

University of Birmingham

Globular:
Bar, Krzysztof ; Kissinger, Aleks; Vicary, Jamie

DOI:
10.23638/LMCS-14(1:8)2018

License:
Creative Commons: Attribution-NoDerivs (CC BY-ND)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Bar, K, Kissinger, A & Vicary, J 2018, 'Globular: an online proof assistant for higher-dimensional rewriting',
Logical Methods in Computer Science, vol. 14, no. 1, 8. https://doi.org/10.23638/LMCS-14(1:8)2018

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Published in Logical Methods in Computer Science on 22/01/2018

DOI: 10.23638/LMCS-14(1:8)2018

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 23. Apr. 2024

https://doi.org/10.23638/LMCS-14(1:8)2018
https://doi.org/10.23638/LMCS-14(1:8)2018
https://birmingham.elsevierpure.com/en/publications/bd7ca99b-bbdb-4193-b11e-15693d6c0ff7

Logical Methods in Computer Science
Vol. 14(1:8)2018, pp. 1–16
https://lmcs.episciences.org/

Submitted Dec. 07, 2016
Published Jan. 22, 2018

GLOBULAR: AN ONLINE PROOF ASSISTANT FOR

HIGHER-DIMENSIONAL REWRITING

KRZYSZTOF BAR, ALEKS KISSINGER, AND JAMIE VICARY

Department of Computer Science, University of Oxford
e-mail address: krzysztof.bar@cs.ox.ac.uk

Institute for Computing and Information Sciences, Radboud University Nijmegen
e-mail address: aleks@cs.ru.nl

Department of Computer Science, University of Oxford
e-mail address: jamie.vicary@cs.ox.ac.uk

Abstract. This article introduces Globular, an online proof assistant for the formalization
and verification of proofs in higher-dimensional category theory. The tool produces graphical
visualizations of higher-dimensional proofs, assists in their construction with a point-and-
click interface, and performs type checking to prevent incorrect rewrites. Hosted on the
web, it has a low barrier to use, and allows hyperlinking of formalized proofs directly from
research papers. It allows the formalization of proofs from logic, topology and algebra
which are not formalizable by other methods, and we give several examples.

1. Introduction

This paper is a system description for Globular [23], an online tool for formalizing and
verifying proofs in semistrict globular higher category theory. It operates from the perspective
of higher-dimensional rewriting, with terms represented as graphical structures, and proofs
constructed and visualized as sequences of rewrites on these structures. The current version
of the tool allows algebraic structures to be composed in up to 4 spatial dimensions. Formally,
it implements the axioms of a quasistrict globular 4-category ; the details of this theoretical
basis are described by a subset of the authors in a corresponding theory paper [4].

Globular is the first proof assistant of its kind, and it allows many proofs from higher
category theory to be formalized, verified and visualized in a way that would not be
practical in any other tool. The closest comparable tools are Quantomatic [10], which does
diagrammatic rewriting for monoidal categories, Coq and Agda, which have been used to
give formalizations of homotopy type theory [1]. The latter can indeed be used to perform
logical and homotopy-theoretical proofs from a higher-categorical perspective; however, this
approach diverges from ours in that it is based on the syntax of Martin-Löf type theory rather
than diagrams, and identity types naturally lead one to treat higher-dimensional invertible
structures (e.g. ∞-groupoids) as first-class citizens, rather than the more general structures
we’ll consider. Another comparable tool is Orchard [6], which allows the formalization

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-14(1:8)2018
c© Krzysztof Bar, Aleks Kissinger, and Jamie Vicary
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 KRZYSZTOF BAR, ALEKS KISSINGER, AND JAMIE VICARY

of proofs in opetopic (as opposed to globular) higher categories; this tool can handle ∞-
categories, and has many attractive properties, although the opetopic approach to higher
categories is more restricted than the globular approach. The higher dimensional rewriting
implemented by Globular draws inspiration from the polygraphic approach to rewriting
[13, 17], but extends it to allow for non-strict higher-categorical structures.

Globular was designed to make it as quick and easy as possible for users to go from
zero to proving theorems and sharing proofs. Hence, it is entirely web-based, with all logic
taking place client-side in the user’s web browser. The most commonly-used procedures run
in linear time with little overhead, so this is practical on modest hardware even for large
diagrams. Proofs can be stored on the remote server for later reference, or downloaded for
storage locally. Permanent hyperlinks to formalized proofs can be generated and embedded
as links in research papers, allowing readers instant access to the formalization without
the usual barriers-to-use of downloading, installing and maintaining an executable. The
tool launched in December 2015, and has been well-received by the community, with 9055
sessions by 2052 unique users in under a year since deployment in December 20151.

In Section 2, we give a brief overview of the mathematical foundations of Globular,
namely higher-dimensional category theory and rewriting. In Section 3 we exhibit all
of the core functionality of the tool via a simple example. In Section 4 we discuss the
implementation, including the architecture and relevant data structures and procedures
for rewriting. In Section 5 we describe some technical aspects of our implementation. In
Section 6 we survey a variety of interesting proofs that have been formalized with Globular
and made public, with direct links for viewing online.

