
 
 

University of Birmingham

Contrast-enhanced ultrasound using bolus
injections of contrast agent for assessment of
postprandial microvascular blood volume in human
skeletal muscle
Mertz, Kenneth H.; Bülow, Jacob; Holm, Lars

DOI:
10.1111/cpf.12496

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Mertz, KH, Bülow, J & Holm, L 2017, 'Contrast-enhanced ultrasound using bolus injections of contrast agent for
assessment of postprandial microvascular blood volume in human skeletal muscle', Clinical physiology and
functional imaging. https://doi.org/10.1111/cpf.12496

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is the peer reviewed version of the following article: Mertz, Kenneth H., Jacob Bülow, and Lars Holm. "Contrast‐enhanced ultrasound
using bolus injections of contrast agent for assessment of postprandial microvascular blood volume in human skeletal muscle." Clinical
physiology and functional imaging (2017), which has been published in final form at: https://doi.org/10.1111/cpf.12496. This article may be
used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 19. Apr. 2024

https://doi.org/10.1111/cpf.12496
https://doi.org/10.1111/cpf.12496
https://birmingham.elsevierpure.com/en/publications/b327b282-db8a-45c9-bf80-48c27fd3fe6d


Contrast-enhanced ultrasound using bolus injections of contrast agent for 1 
assessment of postprandial microvascular blood volume in human skeletal muscle.  2 
  3 

1Kenneth H. Mertz, 1Jacob Bülow, 1,2Lars Holm. 4 

1Institute of Sports Medicine and Orthopedic Surgery M81, Bispebjerg Hospital, Copenhagen, 5 
Denmark. 6 

2Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of 7 
Copenhagen, Copenhagen, Denmark. 8 

 9 

Corresponding author:  10 

Kenneth H. Mertz 11 

Institute of Sports Medicine 12 

Bispebjerg Hospital 13 
Building 8, 1. floor 14 
Bispebjerg Bakke 23 15 
2400 Copenhagen NV 16 

Email: Kenneth.hudlebusch.mertz@regionh.dk 17 

Short title: CEUS for assessing postprandial microvascular perfusion in muscle. 18 

Word count: 4.464 19 

Display items: 6 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 



 29 

 30 

Abstract 31 

Methods capable of measuring blood flow in a tissue-specific manner are needed. The purpose 32 

of this study was to investigate if contrast-enhanced ultrasound (CEUS) using bolus injections 33 

of SonoVue® is an useful method for assessing postprandial changes in microvascular 34 

perfusion in the vastus lateralis muscle. 10 healthy, young subjects were recruited for this 35 

study. 6 subjects participated in washout- and reproducibility protocols to assess washout time 36 

of SonoVue® and the reproducibility of the method when measuring microvascular blood 37 

volume (MBV). 6 subjects (two of which also participated in the washout- and reproducibility 38 

protocols) participated in exercise- and nutrition protocols, to assess the ability of the method 39 

to detect changes in MBV in response to these interventions. Intraday variation (Coefficients of 40 

variation (CV)) for MBV indices, as assessed by peak signal intensity (PI) or mean plateau signal 41 

intensity (mPI), were high (PI: 19 ± 4.2%; mPI: 23 ± 3.3%). The exercise protocol induced 42 

significant increases of MBV indices (PI:+113%, P˂0.0001; mPI:+218%, P˂0.0001) acutely after 43 

exercise cessation. There were no changes in MBV indices in response to feeding during the 44 

nutrition protocol (PI: P = 0.51; mPI: P = 0.51). We conclude that CEUS using bolus injections of 45 

SonoVue® is not capable of detecting changes in MBV of vastus lateralis in response to feeding. 46 

This is probably due to the low reproducibility of the method. However, the method is capable 47 

of measuring changes in MBV in response to exercise. This method could therefore be used 48 

when investigating exercise-induced changes in microvascular perfusion.  49 

Keywords: CEUS; Microcirculation; capillary recruitment; harmonic imaging; microbubbles; 50 
blood flow. 51 
 52 



 53 

Introduction 54 

Skeletal muscle microvascular perfusion is closely coupled to muscle metabolism. Optimal 55 

microvascular function is of major importance, due to the capillaries being the main route for 56 

delivering and exchanging nutrients, gasses, hormones etc. (Poole et al., 2013). However, 57 

investigations of the microcirculation has for many years been problematic in human subjects, 58 

due to a lack of adequate methods for accurately measures. Modern advantages in ultrasound 59 

sonography have made it possible to use contrast-enhanced ultrasound (CEUS) providing 60 

measures of microvascular blood volume (MBV) as estimates of microcirculation for 61 

investigating e.g. tissue perfusion (Wei et al., 1998). With the use of a continuous infusion of 62 

contrast agent for the CEUS recordings, studies have reported increases in skeletal muscle 63 

