silicon-strip vertex detector (VELO) surrounding
the pp interaction region, a large-area silicon-strip detec-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5178-x&domain=pdf
mailto:pieter.david@cern.ch


812 Page 2 of 14 Eur. Phys. J. C (2017) 77 :812

tor located upstream of a dipole magnet with a bending
power of about 4 Tm, and three stations of silicon-strip detec-
tors and straw drift tubes placed downstream of the magnet.
The tracking system provides a measurement of the momen-
tum, p, of charged particles with a relative uncertainty that
varies from 0.5% at low momentum to 1.0% at 200 GeV/c.
The minimum distance of a track to a primary vertex (PV),
the impact parameter (IP), is measured with a resolution of
(15+(29 GeV/c)/pT) μm, where pT is the component of the
momentum transverse to the collision axis. Different types
of charged hadrons are distinguished using information from
two ring-imaging Cherenkov detectors. Photons, electrons
and hadrons are identified by a calorimeter system consisting
of scintillating-pad (SPD) and preshower detectors, an elec-
tromagnetic calorimeter and a hadronic calorimeter. Muons
are identified by a system composed of alternating layers of
iron and multiwire proportional chambers.

The model for the production of πv particles through the
Higgs portal is fully specified by three parameters: the mass
of the Higgs boson and the mass and lifetime of the πv. The
Higgs boson mass is taken to be 125 GeV/c2, and its produc-
tion through the gluon-gluon fusion process is simulated with
the Pythia8 generator [24], with a specific LHCb configu-
ration [25] and using the CTEQ6 leading-order set of parton
density functions [26]. The interaction of the generated par-
ticles with the detector, and its response, are implemented
using the Geant4 toolkit [27,28] as described in Ref. [29].
Signal samples with πv masses of 25, 35, 43 and 50 GeV/c2

and lifetimes of 10 and 100 ps are generated. In the sim-
ulated events the long-lived particles decay exclusively as
πv → bb̄, since this decay mode is generally preferred in the
Higgs portal model. Samples with decays to c- and s-quark
pairs are generated as well, but only in the scenario with a
mass of 35 GeV/c2 and a lifetime of 10 ps.

3 Event selection

The experimental signature for this analysis is a single dis-
placed vertex with two associated jets. Only decays that pro-
duce a sufficient number of tracks in the VELO for a vertex to
be reconstructed are considered. Due to the geometry of the
vertex detector, this restricts the sample to decay points up to
about 200 mm from the nominal interaction point along the
beam direction, and up to about 30 mm in the transverse direc-
tion, thereby limiting the decay time acceptance. The selec-
tion strategy is the same as used in the analysis of Ref. [9].
Reconstructed tracks are used to find the decay vertex, and
jets are built out of reconstructed particles compatible with
originating from that vertex. Constraints on the signal yield
are determined from a fit to the dijet invariant mass distri-
bution. The main source of background is displaced vertices
from heavy-flavour decays or interactions of particles with

detector material. To take into account the strong dependence
of the background level on the separation from the beam axis,
different selection criteria are used in different bins of Rxy ,
and the final fit is performed in bins of this variable.

The selection consists of online (trigger) and offline parts.
The trigger [30] is divided into a hardware (L0) and a soft-
ware (HLT) stage. The L0 requires a muon with high pT or
a hadron, photon or electron with high transverse energy in
the calorimeters. In order to reduce the processing time of the
subsequent trigger stages, events with a large hit multiplicity
in the SPD are discarded. The software stage is divided into
two parts, which for this analysis differ between the 2011
and 2012 data. In the 2011 sample, the first software stage
(HLT1) requires a single high-pT track with a large impact
parameter. The HLT1 selection for the 2012 sample was com-
plemented with a two-track vertex signature with looser track
quality criteria, in order to improve the efficiency at large
displacements. At the second stage of the software trigger
(HLT2), events are required to pass either a dedicated inclu-
sive displaced-vertex selection or a standard topological B
decay selection, which requires a two-, three- or four-track
vertex with a significant displacement from all PVs [30]. The
inclusive displaced-vertex selection uses an algorithm similar
to that used for the LHCb primary vertex reconstruction [31].
A combination of requirements on the minimum number of
tracks in the vertex (at least four), the distance Rxy of the
vertex to the beam axis (at least 0.4 mm), the invariant mass
of the particles associated with the vertex (at least 2 GeV/c2)
and the scalar sum pT of the tracks that form the vertex (at
least 3 GeV/c), is used to define a set of trigger selections
with sufficiently low rate.