This is an extended version of the conference paper [3]. It has been updated to reflect
the subsequent theoretical developments in [4]; in particular, regarding the fundamental
algorithms, and the operation of the homotopy moves. A new example involving Kan
extensions and the codensity monad is also referenced.

Acknowledgements. We would like to thank John Baez, Manuel Bärenz, Bruce Bartlett,
Eugenia Cheng, Chris Douglas, Eric Finster, Nick Gurski, André Henriques, Samuel Mimram
and Dominic Verdon for useful discussions.

2. Mathematical foundations

Higher category theory is the study of n-categories. As well as objects and morphisms
familiar from traditional category theory, which are called 0-cells and 1-cells, an n-category
also has morphisms between morphisms (2-cells), morphisms between those (3-cells), and so
on, up to level n. An n-category has a n distinct composition operations, which allow cells
to be combined to produce new cells.

Graphical calculus. A convenient notation for working with n-categories is the graphical
calculus, in which a k-cell is represented as an (n− k)-dimensional geometrical structure2.
Composition then corresponds to ‘gluing’ of these structures along the different axes of
n-dimensional space. For example, in a 3-category, we represent 3-cells as points, 2-cells as

1Usage statistics from Google Web Analytics retrieved on 28 November 2016.
2This is rigorously developed only for n ≤ 3 [5, 9].

GLOBULAR: AN ONLINE PROOF ASSISTANT FOR HIGHER-DIMENSIONAL REWRITING 3

lines, 1-cells as regions, and 0-cells as ‘volumes’. Given 3-cells α and β, we could form the
following composite 3-cells by composing along three different axes:

β
α βα

β

α
(2.1)

In this way we can draw diagrams to represent arbitrary composites, in principle in any
dimension; although for n > 3, visualizing the resulting geometrical structure becomes
nontrivial.

Rewriting. We take a rewriting perspective on higher category theory. Suppose a (k+ 1)-cell
X has source and target k-cells α and α′ respectively. Then we interpret X as a way to
rewrite α into α′. Since composition in higher category theory is local, this also works for
composite cells: for example, we can apply X to any of the composites in (2.1) to obtain a
new composite with α replaced by α′.

The attractive feature of this perspective is that there is no fundamental difference
between the notions of composition and proof. A proof that some diagram D of k-cells can
rewritten into some other diagram D′ amounts to building a composite (k + 1)-cell with
source D and target D′, using just the ‘axiom’ cells of a given theory. For instance, if we
have a 3-cell called ‘assoc’ which captures an associativity rule of 2-cells, we can prove a
theorem about associativity as a composition of 3-cells:

assoc

assoc

assoc

That is, we can define a composite (k + 1)-cell as a rewrite sequence on composite k-cells.
This gives a recursive definition of composition, which terminates with a family of ‘basic’
rewrite operations, which the user must specify. This is the essence of Globular’s approach
to higher category theory.

Strictness. In higher category theory, we have some freedom to decide what it means for two
things to be ‘the same’. At one extreme are ‘fully weak’ n-categories, where all of the axioms
governing the composition of cells (such as associativity and unit axioms) hold only up to
higher-dimensional cells. For example, for 1-cells f, g, h, rather than requiring associativity

f ◦ (g ◦ h) = (f ◦ g) ◦ h
we merely assert the existence of a (weakly) invertible family of ‘associator’ 2-cells

(f ◦ g) ◦ h→ f ◦ (g ◦ h).

4 KRZYSZTOF BAR, ALEKS KISSINGER, AND JAMIE VICARY

These in turn must satisfy various coherence properties, which we again interpret only up to
higher-dimensional cells (which themselves must satisfy coherence properties, and so on).
While these structures arise naturally in many contexts, the substantial bureaucracy that
arises from this structure makes it hard to work with weak n-categories as purely syntactic
objects.

At the other extreme are the strict n-categories which require all the axioms involving
composition of cells to hold as on-the-nose equalities. These are quite easy to define [14],
and admit an evident notion of finite presentation, called a polygraph or computad, and have
a reasonably well-behaved higher-dimensional rewrite theory [7]. However, for n > 2, it is
not the case that every weak n-category is equivalent to a strict one.

Homotopies. To see where this richness of weak categories comes from, we consider the
interchange law, which in a 2-category acts as follows as a rewrite on composite 2-cells:

(f ◦1 1B) ◦2 (1A′ ◦1 g) → (1A ◦1 g) ◦2 (f ◦1 1B′)

I−−−−→

When we stop at two dimensions, there is no problem treating this ‘node-sliding’ rule simply
as an equation between diagrams. But seen as a 3-cell in a 3-category, the source and target
of I become the bottom and top slice of a 3D picture, the nodes become wires, and the
‘sliding’ becomes a braiding:

By the invertibility and naturalness properties, these braidings then behave exactly how
you would expect genuine topological braids to behave. For instance, the following higher
rewrites exist:

→
←

→
←

In general, overcrossings and undercrossings are distinct, so it is possible for wires to become
tangled. Requiring interchangers to be identities, as in the theory of strict 3-categories,
trivializes this part of the theory, and means that it is no longer fully general, in the precise
sense that not every 3-category is equivalent to a strict 3-category.

