
 
 

University of Birmingham

Burkitt lymphoma pathogenesis and therapeutic
targets from structural and functional genomics
Schmitz, Roland; Young, Ryan M; Ceribelli, Michele; Jhavar, Sameer; Xiao, Wenming;
Zhang, Meili; Wright, George; Shaffer, Arthur L; Hodson, Daniel J; Buras, Eric; Liu, Xuelu;
Powell, John; Yang, Yandan; Xu, Weihong; Zhao, Hong; Kohlhammer, Holger; Rosenwald,
Andreas; Kluin, Philip; Müller-Hermelink, Hans Konrad; Ott, German
DOI:
10.1038/nature11378

Document Version
Peer reviewed version

Citation for published version (Harvard):
Schmitz, R, Young, RM, Ceribelli, M, Jhavar, S, Xiao, W, Zhang, M, Wright, G, Shaffer, AL, Hodson, DJ, Buras,
E, Liu, X, Powell, J, Yang, Y, Xu, W, Zhao, H, Kohlhammer, H, Rosenwald, A, Kluin, P, Müller-Hermelink, HK,
Ott, G, Gascoyne, RD, Connors, JM, Rimsza, LM, Campo, E, Jaffe, ES, Delabie, J, Smeland, EB, Ogwang, MD,
Reynolds, SJ, Fisher, RI, Braziel, RM, Tubbs, RR, Cook, JR, Weisenburger, DD, Chan, WC, Pittaluga, S,
Wilson, W, Waldmann, TA, Rowe, M, Mbulaiteye, SM, Rickinson, AB & Staudt, LM 2012, 'Burkitt lymphoma
pathogenesis and therapeutic targets from structural and functional genomics', Nature, vol. 490, no. 7418, pp.
116-20. https://doi.org/10.1038/nature11378

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Version of record published as: Schmitz, Roland, et al. "Burkitt lymphoma pathogenesis and therapeutic targets from structural and
functional genomics." Nature 490.7418 (2012): 116-120.

Available online: http://dx.doi.org/10.1038/nature11378

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1038/nature11378
https://doi.org/10.1038/nature11378
https://birmingham.elsevierpure.com/en/publications/1891b904-44bc-4e61-8cfa-de09fd3a7718


 

 1

Burkitt Lymphoma Pathogenesis and Therapeutic Targets from Structural and Functional Genomics 
 
Roland Schmitz1*, Ryan M. Young1*, Michele Ceribelli1*, Sameer Jhavar1*, Wenming Xiao2*, Meili 
Zhang1, George Wright3, Arthur L. Shaffer1, Daniel J. Hodson1, Eric Buras1, Xuelu Liu2, John Powell2, 
Yandan Yang1, Weihong Xu1, Hong Zhao1, Holger Kohlhammer1, Andreas Rosenwald4, Philip Kluin5, 
Hans Konrad Müller-Hermelink4, German Ott6, Randy D. Gascoyne7, Joseph M. Connors7, Lisa M. 
Rimsza8, Elias Campo9, Elaine S. Jaffe10, Jan Delabie11, Erlend B. Smeland12, Martin D. Ogwang13, 
Steven J. Reynolds14, Richard I. Fisher15, Rita M. Braziel16, Raymond R. Tubbs17, James R. Cook17, 
Dennis D. Weisenburger18, Wing C. Chan18, Stefania Pittaluga10, Wyndham Wilson1, Thomas A. 
Waldmann1, Martin Rowe19, Sam M. Mbulaiteye20, Alan B. Rickinson19, and Louis M. Staudt1 

 