MBV following food intake (Keske et al., 2009; Mitchell et al., 2013; Vincent et al., 2006) and 64 

exercise (Sjøberg et al., 2011; Vincent et al., 2006). Applying a continuous infusion requires a 65 

time lapse of 5-10 min prior to assessment and an infusion pump that can handle the 66 

phosphorlipid stabilized hexafluoride microbubbles (Mitchell et al., 2013; Sjøberg et al., 2011). 67 

The infusion must ensure that the concentration of the contrast agent reaches steady state 68 

before measurements can be performed. The demands on time and equipment raised by this 69 

method may be challenging in some experimental settings and it would therefore be beneficial 70 

if CEUS could be performed using a single-bolus injection of contrast-agent. 71 

To date, two studies has, to these author´s knowledge, reported the reproducibility of CEUS 72 

using bolus injections of contrast agent for investigating skeletal muscle microvascular 73 

perfusion (Mulder et al., 2008; Tobin et al., 2010). Both of these studies used the contrast 74 

agent SonoVue®(Mulder et al., 2008; Tobin et al., 2010).  75 



Mulder and colleagues were the first to do CEUS recordings on skeletal muscle using bolus 76 

injections of SonoVue® and they derived their protocol based on continuous infusion protocols 77 

(Mulder et al., 2008). Following the bolus injection, a high mechanical index (MI) flash was 78 

used to destroy the microbubbles within the region of interest (ROI). The reproducibility of the 79 

technique was investigated during resting measurements of MBV and microvascular flow 80 

velocity (MFV) in the muscles of the forearm. MBV was found to have an acceptable 81 

reproducibility, with a coefficient of variation (CV) of 11%, whereas MFV was found to have 82 

poor reproducibility (CV=256%). Furthermore, Mulder and colleagues used the technique to 83 

demonstrate changes in MBV in response to hyperinsulinemia and exercise (Mulder et al., 84 

2008). 85 

Tobin and colleagues investigated the reproducibility of CEUS recordings on abdominal skeletal 86 

muscle and subcutaneous adipose tissue using bolus injections of SonoVue® (Tobin et al., 87 

2010). In this study, a high MI flash was not performed. Instead, 4-minutes real-time imaging 88 

was recorded from the time of injection. Using this protocol, the researchers used the first 89 

phase plateau as an index of MBV. These measurements had a CV of 4%, indicating a good 90 

reproducibility in determining MBV in both skeletal muscle and subcutaneous adipose tissue 91 

(Tobin et al., 2010). The researchers also investigated changes in MBV in subcutaneous adipose 92 

tissue and forearm skeletal muscle in response to an oral glucose load and found an increase 93 

of MBV in adipose tissue but not in forearm skeletal muscle (Tobin et al., 2010). This finding is 94 

in contrast with earlier findings, reporting increases of 40-70% in muscle MBV following a 95 

mixed meal, where it was measured by CEUS using a continuous infusion protocol (Keske et al., 96 

2009; Vincent et al., 2006). Therefore, it still remains unclear if CEUS using bolus injections of 97 

SonoVue® is capable of detecting changes in MBV of skeletal muscle in response to ingestion 98 

of a mixed meal. 99 



In the present study we investigated if CEUS using bolus injections of SonoVue® is reliable and 100 

a useful method for assessing postprandial changes in microvascular perfusion in the vastus 101 

lateralis muscle. As numerous studies have shown large increases in MBV and MFV in response 102 

to exercise (Inyard et al., 2007; Krix et al., 2010; Rattigan et al., 2005; Sjøberg et al., 2011; St-103 

Pierre et al., 2012; Vincent et al., 2006), exercise was used as a positive control for the 104 

detection of changes in these parameters.   105 

Methods 106 

Participants 107 

A total of 10 young, healthy subjects (3 women and 7 men, 24.3 ± 3.3 years, BMI; 21.6 ± 1.6 108 

kg/m2, systolic blood pressure; 125 ± 8.8 mmHg, diastolic blood pressure; 69.3 ± 8.7 mmHg, 109 

resting heart rate; 57.9 ± 11.0 beats/min [Mean ± SD]) were recruited through advertisements 110 

on social media. Following exclusion criteria were used; BMI ˃25, smoking, heart disorders, 111 

diabetes and daily or frequent intake of medication (oral contraceptives were allowed). 112 