It follows that the strict n-categorical setting in which the polygraph community work
is not sufficiently general to reason about arbitrary n-categories. The solution is to work
instead with semistrict n-categories, which allows a small amount of weak structure, sufficient
to ensure that every weak n-category is equivalent to semistrict n-category. For n = 3, Gray

GLOBULAR: AN ONLINE PROOF ASSISTANT FOR HIGHER-DIMENSIONAL REWRITING 5

categories have this property; they are defined as 3-categories in which all weak structure is
the identity, except for interchangers3. For n = 4, Globular implements a new definition of
quasistrict 4-categories [4], which can be considered 4-dimensional generalizations of Gray
categories.

3. Using GLOBULAR

Constructing a theory and proving theorems in Globular is an inductive process, whereby
lower-dimensional objects are used to construct higher-dimensional objects. This is done
by building up a signature, i.e. a collection of generators, in parallel with increasingly
higher-dimensional diagrams. From an empty signature, the only thing to do is add new
0-cells:

Once we have some 0-cells, these can be made the sources and targets of new 1-cells:

⇒

At this point things start to get interesting, since 1-cells can be attached to each other to
form non-trivial diagrams. These diagrams can then form the sources and targets of new
2-cells:

⇒ ,

In turn, these 2-cells can be composed to form larger diagrams, which and form the sources
and targets of new 3-cells. We can either interpret these new 3-cells as new generators, or
as equations between 2d diagrams. For example, we can make our ‘cap’ and ‘cup’ 2-cells
invertible by adding the following 3-cells to our theory:

π1
→
←
π2

π3
→
←
π4

3A definition of semistrict n-category for n > 3 has not yet been generally accepted.

6 KRZYSZTOF BAR, ALEKS KISSINGER, AND JAMIE VICARY

π5
→
←
π6

π7
→
←
π8

These invertible ‘cup’ and ‘cap’ 2-cells yield a familiar categorical structure.

Definition 1. In a 2-category, an equivalence is a pair of objects A and B, a pair of 1-cells

A
F−→ B and B

G−→ A and invertible 2-cells F ◦G α−→ idA and idA
β−→ G◦F , denoted as follows:

α ≡ β ≡

A special case is where the 2-category is Cat, in which case this yields the usual notion
of equivalence of categories. Then the following is a well-known fact about equivalences in a
2-category [2, 21]:

Theorem 2. In a 2-category, every equivalence gives rise to a dual equivalence.

An equivalence is called a dual equivalence if it additionally satisfies the snake equations,
which take the following geometrical form:

= = (3.1)

We can prove these theorems by replacing the ‘cup’ with a ‘sock’, defined in terms of the
old cup and cap:

We can show that our new ‘cup’ satisfies the snake equation, with the original ‘cap’. To
prove the first snake equation, we perform the following non-trivial sequence of rewrites in
Globular, where ∼ indicates a homotopy move discussed later in Section 4.3:

def→ π2→ π8→ ∼→ ∼→

∼→ ∼→ ∼→ ∼→ π7→

π7→ ∼→ π1→ π1→

This proof is itself a 3-cell, and is represented by a single 3-dimensional object. In Globular,
we can either browse through it slice-by-slice, or we can see the overall structure of the proof
as a single diagram, by choosing ‘Project=1’ in the interface:

GLOBULAR: AN ONLINE PROOF ASSISTANT FOR HIGHER-DIMENSIONAL REWRITING 7

This projects out one dimension so we call look at this entire 3-cell ‘side-on’. The nodes
represent applications of rewrite rules, and the wires represent 2-cells. From this view, we
can refactor the proof by eliminating redundant steps (e.g. a rewrite immediately followed by
its inverse) or by re-ordering rewrites that are applied to independent parts of the diagram.

Once a proof has been constructed, it can be saved privately to the server, or made
public by publishing it. This assigns the workspace a permanent unique link, which can be
shared with others or linked from a research paper. For example, the proof in this section is
based on the formalization available here: globular.science/1512.007.

4. Data structures and algorithms

4.1. Data structures. The fundamental structures that Globular makes use of are signa-
tures, which are a lists of basic generating cells that the user has specified, and diagrams,
which are particular composites of generators from a given signature. These can be defined
compactly in a mutually-recursive fashion. For clarity, we write these both as type families
in dependent type-style notion. Let ‘g : Set’ declare a finite set g (which we then treat as a
type), let List(α) be the type of lists, and 〈α1, α2, . . .〉 the type of tuples where types in αj
are allowed to depend on αi for i < j. Let Sig(0) and Diag(0, ∗) both be the unit type {∗}.
Then, for n > 0:

Sig(n : N) :=〈
g : Set,
σ : Sig(n− 1),
s, t : g → Diag(n− 1, σ)

〉 Diag(n : N, σ : Sig(n)) :=〈
s : Diag(n− 1, σ),
δ : List(〈a : σ.g, c : List(N)〉)

〉
An n-signature Σ : Sig(n) therefore consists of an (n − 1)-signature Σ.σ, and a set of
generators Σ.g, such that each x : Σ.g has a source and target (n− 1)-diagrams Σ.s(x) and
Σ.t(x) respectively, which each contain cells from the (n− 1)-signature Σ.σ.