1Metabolism Branch Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA 
2Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information 
Technology, National Institutes of Health, Bethesda, MD, USA 
3Biometric Research Branch, DCTD, National Cancer Institute, NIH, Bethesda, MD, USA 
4Department of Pathology, University of Würzburg, Würzburg, Germany 
5Department of Pathology and Medical Biology, Groningen University Medical Center, University of Groningen, 
Groningen, The Netherlands 
6Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute for Clinical 
Pharmacology, 70376 Stuttgart, Germany 
7British Columbia Cancer Agency, Vancouver, British Columbia, Canada 
8Department of Pathology, University of Arizona, Tucson, AZ, USA 
9Hospital Clinic, University of Barcelona, Barcelona, Spain 
10Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, MD, 
USA 
11Pathology Clinic, Rikshospitalet University Hospital, Oslo, Norway 
12Institute for Cancer Research, Rikshospitalet University Hospital and Center for Cancer Biomedicine, Faculty Division of 
the Norwegian Radium Hospital, University of Oslo, Oslo, Norway 
13St. Mary's Hospital Lacor, Gulu, Uganda 
14Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 
Bethesda, MD, USA 
15James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester, NY, USA 
16Oregon Health and Science University, Portland, OR, USA 
17Cleveland Clinic Pathology and Laboratory Medicine Institute, Cleveland, OH, USA 
18Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA 
19School of Cancer Sciences, Birmingham Cancer Research UK Centre, University of Birmingham, Edgbaston, Birmingham 
B15 2TT, UK. 
20Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 
NIH, Department of Health and Human Services, Rockville, MD, USA 
*RS, RMY, MC, SJ and WX contributed equally 
 
Address correspondence to: 
Louis M. Staudt, M.D., Ph.D. 
Metabolism Branch, CCR, NCI 
Building 10, Room 4N114, NIH 
9000 Rockville Pike, Bethesda, MD USA 
e-mail: lstaudt@mail.nih.gov  



 

 2

Burkitt lymphoma (BL) can often be cured by intensive chemotherapy, but the 

toxicity of such therapy precludes its use in the elderly and in patients with endemic BL 

in developing countries, necessitating new strategies1. The normal germinal center B cell 

is the presumed cell of origin for both BL and diffuse large B cell lymphoma (DLBCL), 

yet gene expression analysis suggests that these malignancies may utilize different 

oncogenic pathways2. BL is subdivided into a sporadic subtype (sBL) that is diagnosed in 

developed countries, the EBV-associated endemic subtype (eBL), and an HIV-associated 

subtype (hivBL), but it is unclear whether these subtypes employ similar or divergent 

oncogenic mechanisms. Here we used high throughput RNA sequencing and RNA 

interference screening to discover essential regulatory pathways in BL that cooperate 

with MYC, the defining oncogene of this cancer. In 70% of sBL cases, mutations 

affecting the transcription factor TCF3 (E2A) or its negative regulator ID3 fostered TCF3 

dependency. TCF3 activated the pro-survival PI(3) kinase pathway in BL, in part by 

augmenting tonic B cell receptor signaling. In 38% of sBL cases, oncogenic CCND3 

mutations produced highly stable cyclin D3 isoforms that drive cell cycle progression. 

These findings suggest opportunities to improve therapy for patients with BL. 

We performed RNA resequencing (RNA-seq) on 28 sBL patient biopsies and 13 

BL cell lines and reanalyzed published RNA-seq data from 52 germinal center B cell-like 

(GCB) DLBCL cases and 28 activated B cell-like (ABC) DLBCL cases3. Elimination of 

known single nucleotide polymorphisms left a set of putative SNVs (pSNVs) of which 

95% (495/518) were confirmed by Sanger sequencing (Supplementary Tables 1 and 2).  

Mutations in many genes were more frequent in BL than in DLBCL, including 

MYC as well as many not previously implicated in this lymphoma subtype (Fig. 1; 

Supplementary Fig. 1a; Supplementary Table 1). Conversely, recurrently mutated genes 

in DLBCL3-7 (EZH2, SGK1, BCL2, CD79B, MYD88) were rarely if ever mutated in BL. 

Several genes were mutated in BL and DLBCL (TP53, GNA13, MKI67, CCND3), 

although TP53 mutations were more common in BL (Fig. 1; Supplementary Fig. 1b). 

This mutational survey suggests that BL is pathogenetically distinct from other germinal 

center-derived lymphomas.  