Before the offline selection can be applied, the displaced
vertex corresponding to the decay of the πv candidate must
be reconstructed. For those events in which the HLT2 inclu-
sive displaced-vertex selection was successful, the same ver-
tex candidate found in the trigger is used; this approach
differs from that used in the previous LHCb analysis [9]
and simplifies the evaluation of systematic uncertainties. For
events selected only by the topological B trigger, a mod-
ified version of the algorithm is run on the output of the
offline reconstruction with the following criteria: vertices
with 0.4 < Rxy < 1 mm must have at least eight tracks and
the invariant mass of the system must exceed 10 GeV/c2,
vertices with 1 < Rxy < 5 mm must have at least six tracks,
and those with Rxy > 5 mm must have at least five tracks.
To exclude background due to interactions with the detec-
tor material, vertices inside a veto region around the VELO
detector elements are discarded. Events with many paral-
lel displaced tracks, which can arise from machine back-
ground, are identified by the azimuthal distribution of hits in
the VELO and are also discarded.

Next, jets are reconstructed following a particle flow
approach. The same set of inputs as in Ref. [32] is used,
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namely tracks of charged particles and calorimeter energy
deposits, after subtraction of the energy associated with
charged particles. To remove background, tracks that are
compatible with coming from a PV, tracks with a smaller
impact parameter to any primary vertex than to the dis-
placed vertex, and tracks that have an impact parameter to
the displaced vertex larger than 2 mm are all discarded. The
anti-kT jet clustering algorithm is used [33], with a distance
parameter of R = 0.7. The jet momentum and jet mass are
calculated from the four-vectors of all constituents of the
jet. In simulated events the jet energy response is found to
be close to unity except for the lowest jet momenta, near
the minimally required transverse momentum of 5 GeV/c.
Therefore, no jet energy correction was applied for this
search.

To enhance the jet purity the fraction of the jet energy
carried by charged particles should be at least 0.1, there
should be at least one track with transverse momentum above
0.9 GeV/c, no pair of constituents should carry 90% of the jet
energy, and no single charged or neutral constituent should
contribute more than 70 or 50% of the total energy, respec-
tively. To ensure that they can reliably be associated to a
vertex, the jets are also required to have at least two con-
stituents with track segments in the VELO. To account for
differences in trigger and background conditions, for the
2012 data this requirement was tightened to at least four
segments for Rxy < 1 mm, and at least three segments for
1 < Rxy < 2 mm. For each jet an origin point is recon-
structed from the jet constituents with VELO information.
The jet trajectory is defined based on this origin point and
the momentum of the jet. Any jet whose trajectory does not
point back to the candidate vertex within 2 mm, or points
more closely to a primary vertex, is removed. Only candi-
dates with at least two jets passing these criteria are retained.

Two final criteria are applied to the dijet candidates. The
first is that the momentum vector of the dijet candidate
should be aligned with the displacement vector from a PV to
the reconstructed vertex position. This is implemented as a
requirement on the dijet invariant mass divided by the cor-
rected mass, m/mcorr > 0.7. The corrected mass is com-
puted as mcorr = √

m2 + (p sin θ)2 + p sin θ [34], where
m and p are the reconstructed mass and momentum of the
dijet, and θ is the minimum angle between the momentum
vector and the displacement vectors to the vertex from any
PV in the event. A requirement on m/mcorr is preferred over
one on the angle θ itself, since its efficiency depends less
strongly on the boost and the mass of the candidate [35]. The
second criterion is that the kinematic separation of the jets
should satisfy �R = √

(�η)2 + (�φ)2 < 2.2, where �η

and �φ are the pseudorapidity and azimuthal angle differ-
ences between the two jets, respectively. This reduces the
tail in the dijet invariant mass distribution by suppressing the
remaining back-to-back dijet background.