Given a signature σ : Sig(n), then for n > 0, a diagram ∆ : Diag(n, σ) consists of a
source (n − 1)-diagram ∆.s, and a list of n-cells ∆δ that act sequentially on that source.
The kth n-cell is given by a pair ∆.δ[k], whose first element ∆.δ[k].a is a generating cell
drawn from the signature σ, and whose second element ∆.δ[k].c is a list of n−1 numbers
which specify the coordinates at which the chosen generating rewrite acts. For example,
a 2-diagram consists of a list of 2-cells which are stacked vertically, and this coordinate
consists of a single number giving the horizontal position of each 2-cell; that is, the number
of wires appearing to its left. In general, the coordinates give the ‘height’ of the rewrite in
every dimension, starting from the top-dimensional one. We leave the target (n− 1)-cell
implicit, as it can be recovered from the other data (e.g. via the Slice procedure below).

http://globular.science/1512.007

8 KRZYSZTOF BAR, ALEKS KISSINGER, AND JAMIE VICARY

We illustrate this informally with the following example. Let Σ : Sig(2) be a signature
containing the following generators:

Σ.g = {v1, v2, v3, v4, v5}
Σ.σ.g = {e1, e2}

Σ.σ.σ.g = {r1, r2}
Then there is source and target data for these generators such that the following diagrams
can all be constructed:

D1.δ =
[
(v1, [0]), (v3, [1]), (v2, [1])

]
D1.s.δ =

[
(e1, [])

] r1 r2

e1

e1

e2

e2

v1

v2
v3

D2.δ =
[
(v1, [0]), (v2, [2]), (v3, [1])

]
D2.s.δ =

[
(e1, [])

] r1 r2

e1

e1

e2

e2

v1

v2

v3

D3.δ =
[
(v2, [1]), (v1, [0]), (v3, [1])

]
D3.s.δ =

[
(e1, [])

] r1 r2

e1

e1

e2
e2

v1

v2

v3

D4.δ =
[
(v1, [0]), (v2, [1]), (v3, [2])

]
D4.s.δ = [(e1, [])]

r1 r2

e1

e1

e2

e2

v1

v2

v3

These 2-diagrams consist of the same components and differ only in the order in which they
have been composed. This is reflected in the different numerical values that specify the
position of a node in a horizontal slice, and the different orders in which the vertices v1, v2
and v3 appear.

Although these diagrams are isotopic, their encodings are clearly distinct, consistent
with the non-strict approach we are taking. The isotopies between them arise as 3-cell
rewrites in our approach, as described in Section 4.3.

GLOBULAR: AN ONLINE PROOF ASSISTANT FOR HIGHER-DIMENSIONAL REWRITING 9

4.2. Algorithms. The operation of Globular is predicated on a variety of algorithms, which
we sketch here. In each case we give an indication of the type of the function which is
computed, and of the procedure employed. Most algorithms run in linear time.

Equal. The equality algorithm identifies whether two diagrams are identical.

Equal
(
∆ : Diag(n, σ),∆′ : Diag(n, σ)

)
: Bool

For ∆,∆′ we first recursively compare whether ∆.s and ∆′.s are equal. If not, return false.
Otherwise, we compare corresponding elements of ∆.δ and ∆′.δ sequentially. If there is a
pair ∆.δ[k],∆′.δ[k] such that the type or coordinate data is not equal, then return false,
otherwise return true. Linear time in the sizes of the diagrams.

Identity. Given an n-diagram, constructs the identity (n+1)-diagram.

Identity
(
∆ : Diag(n, σ)

)
: Diag(n+ 1, σ)

The set of generators Identity(∆).δ is empty, and Identity(∆).s is set to ∆. We perform
a fixed number of assignments, so the procedure terminates in constant time.

Rewrite. Modifies a diagram by removing a subdiagram, and replacing it with a different
subdiagram.

Rewrite(∆ : Diag(n, σ),Ψ : Diag(n, σ),Ψ′ : Diag(n, σ), C : List(N)) : Diag(n, σ)

Here ∆ is the diagram that is being rewritten, Ψ is the source of the rewrite, Ψ′ is the target
of the rewrite, and C is the list of coordinates specifying where the rewrite is to be applied.
A total of |Ψ.δ| consecutive rewrites in ∆.δ are removed, with the rewrites in Ψ′.δ inserted,
with their coordinates offset by C. We illustrate this with a simple example, where C is
denoted by the dashed rectangle:

Ψ =

Ψ′ =

∆ = Rewrite(∆,Ψ,Ψ′, C) =

In the procedure of removing generators of Ψ from ∆ and inserting generators of Ψ′ instead,
every cell is processed at most once. Numerical values in each embedding in Ψ′ get augmented
at most once, hence the procedure is linear in the size of diagrams Ψ and Ψ′.

Attach. Attach a diagram to another diagram.

Attach(∆ : Diag(n, σ),∆′ : Diag(k, σ), P : {s, t}, C : List(N)) : Diag(n, σ)

This procedure is the implementation of the operation of diagram composition. The term
‘attachment’ is used to indicate the effect the procedure has on the diagram in the workspace,
where a visual effect of attaching a diagram is created. We attach the diagram ∆′ to the
diagram ∆. The boolean P indicates whether we are attaching to a source or the target
boundary. The list C describes an embedding of the source or target of ∆′ in the appropriate
source or target of ∆, depending on P .