Highly recurrent mutations in TCF3 and its negative regulator ID3 suggested that 

TCF3 plays a central role in BL pathogenesis, as it does in normal B cell development by 
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regulating the transcription of immunoglobulin and other B cell-restricted genes through 

E-box motifs8,9. ID3 and/or TCF3 mutations were present in sBL, hivBL, and eBL, in 

70%, 67%, and 40% of samples, respectively, but these mutations were rare in other 

lymphoid cancers (Fig. 2a; Supplementary Table 3). In sBL, ID3 mutations (58%) were 

more common than TCF3 mutations (11%), and some tumors had mutations in both 

genes (13%). ID3 mutations were usually bi-allelic whereas TCF3 mutations were often 

mono-allelic (Supplementary Fig. 2a; Supplementary Table 3). A somatic origin was 

confirmed for 14 ID3 mutations and 4 TCF3 mutations (Supplementary Table 3). All 

TCF3 mutations affected the basic helix-loop-helix (B-HLH) DNA binding and 

dimerization domain of one TCF3 splice isoform (E47) but not the other (E12), 

suggesting a non-redundant role for E47 in BL pathogenesis. In cases with TCF3 

mutations, E47 was more highly expressed than E12, suggesting gain-of-function 

(Supplementary Fig. 2b). 

Most TCF3 mutations target 4 evolutionarily conserved residues in the B-HLH 

region (N551K, V557E/G, D561E/V/N, M572K; Supplementary Fig. 3a). The most 

common mutations affect V557 and D561, which are adjacent in the crystal structure and 

face away from DNA, suggesting a role in intermolecular interactions (Fig. 2b). The B-

HLH domain may be distorted by mutations affecting M572 and L597, which are 

neighboring residues in crystal structure. N551 is a DNA contact residue10, suggesting 

that N551K could alter TCF3 DNA binding. 

A variety of nonsense and frameshift mutations inactivate ID3 in BL tumors, 

suggesting a tumor suppressor mechanism (Supplementary Fig. 3b). Many missense 

mutations target the conserved loop region of ID3, potentially changing the tertiary 

structure of the B-HLH domain and impairing its ability to inhibit TCF311 (Fig. 2c). 

Numerous ID3 missense mutations affect the HLH domain away from the interface of the 

two helices, possibly altering TCF3 interaction. Other mutations disrupt an ID3 splice 

donor and force a cryptic splice donor to be used, thereby deleting residues V82-Q100 

(Supplementary Figs. 2c, 3b). 

An RNA interference screen revealed TCF3 to be an essential gene in BL lines 

(Supplementary Fig. 2d, Supplementary Table 4), supporting the notion that the TCF3 

and ID3 mutations in BL promote TCF3 action. TCF3 knockdown caused a time-
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dependent toxicity in all BL lines, irrespective of ID3/TCF3 mutations, but had no effect 

on DLBCL lines (Fig. 2d; Supplementary Figs. 2e, 4a, 4b). Wild-type TCF3 rescued BL 

lines from shTCF3 toxicity as could the TCF3 mutants, suggesting that they are not loss-

of-function (Supplementary Fig. 2e). Introduction of wild-type ID3 into BL lines with 

ID3 mutations was lethal, but BL-derived ID3 mutants had less or no toxicity, consistent 

with a tumor suppressor mechanism (Fig. 2e; Supplementary Figs. 2g, 4c). 

The common ID3 and TCF3 mutants diminished their inhibitory 

heterodimerization.  V557E and D561E TCF3 did not associate well with ID3 and failed 

to stabilize ID3 protein expression, unlike wild-type TCF3 (Fig. 2f; Supplementary Fig. 

2h, 4d).  Likewise, the ID3 mutant proteins were expressed less well than wild type ID3 

and were less able to co-immunoprecipitate TCF3 (Fig. 2g; Supplementary Fig. 4e). 

However, N551K TCF3 behaved like wild-type TCF3 in these dimerization assays, 

suggesting a distinct mechanism. 