Table 1 Number of selected candidates per generated H0 → πvπv
event (efficiency) in percent for different πv → qq , q = b, c, s models
for 2011 and 2012 data taking conditions, as derived from simulation.
The relative statistical uncertainty on the efficiency due to the limited
size of the simulated sample is less than a few percent

πv mass (GeV/c2) 2011 2012

10 ps 100 ps 10 ps 100 ps

πv → bb̄ 25 0.45 0.097 0.46 0.111

πv → bb̄ 35 0.80 0.176 0.83 0.224

πv → bb̄ 43 0.73 0.190 0.77 0.222

πv → bb̄ 50 0.49 0.141 0.54 0.171

πv → cc̄ 35 1.35 1.35

πv → ss̄ 35 1.30 1.19

The overall efficiency to reconstruct and select displaced
πv decays in the simulated samples is summarized in Table
1 for the 2011 and 2012 data taking conditions. A large part
of the inefficiency is due to the detector acceptance, which
is about 13% (8%) and 6.5% (5.5%) for πv particles with a
lifetime of 10 ps (100 ps) and masses of 25 and 50 GeV/c2,
respectively. Other important contributions are due to the
selection on the displacement from the beamline, require-
ments on the minimum number of tracks forming the vertex,
the material interaction veto, the reduction in VELO tracking
efficiency at large displacements, and the jet selection [36].
The efficiency for long-lived particles decaying to s- and c-
quark pairs is higher than for decays to b-quark pairs due to
the larger number of tracks originating directly from the πv

decay vertex.

4 Systematic uncertainties

Systematic uncertainties on the efficiency are obtained from
studies of data-simulation differences in control samples.
They are reported in Tables 2 and 3, for the 2011 and 2012
conditions, respectively, and discussed in more detail below.
Uncertainties on the signal efficiency due to parton-density
distributions, the simulation of fragmentation and hadroniza-
tion, and the Higgs boson production cross-section and kine-
matics are not taken into account.

The vertex reconstruction efficiency can be split into two
parts, namely the track reconstruction efficiency and the ver-
tex finding efficiency. The track reconstruction efficiency is
described by the simulation to within a few percent, including
for highly displaced and low-momentum tracks [37–39]. The
effect of a systematic change in this efficiency is studied by
randomly removing 2% of the signal tracks and reapplying
all selection criteria.

The vertex finding algorithm is not fully efficient even if
all tracks are reconstructed. In particular, the efficiency to
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Table 2 Overview of the
contributions to the relative
systematic uncertainty on the
signal efficiency and luminosity
(in percent) for different signal
samples in 2011 conditions. The
uncertainty on the total
efficiency is obtained by
summing the individual
contributions in quadrature

πv mass ( GeV/c2) 25 35 43 50 35, cc̄ 35, ss̄

πv lifetime (ps) 10 100 10 100 10 100 10 100 10 10

Tracking efficiency 4.2 4.1 3.3 3.2 3.0 2.8 3.0 2.7 1.8 1.7

Vertex finding 3.8 4.2 3.3 3.9 2.8 3.7 3.7 2.6 2.9 2.8

Jet reconstruction 3.1 3.1 1.6 1.6 0.7 0.7 0.5 0.5 0.9 1.0

Jet identification 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Jet direction 7.0 7.0 6.0 6.0 7.4 7.4 8.5 8.5 5.9 5.7

L0 4.0 4.0 3.0 3.0 3.0 3.0 2.0 2.0 1.8 2.1

NSPD 1.7 1.7 2.0 2.0 1.6 1.6 2.3 2.3 1.7 1.6

HLT1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

HLT2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Total efficiency 11.5 11.6 9.8 10.0 10.3 10.5 11.2 10.9 8.7 8.6

Luminosity 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7

Table 3 Overview of the
contributions to the relative
systematic uncertainty on the
signal efficiency and luminosity
(in percent) for different signal
samples in 2012 conditions. The
uncertainty on the total
efficiency is obtained by
summing the individual
contributions in quadrature

πv mass ( GeV/c2) 25 35 43 50 35, cc̄ 35, ss̄

πv lifetime (ps) 10 100 10 100 10 100 10 100 10 10

Tracking efficiency 3.1 2.8 2.4 2.4 2.2 2.1 2.0 1.7 1.2 1.1

Vertex finding 4.2 4.5 3.8 4.4 3.4 4.1 3.1 3.9 3.4 3.5

Jet reconstruction 2.7 2.7 1.1 1.1 0.7 0.7 0.3 0.3 0.9 1.0

Jet identification 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Jet direction 5.8 5.8 5.3 5.3 6.1 6.1 7.9 7.9 5.3 5.8