In all protocols, subjects gave written informed consent. The study was performed according 113 

to the declaration of Helsinki II and was approved by the local ethics committee of the Capital 114 

Region of Denmark (journal H-4-2014-112).  115 

Standard preparation 116 

All protocols were performed at ~8 am, with subjects arriving to the hospital in the overnight 117 

fasted state. Subjects were instructed to refrain from alcohol, caffeine and strenuous activities 118 

the day before each trial. Upon arrival to the hospital, the subject was weighed, placed 119 

comfortably in the supine position in a bed, and the antecubital vein was catheterized (18 G 120 

Venflon, Becton Dickinson, Helsingborg, Sweden). For all protocols, subjects rested in the 121 

supine position for 30 minutes before the first CEUS recording was performed. After 20 122 

minutes of rest, blood pressure and heart rate were measured on the contralateral arm.  123 



Contrast-enhanced ultrasound protocol 124 

During the 30 minutes of rest, B-mode imaging was used to find a fixpoint approximately at 125 

the mid-portion of the right m. vastus lateralis. Upon determination of an appropriate fixpoint, 126 

the precise transducer placement was marked on the skin of the subject and thigh 127 

characteristics were drawn on transparent to ensure that the exact same tissue volume was 128 

scanned during each recording (inter- and intraday).  129 

The ultrasound gel thickness applied, prevented any pressure of the transducer on the 130 

underlying tissue. The contrast agent dry matter (SonoVue®, Bracco S.p.A, Italy) was dissolved 131 

in sterile saline and mixed gently for exactly 30 sec before injection. SonoVue® is a suspension 132 

of phospholipid-stabilized microbubbles filled with sulphur hexafluoride and is diluted in 4.5 ml 133 

0.9% saline solution before injection (8 µl microbubbles ml-1).  A bolus of 2.0 ml SonoVue® was 134 

injected through the antecubital vein followed by an immediate flush of 10 ml 0.9% saline 135 

solution. SonoVue® contains microbubbles of different sizes, ranging between diameters of 1 136 

µm to 10 µm, with a mean of 2.5 µm. The size of the microbubbles is small enough to allow 137 

free passage through the capillaries, but large enough to retain in the vascular system (Greis, 138 

2004). Therefore the microbubbles will be distributed throughout the entire blood volume, but 139 

will not diffuse into the extracellular fluid space (Greis, 2004). After leaving the microbubbles, 140 

the gas is exhaled through the lungs, and therefore does not interfere with renal or hepatic 141 

excretion pathways (Greis, 2004). 142 

All ultrasound scannings were done by the same investigator, using a handheld linear array 143 

transducer (L9-3MHz) and an iU22 ultrasound scanner (Phillips Medical Systems, Bothell, USA). 144 

Contrast first harmonic signals were received at 8 MHz with a mechanical index of 0.06. For all 145 

subjects, depth was set at 3 cm (except for one subject in protocol A, where depth was 146 

increased to 3.5 cm), allowing measurements of the full depth of the m. vastus lateralis. Gain 147 



was set at 90% for each recording. Focus was optimized and standardized for each subject 148 

when finding the fix point. Twenty millisecond images were captured consecutively for 2 149 

minutes following each bolus injection. 150 

Study design 151 

The study was divided in 3. First, we performed the washout protocol to determine the 152 

washout time of SonoVue® microbubbles. Thereafter we wanted to investigate intra- and 153 

interday reproducibility of the method in the reproducibility protocol. Third, we investigated 154 

the ability of the method to detect changes in microvascular perfusion induced by either 155 

exercise or nutrition, investigated by separate protocols (A1 and A2, B1 and B2). 156 

Image analysis 157 

Image analysis was performed offline using an ultrasound quantification and analysis software 158 

(QLAB, Phillips Medical Systems). Image analysis was performed by a blinded investigator. 159 

Region of interest (ROI) for analysis was set to include as much as m. vastus lateralis as 160 

possible, excluding larger vessels, connective tissue and artefacts appearing on the image 161 