We next used ChIP-seq analysis to gauge the ability of the  

TCF3 mutants to interact with chromatin genome-wide. We engineered 2 BL lines 

to express biotinylated wild-type or mutant TCF3 isoforms (“TCF3-Biotag”; see 

Methods), allowing us to precipitate bound chromatin with streptavidin. For comparison, 

we used anti-TCF3 antibodies to precipitate chromatin in unmanipulated BL cells 

(Supplementary Table 5). Both the endogenous and TCF3-Biotag ChIP-seq peaks were 

enriched for E-box motifs (CAG(G/C)TG) and overlapped extensively (Supplementary 

Fig. 5a). In 25-bp bins bound by wild-type TCF3-Biotag, the V557E, D561E, and N551K 

isoforms had overlapping ChIP-seq tags (>7) in 98%, 98% and 92% of instances, 

respectively, but the overlap was only 10% for control Biotag ChIP-seq data (p<10-300). 

Hence, all TCF3 mutants bound a large number of genomic targets equivalently. 

Given the lower overlap between N551K and wild-type TCF3 chromatin binding, 

we identified genomic regions that had 4-fold greater (n=212) or lesser (n=139) 

association with wild-type TCF3 than N551K TCF3 (p<10-10) (Supplementary Table 6, 

Supplementary Fig. 5b). In these binding regions, V557E and D561E TCF3 behaved like 

wild-type TCF3. The peaks bound preferentially by wild-type TCF3 contained multiple 

copies of the motif 5’-NNCACCTG-3’ whereas the peaks bound preferentially by N551K 

were enriched for the sequence 5’-GGCAGCTG-3’ (Fig. 2h). While both motifs match 
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the E-box consensus, these results suggest that N551K TCF3 is an altered specificity 

mutant that has somewhat different genomic targets than wild-type TCF3. 

To gain insight into the biological processes controlled by TCF3 in BL, we 

profiled changes in gene expression following TCF3 knockdown or wild-type ID3 

expression in ID3-mutant BL lines. We identified 139 “TCF3-upregulated” genes that 

were decreased in expression by both manipulations and 166 “TCF3-downregulated” 

genes that were increased in expression (FDR=0.017; Fig. 2i; Supplementary Figs. 6a, 

2i). TCF3 ChIP-seq peaks were enriched among TCF3-upregulated genes (58%; 

p=1.81x10-29) and among TCF3–downregulated genes (32%; p=1.03x10-4) 

(Supplementary Fig. 6a). We will refer to such genes as “TCF3 direct targets”. 

Most TCF3-upregulated genes were more highly expressed in BL than in DLBCL 

whereas TCF3-downregulated genes were generally expressed at lower levels in BL 

(p≤0.001; Fig. 2i; Supplementary Figs. 6a, b). BL tumors with ID3 and/or TCF3 

mutations had higher expression of the TCF3-upregulated signature than tumors with 

wild-type ID3 and TCF3, and the opposite was true for the TCF3-downregulated 

signature (p=0.0001; Supplementary Fig. 6c). Hence, the transcriptional influence of 

TCF3 on the BL phenotype appears to be accentuated by ID3/TCF3 mutations. TCF3-

upregulated genes were more highly expressed in germinal center B cells than in resting 

or activated blood B cells and the reverse was true for TCF3-downregulated genes (Fig. 

2i; Supplementary Fig. 6a), suggesting that BL “inherits” the TCF3 gene expression 

program from its normal cellular counterpart. 

Biological insights from this analysis include the fact that the negative regulators 

of TCF3 – ID1, ID2, and ID3 – were direct targets of TCF3 transactivation, thereby 

creating a negative feedback loop (Fig. 2i; Supplementary Fig. 5a). By RNA-seq, ID3 

was 38-fold and 12-fold more highly expressed in BL than ID1 and ID2, respectively, 

accounting for the preferential mutation of ID3 in BL. TCF3 also positively regulated 

genes that play crucial roles in germinal center B cell biology (POU2AF1, CXCR4, LTB, 

CCND3). TCF3 upregulated CCND3 and E2F2 while downregulating RB1, thereby 

promoting cell cycle progression. 