The procedure is executed as follows:

10 KRZYSZTOF BAR, ALEKS KISSINGER, AND JAMIE VICARY

• If n− k = 0, depending on the value of P , we either append the elements in the lists of
generators and embeddings of ∆′ at the end (P = t) or the beginning (P = s) of ∆’s
corresponding lists. We use the numerical data in e to offset the coordinates in each ∆[i].e.
Additionally, if P = s, the source boundary needs to be modified, so it is rewritten using
elements S[i].g as rewriting cells.
• If n− k > 0, the procedure is called recursively for ∆.s, with ∆′, P and e as parameters.

After the recursive call concludes, for 0 ≤ i ≤ |D| we augment ∆[i].e by the offset created
by adding new (n− 1)-cells to ∆.s.

Note that this procedure corresponds to first implicitly whiskering4 ∆′, so that its appropriate
source or target matches that of ∆, and then composing ∆′ with ∆ in the usual way.

In the procedure, we need to process every element in ∆′ at most once, when the element
gets added to the appropriate part of ∆. In the scenario where ∆′ is attached to the source
boundary of ∆, additionally the rewriting procedure needs to be performed |∆′| times on
the source of ∆. It is this second step which is more costly, hence overall, the number of
operations is bounded by the time complexity of performing the additional rewrites, i.e.
|∆′||∆.s|.

In the example below, ∆′ is the diagram being attached, ∆ is the diagram we are attaching
to, the boundary and the specific coordinates of the attachment point are illustrated by the
blue dashed rectangle. Note that ∆ and ∆′ have the same dimension.

∆′ = ∆ =

The resulting diagram is as follows, where ∆′ is denoted by the blue dashed rectangle.

Attach(∆,∆′, t, [2]) =

We can also perform attachment in the case that the diagrams ∆ and ∆′ have different
dimensions. Consider the following case:

∆′ =
e2

r2r2 ∆ =

4In higher category theory, whiskering refers to the process of ‘padding’ a diagram by adding identity
wires at one of the sides.

GLOBULAR: AN ONLINE PROOF ASSISTANT FOR HIGHER-DIMENSIONAL REWRITING 11

Then the attachment is as follows:

Attach(∆,∆′, s, []) =

Here we provide no attachment coordinates, since the attachment is to the source of ∆,
which is a 1-diagram.

Slice. Given an n-diagram, slice through it at a given height to obtain an (n−1)-diagram.

Slice(∆ : Diag(n, σ), k : N) : Diag(n− 1, σ.σ)

Given an n-diagram ∆, we can rewrite the source boundary ∆.s using the initial k entries
in its list of generators ∆.δ. This gives us the kth slice of ∆. To execute the procedure
we rewrite ∆.s, using elements in ∆’s lists of generators and embeddings, k times. As we
perform the procedure of rewriting on (n− 1)-diagrams, the procedure requires on the order
of k|∆.s| operations.

The source of a diagram is its initial slice Slice(∆, 0) = ∆.s. The target of a diagram is
its final slice Slice(∆, |∆.δ|). An important note is that the resulting (n− 1)-diagram may
be given as input to another instance of the procedure. This way, we may obtain a slice of
∆ of an arbitrary dimension and location.

Match. Find all the ways that one diagram appears as a subdiagram of another.

Match
(
∆ : Diag(n, σ),∆′ : Diag(n, σ)) : List(List(N))

Given two n-diagrams ∆′,∆, this procedure lists all the individual instances of ∆′ being a
subdiagram of ∆.

First we want to find a height for the match, i.e. an index h such that ∆′.s is a subdiagram
of Slice(∆, h). For this we call the procedure recursively for ∆′.s and Slice(∆, h). Given a
list of such embeddings there are two possibilities.

• If the list ∆′.δ is non-empty, we select the unique embedding consistent with the source
of the generator ∆.δ[h], let us refer to it as e′. We then proceed to comparing elements
∆′.δ[j].a and ∆′.δ[j].c with ∆.δ[h+ j].a and ∆.δ[h+ j].c. If any of these checks return a
mismatch, the embedding is discarded. Otherwise, an embedding of ∆′ in ∆ has been
found and we append h to the list of numerical values of e′ to obtain the embedding e.
Since, we are interested in finding all embeddings of ∆′ in ∆, the procedure is repeated
for all 0 ≤ h ≤ |∆|−|∆′|.
• If the list ∆′.δ is empty, then we promote all the embeddings of ∆′.s in ∆[h].d to embeddings

of ∆′ in ∆ by appending h to the list of numerical values for each embedding.

For every recursive call, for n-diagrams ∆′,∆ the procedure conducts at most |∆|−|∆′|
matching operations on diagrams, and calls itself recursively each time. In the worst case
scenario, when an n-diagram ∆′ consists of a single 0-cell, that results in exponential running
time. However, for an n-diagram ∆′ whose list of generators is non-empty, after each
recursive call, we only select one match consistent with the structure of ∆. This ensures
that the running time is polynomial in the size of ∆ and ∆′.