In a ROI, we measured peak signal intensity (PI [dB]), background signal intensity (BI [dB]) and 162 

mean first phase plateau signal intensity (mPI [dB]). These measurements are described in 163 

detail below. 164 

PI and mPI were used as indices of MBV. Both PI and mPI were measured including (A+B) and 165 

excluding background signal (A). PI was defined as the highest measured signal intensity in 166 

response to the bolus injection. mPI was defined as the mean signal intensity during the first 167 

phase plateau after the peak of wash-in curve. A plateau in signal intensity was defined as a 168 

period of minimum 10 seconds where the signal intensity did not change noticeably. BI was 169 

calculated as the mean signal before the onset of the wash-in curve. 170 



Protocol A: Determination of washout period and reproducibility 171 

Subject characteristics 172 

Six healthy, young volunteers (3 men, 3 women, age 24 ± 4.3 years, body mass index 21 ± 4.0 173 

kg/m2, Systolic blood pressure 129 ± 12 mmHg, diastolic blood pressure 72 ± 18 mmHg, Resting 174 

heart rate 63 ± 20 beats/min [mean ± SD]) took part in this protocol.  175 

A1: Washout protocol 176 

In this protocol, we performed a single CEUS recording as described in section Standard 177 

preparation at time zero. Subjects arrived at the hospital at time point -30 min and remained 178 

in the supine resting position until time point 0 min To detect the minimum time required 179 

before microbubbles were no longer detectable in the scanned area, 60 s ultrasound 180 

recordings were captured at 10, 15, 20, 30, 40 minutes post injection (See fig. 1a).  181 

A2: Reproducibility protocol 182 

At this point we had determined the washout period, and therefore we knew the minimum 183 

time before the CEUS protocol could be repeated.  184 

To test the intraday reproducibility of the method, three CEUS recordings were performed as 185 

described in section Standard preparation. Based on the findings from protocol A1 (See 186 

Results), washout intervals of 15 minutes were used between measurements (see fig. 1b). To 187 

test the interday reproducibility of the method, the protocol illustrated at fig. 1b was repeated 188 

twice within 3-7 days after the washout protocol. 189 

Protocol B; Microvascular responses to exercise or nutrition 190 

Subject characteristics 191 

Six healthy, young volunteers (5 men, 1 woman, age 25 ± 4.2 years, body mass index 22 ± 1.0 192 

kg/m2, Systolic blood pressure 121 ± 9.0 mmHg, diastolic blood pressure 66 ± 7.0 mmHg, 193 



Resting heart rate 52.7 ± 11 beats/min [mean ± SD]) took part in this protocol. Two of the 194 

subjects had also participated in protocol A.  195 

Protocol B1 - Nutrition 196 

In this protocol we investigated whether the method was capable of detecting changes in 197 

microvascular perfusion in response to feeding. A baseline CEUS recording was performed at 198 

time point -15 minutes, as described in section Standard preparations. Thereafter, the subject 199 

consumed a drink in less than 5 min containing 20 g whey protein hydrolysate (Peptigen IF-200 

3090, Arla Foods Ingredients P/S, Viby J, DK) and 80 g maltodextrin (Fagron Nordic A/S, 201 

Copenhagen, DK) at time point 0. The subjects were allowed to sit upright when consuming 202 

the drink, but remained in the supine position throughout the rest of the protocol. CEUS 203 

recordings were performed again at time points 30 and 60 minutes The experimental protocol 204 

is illustrated in fig. 1c. 205 

Strength testing 206 

Strength testing was performed on the same day as the nutrition protocol, after the last CEUS 207 

recording had been performed. Subjects had their 1 RM determined on their right leg in a leg 208 

extension machine (Cybex®, UK). After warming up on light loads, subjects would perform 2 209 

repetitions on gradually increasing loads interspersed with sufficient rest periods. When the 210 

subject was capable of 1 but not 2 repetitions, the load was noted given the 1 RM.  211 

Protocol B2 - Exercise 212 

This protocol was performed 4-7 days after protocol B1, and is illustrated in fig. 1d. Subjects 213 

were placed supine on the hospital bed at time point -45 min. At time point -15 min a baseline 214 

CEUS recording was performed as described in section Standard preparations. Subjects were 215 

then placed in the leg extension equipment. At time point 0 min, the subjects would then 216 

perform 3 sets of 10 repetitions of unilateral leg extensions with their right leg at 70% of their 217 