Two components of the B cell receptor, the immunoglobulin heavy and light 

chains, were both upregulated by TCF3 in BL, as in normal B cells8,12 (Fig. 2i; 
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Supplementary Figs. 2i, j, 5a). In this regard, it was notable that knockdown of the BCR 

subunit CD79A was toxic for several BL lines in our RNA interference screen 

(Supplementary Fig. 7a). Two-thirds of BL lines were clearly BCR-dependent, based on 

a time-dependent decrease in their viability following knockdown of either CD79A or the 

BCR-associated kinase SYK (Fig. 3a). Unlike ABC DLBCL lines, which have a “chronic 

active” form of BCR signaling4, BL lines do not require the NF-κB pathway for survival 

since they were not killed by an IκB kinase β inhibitor and had little or no dependence on 

CARD1113, an adapter that engages NF-κB (Supplementary Fig. 7a, b, c). Rather, 

CD79A or SYK depletion in BL lines decreased AKT phosphorylation, a marker of PI(3) 

kinase signaling (Fig. 3b; Supplementary Fig. 7d), suggesting that the BCR-dependency 

in BL is akin to “tonic” BCR signaling14, a phenomenon that engages pro-survival PI(3) 

kinase signaling more than NF-κB15. 

TCF3 knockdown decreased phospho-AKT levels in all BCR-dependent lines 

tested, as did ID3 overexpression (Fig. 3b, Supplementary Figs. 7d, e), perhaps due to 

decreased cell surface BCR expression following TCF3 depletion (Fig. 3c). In addition, a 

direct TCF3 target, PTPN6, encodes the phosphatase SHP-1, an inhibitor of BCR 

signaling (Supplementary Figs. 2j, 5a). TCF3 depletion increased SHP-1 mRNA and 

protein levels, indicating TCF3 repression (Fig. 3d; Supplementary Figs. 2i, 6a). Ectopic 

provision of SHP-1 decreased phospho-AKT in BCR-dependent BL lines, suggesting that 

TCF3 repression of SHP-1 may contribute to tonic BCR signaling and PI(3) kinase 

activation in BL (Fig. 3e). 

A screen of a larger number of BL lines revealed that all had PI(3) kinase-

dependent AKT phosphorylation and engagement of the mTOR pathway, as judged by 

phosphorylation of p70 S6 kinase (Fig. 3f). Treatment of BL lines with BKM120, a PI(3) 

kinase inhibitor in clinical trials, or rapamycin, an inhibitor of the mTORC1 complex, 

was toxic to most BL lines (Fig. 3g; Supplementary Fig. 7f). Of note, both BCR-

dependent and –independent lines had constitutive PI(3) kinase signaling. Other 

mechanisms to activate PI(3) kinase in BL include PTEN mutations, which were 

infrequent (7%), and 10-fold overexpression (compared to DLBCL) of the MYC-

dependent gene MIR17HG, which encodes a microRNA that inhibits PTEN expression16 

(Supplementary Fig. 7g). To judge whether the PI(3) kinase pathway may be active in 
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primary BL tumors, we identified genes that were significantly up- or down-regulated 

following rapamycin treatment of BL lines (FDR=0.0022; Supplementary Table 7). 

Among BL and GCB DLBCL biopsies, rapamycin down-regulated genes were generally 

more highly expressed in BL (p=0.026), whereas rapamycin up-regulated genes had the 

opposite enrichment pattern (p=0.007) (Fig. 3i), suggesting that PI(3) kinase-dependent 

mTORC1 activity is a consistent feature of BL tumors. 

Another aspect of BL pathogenesis was revealed by recurrent mutations in the 

TCF3 direct target CCND3, encoding cyclin D3, a required regulator of the G1-S cell 

cycle transition in germinal center B cells17,18. CCND3 mutations were frequent in sBL 

(38%) and hivBL (67%) but not eBL (1.8%), indicating a distinct genetic pathogenesis 

for this BL subtype (Figs. 4b). At a lower frequency, CCND3 mutations were also present 

in ABC and GCB DLBCL3,6,7. Multiple nonsense and frame shift mutations removed up 

to 41 amino acids from the cyclin D3 C-terminus (Fig. 4a; Supplementary Table 8). 