12 KRZYSZTOF BAR, ALEKS KISSINGER, AND JAMIE VICARY

We illustrate enumeration with the following example:

∆′ = ∆ = Match(∆,∆′) =

If the returned list is non-empty, we can infer that ∆′ is a subdiagram of ∆. The procedure
of enumeration is used as pre-processing step for rewriting and attachment, to obtain the
embedding that needs to be supplied as the input for each of these procedures. If more than
one option is available for the given pair of selected diagrams, the user is prompted to select
the desired embedding.

As discussed above for rewriting, for a diagram ∆ and a rewrite defined by Ψ′ and
Ψ, enumeration looks for embeddings of Ψ in ∆. For attachment, for a diagram ∆′ being
attached to ∆, enumeration looks for embeddings of ∆′.s in the appropriate target of ∆, and
embeddings of Slice(∆′, |∆′.δ|) in the appropriate source of ∆. Selection of an embedding of
one of these types additionally supplies the boolean indicating whether ∆′ is being attached
to a source or to the target of ∆, which is a required input for attachment.

4.3. Homotopies. Globular also has procedures which generate homotopy moves. These
are fixed families of rewrites, labelled I to VI, which can be interpreted as topological
diagram deformations. Within each family, several variant moves are available, which are
disambiguated by subscripts. This data gives the type of the move; we write HT for the set
of permissible types, defined as follows:

HT =
{

Ii | i ∈ {1, 2}
}
∪
{

IIi | i ∈ {1, . . . , 8}
}
∪
{

IIIi | i ∈ {1, . . . , 16}
}

∪
{

IVi | i ∈ {1, . . . , 16}
}
∪
{

Vi | i ∈ {1, . . . , 16}
}
∪
{

VIi | i ∈ {1, . . . , 8}
}

Additional complexity arises from the fact that, even after specifying the move type, the
rewrite it gives rise to is contextual, meaning that it depends on the geometry of the diagram
to which it is being applied, and to the chosen location within the diagram, given as a list of
coordinates.

To fully specify a homotopy move, one must therefore specify a diagram, a list of
coordinates, and a move type. In Globular, this data is used as input for the following
functions.

• HomotopyMatch(∆ : Diag(n, σ), p : N∗, t : HT) : Boolean
Returns true if a homotopy move of type t is admissible at position p in diagram ∆, and
false otherwise.
• HomotopyBox(∆ : Diag(n, σ), h : N∗, t : HT) : Pair(N, N)

If HomotopyMatch returns true on this data, this function returns the first and last
positions in the list of elements ∆.δ affected by this homotopy. Otherwise, the behaviour
is undefined.
• HomotopyRewrite(∆ : Diag(n, σ), h : N∗, t : HT) : Diag(n, σ)

If HomotopyMatch returns true on this data, this function returns the diagram resulting
from acting on ∆ by the indicated homotopy move. Otherwise, the behaviour is undefined.

In Globular, these functions are used to extend as appropriate the algorithms presented in
Section 4.2. For example, the HomotopyRewrite function may be used in place of the

GLOBULAR: AN ONLINE PROOF ASSISTANT FOR HIGHER-DIMENSIONAL REWRITING 13

Rewrite function, when the move to be applied is a homotopy move, rather than a move
arising from the signature.

We illustrate here the form of the Type I and Type II moves. The form for the other
types is more involved, and we refer to the paper [4] for further details.

Type I. As rewrites, these homotopy moves exchange the heights of non-interacting vertices:

f

g

I1
→
←
I2

f

g

(4.1)

In general, we allow f and g to have an arbitrary number of input and output wires, and we
allow any number of wires between f and g.

As elements of diagrams themselves, they are drawn in the following graphical style:

I1 I2

The user-interface command to implement a Type I homotopy move is clicking-and-dragging
one of the vertices up or down. For example, to trigger move I1 as illustrated in expression 4.1,
then given the left-hand diagram, the user could drag the f vertex down, or the g vertex up.

Type II. These describe naturality of Type I moves:

α

II1
→
←
II2

α

α

II3
→
←
II4

α

In general we allow α to have any number of input and output wires, and we allow for any
number of interleaving sheets. Note that the source and target diagrams here themselves
make use of Type I moves. The user interface command is clicking-and-dragging the
appropriate vertices labelled α above, making them intuitive to execute.

5. Technology

Here we describe technological aspects of the implementation. Globular is implemented in
Javascript and runs client-side embedded in the web browser, with all the computation taking
place on the user’s machine, therefore limiting the need for data transfer. The back-end is a
Node.js server, responding to user requests and hosting an account system that allows users
to register and privately save working versions of proofs, allowing work to be continued on a
different machine. However, there is no requirement to register for an account to use the
tool.

14 KRZYSZTOF BAR, ALEKS KISSINGER, AND JAMIE VICARY

The tool can encode the current signature in Javascript Object Notation (JSON),
allowing export as a plain text file, compressed in LZ4 format to reduce the file size. Along
with the corresponding import operation, this allows users to back-up their work on their
local machine. When the user is satisfied with the finished proof, they can make it public
and share it with the rest of community; the proof is then added to the Globular public
gallery, and a unique URL linking to the proof is generated. We give examples of this
functionality at the end of this chapter. The entire project is open-source, and the code is
available at globular.science/source.