L0 4.0 4.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0

NSPD 2.2 2.2 2.5 2.5 2.5 2.5 2.5 2.5 2.4 2.1

HLT1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

HLT2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Total efficiency 10.5 10.6 9.2 9.4 9.1 9.5 10.4 10.6 8.6 8.9

Luminosity 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

find a low-multiplicity secondary vertex is reduced in the
proximity of a high-multiplicity PV. The effect is studied in
data and simulation using exclusively reconstructed B0 →
J/Ψ K ∗0 decays, which can be selected with high purity
without tight requirements on the vertex. The efficiency for
the displaced vertex reconstruction algorithm to find the B0

candidate is measured as a function of the displacement Rxy

in data and simulation [36]. The difference, weighted by the
Rxy distribution of the signal candidates, is used to derive a
systematic uncertainty.

Systematic uncertainties related to the jet reconstruction
can be introduced in two ways: through differences between
data and simulation in the jet reconstruction efficiency and
through differences between data and simulation in the res-
olution on the jet energy and direction, which enter the dijet
candidate kinematic and m/mcorr selection and the dijet
invariant mass shape. The jet reconstruction efficiency has
been studied previously in measurements of the Z + jet
and Z + b-jet cross-sections and was found to be consistent
between data and simulation [32,40]. The Z → μ+μ− + jet

sample is used to study jet-related systematic effects for this
analysis as well. To mimic the selection of the particle-flow
inputs, the PV associated to the Z is used as a proxy for the
displaced vertex.

The difference between data and simulation with the
largest impact on the jet reconstruction efficiency is the
energy response to low-pT jets, close to the threshold of
5 GeV/c. The sensitivity to a different energy response in
data and simulation is evaluated by increasing the minimum
jet pT for candidates passing the full offline selection by 10%,
which is the uncertainty on the jet energy scale. The change
in the overall selection efficiency is assigned as a systematic
uncertainty. By replacing the jet identification criteria with a
requirement on the pT balance between the leading jet and
the Z boson, the Z → μ+μ− sample can also be used to
study the difference in jet identification efficiency between
data and simulation. No difference larger than 3% relative is
seen, which is assigned as a systematic uncertainty.

To validate the simulation of the jet-direction resolution
the jet-direction is estimated separately with the charged and
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Fig. 1 Dijet invariant mass
distribution in the different Rxy
bins, for the 2011 data sample.
For illustration, the best fit with
a signal πv model with mass
35 GeV/c2 and lifetime 10 ps is
overlaid. The solid blue line
indicates the total background
model, the short-dashed green
line indicates the signal model
for signal strength μ = 1, and
the long-dashed red line
indicates the best-fit signal
strength

R R

R R

R R

neutral components of the jet in Z + jet events. The dis-
tribution of the charged-neutral difference in the estimated
direction is found to be consistent between data and simula-
tion for both the η and the φ projection, and across the full
range of pT. To quantify the effect on the πv signal efficiency,
an additional smearing to the jet-direction is applied to jets
of selected candidates in the simulation. The jet angles with
respect to the beam direction are smeared independently in
the horizontal and vertical planes by about one third of the
resolution, which is the largest value compatible with the
comparison of data and simulation in Z + jet events.

The systematic uncertainty related to the L0 trigger selec-
tion consists of two parts, due to differences in the L0
calorimeter trigger response between data and simulation,
and due to the difference between data and simulation in the
distribution of the SPD hit multiplicity NSPD. The first is eval-
uated by studying the L0 calorimeter trigger response on jets
reconstructed in Z + jet events, where the trigger decision is

made based on the Z → μ+μ− decay products, and is inde-
pendent of the jet. The observed data-simulation differences
are propagated to the πv reconstruction efficiency and corre-
spond to systematic uncertainties of 2–4%, depending on the
πv mass. Jets in Z + jet events are mostly light-quark jets,
while our benchmark signal decays to b quarks. It is found
in simulated events that the efficiency of the L0 calorimeter
trigger is practically independent of jet flavour. A small frac-
tion of b-quark jets is triggered exclusively by the L0 muon
trigger, which is well modelled in the simulation.

The second part of the L0 systematic uncertainty arises
because the SPD multiplicity is not well described in the
simulation. This effect is studied with a Z → μ+μ− sample
triggered by the dimuon L0 selection, which applies only a
loose selection on this quantity. An efficiency correction is
derived, which is about 90% for 2011 data, and about 85%
for 2012 data, with an uncertainty of 2–3%. The difference
in the correction between the different πv models is smaller
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than the systematic variation. This correction is applied to
the overall detection efficiency derived from the simulation
and the uncertainty is taken as a systematic uncertainty.