Recurrent missense mutations affected threonine 283 (T283), known to be involved in D-

type cyclin phosphorylation and stability19, as well as nearby proline (P284) and 

isoleucine (I290) residues. These cyclin D3 residues were conserved in evolution, and 

similar residues are present in cyclin D1 and D2 (Fig. 4a). Most mutations were 

heterozygous and their somatic origin was confirmed in 5 cases (Supplementary Table 8). 

To explore the function of the cyclin D3 mutants, we constructed fusion proteins 

linking green fluorescent protein (GFP) to either wild-type or mutant cyclin D3. All 

mutant isoforms accumulated to more than 10-fold higher levels than the wild-type 

isoform (Fig. 4c), and pulse-chase analysis showed that the mutant cyclin D3 isoforms 

have longer half lives (Supplementary Fig. 8a). To test the oncogenic potential of the 

cyclin D3 mutants, we transduced GFP-tagged wild-type or T283A cyclin D3 into 

lymphoma lines in which endogenous cyclin D3 was knocked down. Cells transduced 

with T283A cyclin D3 had a marked proliferative advantage over untransduced cells, but 

wild-type cyclin D3 had little effect (Fig. 4d). Separately, our RNA interference screen 

revealed that BL and GCB DLBCL lines depend on cyclin D3 and CDK6, a kinase that 

partners with D-type cyclins, irrespective of CCND3 mutational status (Fig. 4e; 

Supplementary Figs. 8b, c, d, Supplementary Table 4). Hence, BL lines rely on cyclin 

D3/CDK6 for cell cycle progression, an effect augmented by oncogenic cyclin D3 
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mutations. The BL cell cycle is also deregulated by nonsense and frame shift mutations 

or homozygous deletions in CDKN2A, encoding the CDK6 inhibitor p16 (Supplementary 

Fig. 8e and Supplementary Table 8). 

To explore this pathway as a therapeutic target, we treated BL, GCB DLBCL and 

mantle cell lymphoma (MCL) lines with a CDK4/6 inhibitor (PD 0332991) daily for 2 

weeks. After an arrest in G1 phase, the BL and GCB DLBCL lines began to die by day 2, 

with a steady accumulation of apoptotic cells over time whereas the MCL line arrested in 

G1 phase but did not die (Fig. 4f). Treatment of a BL xenograft model after the 

establishment of tumors with PD 0332991 profoundly reduced tumor volume after 6 

days, resulting in the virtual disappearance of tumor cells by day 10 (Fig. 4g, 

Supplementary Fig. 8f). 

By merging functional and structural genomic data we have uncovered previously 

unappreciated pathways in BL pathogenesis, several of which are amenable to therapeutic 

attack (Fig. 4h). The majority of BL tumors acquire mutations that free TCF3 from ID3 

inhibition. These mutations “hard-wire” a TCF3 transcriptional program that is 

characteristic of germinal center B cells and distinguishes BL from other aggressive 

lymphomas. BL lines require TCF3 for survival, in part because it augments pro-survival 

PI(3) kinase signaling by intensifying a tonic form of BCR signaling. The oncogenic 

synergy between the MYC and PI(3) kinase pathways that is suggested by our study is 

supported by the generation of BL-like tumors in mice in which these two pathways are 

deregulated20. Additionally, the key role of cyclin D3/CDK6 in BL pathogenesis is 

reinforced by the identification of cyclin D3 mutants in this mouse model. 

While high-dose chemotherapy can often cure BL in younger patients from 

developed countries1, these regimens are unsafe in older patients and cannot be deployed 

in less developed regions due to immune suppression and to logistical difficulties that 

preclude effective delivery21. Hopefully, the new insights into BL pathogenesis described 

herein will prompt clinical evaluation of drugs targeting the PI(3) kinase pathway, tonic 

BCR signaling, and cyclin D3/CDK6 in BL. Eventually, the rational combination of such 

targeted agents could provide more effective and less toxic treatment of BL worldwide. 