While Javascript has a weak type-theoretic structure, formal verification of the code
is not a priority for us. The present implementation should be seen as a proof-of-concept
prototype, that the theoretical basis outlined in [4]. We hope that future iterations of
the tool will be more amenable to formal verification. Our main immediate goal has been
to produce a tool which is useful for the community, and in that it seems we have been
reasonably successful.

The interface has been designed to be friendly and intuitive. Diagrams can be created,
rewritten and composed by clicking elements in the signature and selecting an attachment
point from the list of options. Given an n-diagram D in the workspace, the operation
triggered depends on the dimension k of the cell g that we select from the signature Σ. If
k = n+ 1, then D is rewritten; if k < n+ 1, then g is attached to D. For the latter, first
implicitly a diagram S = i(g) of the generator g is created. Diagrams S and D then get
composed in accordance with the Attach procedure described above. If k > n+ 1 there is
no effect on D and the tool asks the user to select another cell.

However, selecting elements from the signature is not the only method of modifying the
diagram in the signature. Interchanger morphisms of types I-VI can be applied directly by
clicking and dragging the appropriate cells within the diagram.

The graphical visualisations of cells are generated using the vector graphics technology
SVG, which is widely supported by modern browsers. However, this limits the rendering
to 2 dimensions. This may be regarded as a serious difficulty, especially when dealing with
higher dimensional structures. For that reason, in the future, we intend to implement a
3D graphics engine using Three.js. However, even these enhanced graphical capabilities
will not be sufficient to work efficiently with structures of dimension n = 4 and higher. To
work around that, we implemented a system of toggles, that allows to suppress the lowest
dimensions and view slices that are of interest. Even though, at times, this may prove
cumbersome, it is certainly worthwhile as this solution provides us with a systematic method
for viewing morphisms in any n-dimensional structure. For an n-diagram D such that n ≥ 3,
for which the number of dimensions projected out is k, there are n− k − 2 slice toggles that
allow us to view a multidimensional structure as a sequence of 2D slices.

6. Examples

Here we give examples of formalized proofs from algebra and topology. In each case we briefly
describe the mathematical context of the proof, and give some details of its formalization.
Direct hyperlinks are provided to the formalized proofs on the Globular website; to navigate
these proofs, use the Project and Slice controls at the top-right, and move your mouse cursor
over the different parts of the main diagram to understand its components. Documentation
on how to use Globular is available [23]. To our knowledge, none of these results have
previously been formalized by any existing tool.

globular.science/source

GLOBULAR: AN ONLINE PROOF ASSISTANT FOR HIGHER-DIMENSIONAL REWRITING 15

Example 3 (Frobenius implies associative, globular.science/1512.004, length 12). In a
monoidal category, if multiplication and comultiplication morphisms are unital, counital and
Frobenius, then they are associative and coassociative. We formalize this in Globular using a
2-category with a single 0-cell, since this is algebraically equivalent to a monoidal category.
Such a proof would be traditionally written out as a series of pictures; for example, see the
textbook [11]. Globular produces these pictures automatically.

Example 4 (Strengthening an equivalence, globular.science/1512.007, length 14). In
a 2-category, an equivalence gives rise to an adjoint equivalence. This is a classic result
from the category theory community [2, 21]; it can be considered one of the first nontrivial
theorems of 2-category theory. We investigate it in further detail in Section 3.

Example 5 (Swallowtail comes for free, globular.science/1512.006, length 12). In a
monoidal 2-category, a weakly-dual pair of objects gives rise to a strongly-dual pair, satisfying
the swallowtail equations. This theorem plays an important role in the singularity theory of
3-manifolds [20]. For the formalization, we model a monoidal 2-category as a 3-category
with one 0-cell.

Example 6 (Pentagon and triangle implies ρI = λI , globular.science/1512.002, length
62). In a monoidal 2-category, a pseudomonoid object satisfies ρI = λI . A pseudomonoid is
a higher algebraic structure categorifying the concept of monoid; it has the property that a
pseudomonoid in Cat is the same as a monoidal category. Such a structure is known to be
coherent [12], in the sense that all equations commute, and here we give an explicit proof of
the equation ρI = λI , which played an important role in the early study of coherence for
monoidal categories.

Example 7 (The antipode is an algebra homomorphism, globular.science/1512.011,
length 68). For a Hopf algebra structure in a braided monoidal category, the antipode is an
algebra homomorphism. Hopf algebras are algebraic structures which play an important role
in representation theory and physics [15, 22]. Proofs involving these structures are usually
presented in Sweedler notation, a linear syntax which represents coalgebraic structures using
strings of formal variables with subscripts; we do not know of any existing approaches to
formal verification for Sweedler proofs. This formalization in Globular is translated from a
Sweedler proof given in [18]. For the formalization, we model a braided monoidal category
as a 3-category with one 0-cell and one 1-cell. This formalization is due to Dominic Verdon.

Example 8 (The Perko knots are isotopic, globular.science/1512.012, length 251). The
Perko knots are isotopic. The Perko knots are a pair of 10-crossing knots stated by Little
in 1899 to be distinct, but proven by Perko in 1974 to be isotopic [19]. Here we give the
isotopy proof, adapted from [16]. A nice feature is that the second and third Reidemeister
moves do not have to be entered, since they are already implied by the 3-category axioms.
The proof consists of a series of 251 atomic deformations, which rewrite the first Perko knot
into the second. By stepping through the proof one rewrite at a time, the isotopy itself can
be visualized as a movie.