The differences between data and simulation in the HLT1
selection are dominated by the track reconstruction effi-
ciency, which was discussed above, and additional track qual-
ity criteria. One such difference is due to a requirement on
the number of VELO hits for displaced tracks. It is char-
acterized using B0 → J/Ψ K ∗0 decays selected with trig-
gers that do not apply such a requirement. For this sample
the selection efficiency was found to be 2% higher in data
than in simulated events, which is assigned as a systematic
uncertainty. For πv decays the final-state track multiplicity
is larger, which dilutes effects due to a mismodelling of the
single-track efficiency.

The main source of systematic uncertainty in the HLT2
selection is the vertex reconstruction efficiency, which was
discussed above. The efficiency of the topological B trigger,
which is relevant for a subset of the candidates, is accurately

described in simulation. It is measured as a function of Rxy

in data and simulation using B0 → J/Ψ K ∗0 candidates that
are selected by a different, dimuon-based, trigger criterion. A
maximum difference of 2–3% is observed, which is assigned
as a systematic uncertainty.

5 Results

Constraints on the presence of a signal are derived from a
fit to the dijet invariant mass distributions, shown in Figs. 1
and 2. To take advantage of the difference in the Rxy distri-
bution for background and signal, the data are divided into
six Rxy bins. The data are further split according to data tak-
ing year to account for differences in running conditions and
Higgs boson production cross-section. The signal efficiency
for each Rxy bin is obtained from the simulated samples
with πv lifetimes of 10 and 100 ps, with the decay time dis-

Fig. 2 Dijet invariant mass
distribution in the different Rxy
bins, for the 2012 data sample.
For illustration, the best fit with
a signal πv model with mass
35 GeV/c2 and lifetime 10 ps is
overlaid. The solid blue line
indicates the total background
model, the short-dashed green
line indicates the signal model
for signal strength μ = 1, and
the long-dashed red line
indicates the best-fit signal
strength

R R

R R

R R
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Fig. 3 Expected (open circles
and dotted line) and observed
(filled circles and solid line)
upper limit versus lifetime for
different πv masses and decay
modes. The green (dark) and
yellow (light) bands indicate the
quantiles of the expected upper
limit corresponding to ±1σ and
±2σ for a Gaussian distribution.
The decay πv → bb̄ is assumed,
unless specified otherwise

tributions reweighted to mimic other lifetime hypotheses as
needed.

Results are presented as upper limits on the signal strength
μ ≡ (σ/σ SM

gg→H0) ·B(H0 → πvπv), where σ is the excluded

signal cross-section, σ SM
gg→H0 is the SM Higgs boson pro-

duction cross-section via the gluon fusion process and
B(H0 → πvπv) is the branching fraction of the Higgs boson
decay to πv particles. The branching fraction Bqq of the
πv particle to the qq̄ final state (with qq̄ = bb̄, cc̄ or ss̄
depending on the final state under study) is assumed to be
100%. If the decay width of the πv particle is dominated
by other decays than that under study, the limits scale as
1/(Bqq(2−Bqq)). The Higgs boson production cross-section
is assumed to be 15.11 pb at 7 TeV and 19.24 pb at 8 TeV
[41].

The CLs method [42] is used to determine upper limits.
The profile likelihood ratio qμ

PLL = L(μ, θ̂(μ))/L(μ̂, θ̂ ) is
chosen as a test statistic, where L(μ, θ) denotes the likeli-
hood as a function of μ and a set of nuisance parameters

θ , which are also extracted from the data; L(μ, θ̂(μ)) is
the maximum likelihood for a hypothesized value of μ and
L(μ̂, θ̂ ) is the global maximum likelihood. To estimate the
sensitivity of the analysis and the significance of a potential
signal, the expected upper limit quantiles in the case of zero
signal are also evaluated.

For each value of μ and θ the likelihood is evaluated as
L(μ, θ) = ∏

i P(xi ;μ, θ), where P is the probability den-
sity for event i and the product runs over all selected events.
The observables xi for each candidate include the dijet mass,
Rxy bin and data taking year. For each Rxy bin and data tak-
ing year, the invariant mass distribution is modelled by the
sum of background and signal components. The distribution
for the signal is modelled as a Gaussian distribution whose
parameters are obtained from fully simulated signal events.
For the background distribution an empirical model, outlined
below, is adopted.