 

Methods Summary 
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RNA-Seq was performed using established Illumina protocols on a HiSeq 2000 

sequencer. RNA interference screening and cellular toxicity assays were conducted as 

described5,13. Gene expression profiling was performed using Agilent 4x44K 

microarrays. Detailed experimental and analytic procedures are presented in 

Supplementary Methods. 

 

Supplementary Information is linked to the online version of the paper at 

www.nature.com/nature 
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Fig. 1: Recurrently mutated genes in aggressive lymphomas determined by RNA-

seq. Shown are genes that were recurrently mutated in BL based on RNA-seq analysis 

(≥4/41 samples), as well as representative genes known to be recurrently mutated in 

DLBCL. Asterisks indicate differentially mutated genes (p<0.05; Supplementary Table 

9). 

 

Figure 2: TCF3 is essential for Burkitt lymphoma viability. a, TCF3 and ID3 

mutation frequencies in lymphoid cancers. MCL: mantle cell lymphoma; MM: multiple 

myeloma. b, Location of BL mutants in the crystal structure of the dimeric TCF3 E47 B-

HLH domain10. c, Location of BL mutants in the crystal structure the ID3 HLH domain 

(pdb accession 2LFH). d, Selective toxicity of a TCF3 shRNA for BL lines. Shown is the 

fraction of GFP+, shRNA-expressing cells relative to the GFP–, shRNA-negative fraction 

at the indicated times, normalized to the day 0 values. Data are representative of 4 

experiments. e, Toxicity of wild-type (WT) but not mutant ID3 isoforms for the ID3-

mutant Namalwa BL line. Shown is the fraction of GFP+, ID3-expressing cells relative to 

the GFP–, ID3-negative cells, normalized to the day 0 values. Data are representative of 4 

experiments. f, TCF3 mutants with reduced ability to bind ID3. WT or mutant TCF3 

isoforms were coexpressed with WT ID3 in 293T cells. The indicated proteins were 

detected in total cellular extracts (input) or after anti-TCF3 immunoprecipitation (IP) 

(left). ID3 levels were quantified by densitometry and normalized to TCF3 E47 levels 

(right). g, BL-derived mutant ID3 proteins are less stable than WT ID3 and bind TCF3 

less well. Mutant or WT ID3 isoforms were expressed in the ID3-deficient Namalwa BL 

line. The indicated proteins were detected in total cellular extracts (input) or after anti-

TCF3 IP. h, N551K TCF3 is an altered specificity mutant. Shown at top are DNA base 

frequencies of the most enriched motifs in peaks bound > 4-fold more or less by N551K 

TCF3 compared to WT TCF3. The mean number (+/-s.e.m.) of the indicated motifs per 

differentially bound peak is plotted below. i, A TCF3 gene expression signature 

expressed in BL and normal germinal center B cells. Gene expression changes were 

profiled in ID3-mutant BL lines following TCF3 knockdown or WT ID3 overexpression. 

Shown are genes that were downregulated by at least 0.33 log2 in >70% of samples. 

Average expression of these genes in the indicated lymphoma subtypes based on 
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published data2 and in B cell subpopulations based on RNA-seq is shown. FS: frameshift, 

Δ: Deletion, *: nonsense. 

 

Fig. 3: Tonic BCR signaling and PI(3) kinase activity in BL. a, CD79A and SYK 

shRNAs are toxic for a subset of BL lines. Shown is the fraction of GFP+, shRNA-

expressing cells relative to the GFP–, shRNA-negative fraction at the indicated times, 

normalized to the day 0 values. BCR-dependent BL lines are depicted using red colors. 

The BCR-dependent ABC DLBCL line TMD84 is also shown. Data are representative of 

3 experiments. b, Knockdown of CD79A, SYK or TCF3 reduces PI(3) kinase activity. 