Example 9 (Constructing the codensity monad, globular.science/1611.003v2). This
project demonstrates the potential utility of Globular in classical, 1-categorical applications.
It reproduces the graphical language used by Hinze [8] for depicting Kan extensions by
augmenting the usual 2-categorical string diagram language of Cat with certain brackets,
which indicate a 2-categorical version of ‘currying’, sending natural transformations α :

http://globular.science/1512.004
http://globular.science/1512.007
http://globular.science/1512.006
http://globular.science/1512.002
http://globular.science/1512.011
http://globular.science/1512.012
http://globular.science/1611.003v2

16 KRZYSZTOF BAR, ALEKS KISSINGER, AND JAMIE VICARY

F ◦ J → G to [α] : F → RanJ(G). In this example we reproduce these brackets with the
help of a dummy 1-cell, and prove a standard fact about Kan extensions: the Kan extension
of a functor J over itself always has a monad structure, called the codensity monad.

References

[1] HoTT Formalisations in Coq and Agda. homotopytypetheory.org/coq.
[2] John C. Baez and Aaron D. Lauda. Higher-dimensional algebra V: 2-groups. Theory and Applications of

Categories, 12:423–491, 2004. TAC:12.14.
[3] Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. Globular: an online proof assistant for

higher-dimensional rewriting. In Leibniz International Proceedings in Informatics, volume 52, pages
34:1–34:11, 2016. ncatlab.org/nlab/show/Globular.

[4] Krzysztof Bar and Jamie Vicary. Data structures for quasistrict higher categories. arXiv:1610.06908.
[5] John W. Barrett, Catherine Meusburger, and Gregor Schaumann. Gray categories with duals and their

diagrams. J. Diff. Geom., to appear. arXiv:1211.0529.
[6] Eric Finster. The Orchard proof assistant. github.com/ericfinster/orchard.
[7] Yves Guiraud. Polygraphs for termination of left-linear term rewriting systems. 2007. arXiv:cs/0702040.
[8] Ralf Hinze. Kan extensions for program optimisation or: Art and dan explain an old trick. In Lecture

Notes in Computer Science, pages 324–362. Springer Nature, 2012.
[9] André Joyal and Ross Street. The geometry of tensor calculus, I. Adv. Math., 88(1):55–112, 1991.

[10] Aleks Kissinger and Vladimir Zamdzhiev. Quantomatic: A proof assistant for diagrammatic reasoning.
In CADE-25 - 25th International Conference on Automated Deduction, volume 9195 of LNCS. Springer,
2015.

[11] Joachim Kock. Frobenius Algebras and 2D Topological Quantum Field Theories. Cambridge University
Press (CUP), 2003.

[12] Stephen Lack. A coherent approach to pseudomonads. Adv. Math., 152(2):179–202, 2000.
[13] Yves Lafont. Algebra and geometry of rewriting. Applied Categorical Structures, 15(4):415–437, 2007.
[14] Tom Leinster. A survey of definitions of n-category. Theory and Applications of Categories, 10(1):1–70,

2002. TAC:10.01, arXiv:math/0107188.
[15] Shahn Majid. A Quantum Groups Primer. Cambridge University Press (CUP), 2002.
[16] MathForum. Perko pair knots. mathforum.org/mathimages/index.php/Perko pair knots.
[17] Samuel Mimram. Towards 3-dimensional rewriting theory. Logical Methods in Computer Science, 10(2),

2014.
[18] Bodo Pareigis. Hopf Algebras in Noncommutative Geometry and Physics, chapter On Symbolic

Computations in Braided Monoidal Categories, pages 269–280. CRC Press, 2004.
[19] Kenneth A. Perko. On the classification of knots. Proceedings of the AMS, 45(2):262–262, 1974.
[20] Piotr Pstragowski. On dualizable objects in monoidal bicategories. Master’s thesis, Bonn University,

2014. arXiv:1411.6691.
[21] Saavedra Rivano. Catégories Tannakiennes, volume 265 of Lecture Notes in Mathematics. Springer

Berlin Heidelberg, 1972.
[22] Ross Street. Quantum Groups. Cambridge University Press (CUP), 2007.
[23] The Globular Team. Globular documentation. ncatlab.org/nlab/show/Globular.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit https://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

http://homotopytypetheory.org/coq
http://www.tac.mta.ca/tac/volumes/12/14/12-14abs.html
http://ncatlab.org/nlab/show/Globular
http://arxiv.org/abs/1610.06908
http://arxiv.org/abs/1211.0529
https://github.com/ericfinster/orchard
http://arxiv.org/abs/cs/0702040
http://tac.mta.ca/tac/volumes/10/1/10-01abs.html
http://arxiv.org/abs/math/0107188
http://mathforum.org/mathimages/index.php/Perko_pair_knots
http://arxiv.org/abs/1411.6691
https://ncatlab.org/nlab/show/Globular

	1. Introduction
	2. Mathematical foundations
	3. Using Globular
	4. Data structures and algorithms
	4.1. Data structures
	4.2. Algorithms
	4.3. Homotopies
	Type I
	Type II

	5. Technology
	6. Examples
	References