Background candidates can be categorized into two con-
tributions. The first category is mostly due to the combination
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Table 4 Observed 95% CL
signal strength (μ) upper limits
for different πv models

πv mass πv lifetime (ps)

2 5 10 20 50 100 200 500

25 GeV/c2 1.64 0.83 1.12 1.22 2.84 4.37 9.28 22.82

35 GeV/c2 0.63 0.35 0.32 0.41 0.76 1.37 2.56 5.86

43 GeV/c2 0.52 0.21 0.16 0.21 0.35 0.63 1.12 2.77

50 GeV/c2 0.50 0.17 0.14 0.15 0.25 0.41 0.76 1.72

35 GeV/c2, πv → cc̄ 0.33 0.17 0.16 0.20 0.39 0.64 1.19 2.90

35 GeV/c2, πv → ss̄ 0.40 0.20 0.19 0.24 0.42 0.77 1.41 3.51

of a heavy-flavour decay vertex or an interaction with detec-
tor material with particles from a primary interaction. This
contribution has a steeply decreasing invariant mass spec-
trum. Following the approach in Ref. [9], the distribution
is modelled by the convolution of a falling exponential dis-
tribution with a bifurcated Gaussian. All parameters of this
background model are free to vary in the fit.

The second category is due to Standard Model dijet events.
These events have candidates with jets that are approximately
back-to-back in the transverse plane. It is suppressed by
the selection on the dijet opening angle �R. Its remaining
contribution has a less steeply falling mass spectrum. It is
described in the fit with a similar functional shape as for
the first category, but with the parameters and the relative
yields in the different bins fixed from a fit to the invariant
mass distribution of candidates that fail the �R requirement.
In the final fit only the total normalization of this compo-
nent is varied. The second component is new compared to
the model used for the previous analysis [9]. It leads to a
better description of the high-mass tail, at the expense of
one extra fit parameter for each data taking year. It was
found that the result of the fit is not sensitive to the exact
�R requirement used to select the events for this compo-
nent.

All parameters of the fit to the invariant mass distribution
are allowed to float independently in each bin, except for
the following nuisance parameters: the dijet invariant mass
scale, the overall signal efficiency, and the normalization for
the second background contribution. All relevant systematic
uncertainties are incorporated in the fit model: the overall
uncertainty on the efficiency, as described in Sect. 4, the
uncertainty on the dijet invariant mass scale, and the uncer-
tainties on the shape parameters and relative normalisation
arising from the finite size of the simulated signal samples.
Gaussian constraints on these parameters are added to the
likelihood.

Alternatives have been considered for the background
mass model, in particular with an additional less steeply
falling exponential to describe the tail. With these models
the estimated background yield at higher mass is similar or

Fig. 4 Observed upper limit versus lifetime for different πv masses
and decay modes. The decay πv → bb̄ is assumed, unless specified
otherwise

larger than with the nominal background model, leading to
tighter limits on the signal. As the nominal model gives the
most conservative limit, no additional systematic uncertainty
is assigned for background modeling.

There is no significant excess of signal in the data. Upper
limits at 95% confidence level (CL) as a function of lifetime
for hidden-valley models with different πv mass and decay
mode are shown in Fig. 3 and summarized in Table 4 and
Fig. 4. The best sensitivity is obtained for a mass of about
50 GeV/c2 and a lifetime of about 10 ps. The main improve-
ments with respect to the previous result [9] are due to the
enlarged data sample, the improved trigger selections, and
the addition of the Rxy bin above 5 mm, which contributes
to the increased sensitivity at larger lifetimes.

6 Conclusion

Results have been presented from a search for long-lived par-
ticles with a mass in the range 25–50 GeV/c2 and a lifetime
between 2 and 500 ps. The particles are assumed to be pair-
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produced in the decay of a 125 GeV/c2 Standard-Model-like
Higgs boson and to decay into two jets. Besides decays to bb̄,
which are the best motivated in the context of hidden-valley
models [1,2], also decays to cc̄ and ss̄ quark pairs are con-
sidered. No evidence for so far unknown long-lived particles
is observed and limits are set as a function of mass and life-
time. These measurements complement other constraints on
this production model at the LHC [13,15] by placing stronger
constraints at small masses and lifetimes.
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