Following induction of the indicated shRNAs for 2 days, shRNA-expressing (GFP+) cells 

were analyzed by FACS for phospho-S473-AKT as a measure of PI(3) kinase activity. c, 

TCF3 regulates surface BCR expression in BL. Following induction of the indicated 

shRNAs for 1 day, surface BCR expression (CD79B) was quantified by FACS in 

shRNA-expressing (GFP+) cells. d, TCF3 suppresses PTPN6 (SHP-1) expression. A 

TCF3 shRNA was induced in BL lines for 2 days, followed by immunoblotting for the 

indicated proteins. e, SHP-1 suppresses phospho-S473-AKT in BL lines. BL lines were 

transduced with a SHP-1 expression vector (+) or empty vector (–), whereupon the 

indicated proteins were analyzed by immunoblotting. f, BL lines have constitutively PI(3) 

kinase activity. The indicated proteins were analyzed by immunoblotting, before and 

after treatment with the PI(3) kinase inhibitor LY294002. g, PI(3) kinase inhibition is 

toxic to BL lines. Viable BL cells were quantified by MTS assay following treatment for 

4 days with the indicated concentrations of the pan-class I PI(3) kinase inhibitor 

BKM120. h, A signature of rapamycin responsive genes is highly expressed in BL. 

Changes of gene expression were profiled over time in 2 BL lines following rapamycin 

(100 pM) treatment. Genes consistently downregulated in both lines were chosen (see 

Methods), and their expression in lymphoma biopsies2 is shown based on the color scale. 

PMBL: primary mediastinal B-cell lymphoma. i, The rapamycin-upregulated and –

downregulated signatures distinguish BL and GCB DLBCL. Genes are ranked according 

to their expression in BL vs. GCB DLBCL (T-statistic) and rapamycin signature genes 

are indicated with a green hash mark.  Kolmogorov-Smirnov p-values are shown.  
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Fig. 4: Oncogenic CCND3 mutations in Burkitt lymphoma a, Cyclin D3 residues 

affected by the indicated mutations in each lymphoma subtype. Amino acids 250-292 of 

NP_001751 are shown. FL: follicular lymphoma; FS: frameshift . b, Frequencies of 

CCND3 mutations in different lymphoma subtypes. c, CCND3 mutations increase protein 

stability. FACS analysis of the Gumbus BL line transduced with WT or mutant GFP-

CCND3 fusion proteins. d, The T283A cyclin D3 mutant confers a proliferation 

advantage. Expression of endogenous CCND3 was knocked down in Gumbus (BL) and 

BJAB (GCB DLBCL) cells and different GFP-CCND3 isoforms were ectopically 

expressed. The relative number of GFP-CCND3-expressing cells is plotted over time of 

shRNA and GFP-CCND3 induction, normalized to day 0. Data are representative of 3 

experiments. e, CCND3 shRNAs are selectively toxic for BL and GCB DLBCL lines. 

Shown is the fraction of GFP+, shRNA-expressing cells relative to the GFP−, shRNA-

negative fraction at the indicated times, normalized to the day 0 values. Data are 

representative of 4 experiments. f, Cell cycle block in G1 phase is lethal to cyclin D3-

mutant lymphoma lines. Lines were treated with the CDK4/6 inhibitor PD 0332991 (1 

μM) over the indicated time course and analyzed for: viable cells in G1 phase, total 

viable cells and apoptotic cells. Data were normalized as indicated and are representative 

of 3 experiments. g, Therapeutic potential of PD 0332991 revealed using a BL xenograft 

model. Immunodeficient mice bearing established subcutaneous xenografts of the 

Gumbus BL line (engineered to express luciferase) were treated with PD 0332991 (150 

mg/kg/day p.o.) for the indicated times. Tumor volumes were estimated by luciferase 

luminescence. Error bars are s.e.m. (n=3). h, Schematic of recurrent oncogenic pathways 

in Burkitt lymphoma. Gain-of-function and loss-of-function aberrations are indicated by 

plus signs and by X signs, respectively. Grey boxes indicate drugs that block these 

deregulated pathways. 
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