1 RM. Sets were interspersed with 1 min rest. Immediately after completion of the exercise 218 

bout, subjects were placed in the supine position on the hospital bed, and a CEUS recording 219 

was performed as soon as possible. All CEUS recordings were initiated within 1 minute after 220 

exercise cessation.  221 

Statistics 222 

In the wash-out protocol, one-way ANOVA and Holm-Sidak´s multiple comparisons test was 223 

used to evaluate differences in signal intensities for baseline (signal intensity prior to the onset 224 

of the wash-in curve of the bolus), mean signal intensity during the bolus curve (mean of signal 225 

intensity after onset of the wash-in curve until termination of the recording), and mean signal 226 

intensity during the 60 seconds recordings at 10, 15, 20, 30 and 40 minutes post injection.   227 

The reproducibility of the contrast-enhanced ultrasound technique was assessed by calculation 228 

of the standard deviation and the corresponding coefficient of variation (CV). CVs were 229 

calculated both for intra- and interday measurements using the formula CV = SD/mean.  230 

Intraday CVs were calculated for each subject from the variation of the parameters obtained 231 

through the CEUS recordings from the 2 reproducibility protocols. Intraday CVs were obtained 232 

for both reproducibility protocol day 1 and 2. The average of these two CVs was used as the 233 

intraday CV for the subject, and used for the calculation of the mean CV for all subjects. 234 

Interday CVs were calculated using the CEUS recording from the washout protocol and the 235 

CEUS recordings at time point 0 form the 2 reproducibility protocols. Furthermore, we tested 236 

the effect of bolus injection number by one-way ANOVA and Holm-Sidak´s multiple 237 

comparisons test.  238 

In the intervention protocols, one-way ANOVA and Holm-Sidak´s multiple comparisons test 239 

were used to evaluate changes in the measured parameters from baseline to the measured 240 



time point. P < 0.05 was considered statistically significant. All data are reported as mean ± 241 

SEM, except subject characteristics, which are presented as mean ± SD. 242 

Results 243 

Washout protocol 244 

To investigate the washout-period of the SonoVue® contrast-agent, we compared mean 245 

baseline signal intensity, mean signal intensity during the bolus curve recorded after the 246 

injection, and mean signal intensity at 10, 15, 20, 30 and 40 minutes post injection (Fig 2). 247 

Mean signal intensity immediately following bolus injection was significantly higher than mean 248 

baseline intensity (Baseline; 15.7 ± 0.2 dB, bolus mean; 17.0 ± 0.3 dB, P<0.05). Mean signal 249 

intensities at 10, 15, 20, 30 and 40 minutes post injection were not significantly different from 250 

baseline signal intensity. Based on these findings, we decided that a 15 minute washout period 251 

was sufficient before injections could be repeated in later protocols. 252 

Reproducibility protocol 253 

To test the reproducibility of the method, we performed CEUS assessments of three occasions 254 

with three injections interspersed with 15 minute intervals. We compared two methods for 255 

estimating MBV; peak signal intensity and first phase plateau intensity. Mean background 256 

signal was 15.7 dB ± 0.5 dB, mean peak intensity was 17.1 ± 0.8 dB and mean first phase 257 

plateau intensity was 16.7 ± 0.7 dB. The coefficient of variation (CV) for measurements 258 

including background signal (A + B) were for intraday comparisons (PI CV; 1.8 ± 0.4%, mPI CV; 259 

1.4 ± 0.2%) and interday comparisons (PI CV; 2.9 ± 0.9%, mPI CV; 1.8 ± 0.4). When assessing 260 

the signal alone (A) the intraday variation was (PI CV: 19 ± 4.2%; mPI CV: 23 ± 3.3) and interday 261 

variation was (PI CV: 27 ± 9.8%; mPI CV: 31 ± 7.3%) (Table 1). Paired t-test did not show 262 

significant difference between the CVs of PI and mPI when comparing intraday or interday 263 



measurements (P=0.15 and P=0.59, respectively). Interday variation was not significantly 264 

different from intraday variation for any of the measured parameters (PI: P=0.48 and mPI: 265 

P=0.38). 266 

Intervention protocol 267 

All-subject mean curves for exercise and nutrition intervention are illustrated in fig. 3 and 4 268 

and the results from the intervention protocols are summed up in table 2. 269 

Average 1 RM in the one legged knee extension exercise was 47.4 ± 14.7 kg, resulting in an 270 

average exercise load of 33.1 ± 9.1 kg in 3 sets of 10 knee extension reps at 70% 1RM. Exercise 271 

induced acute changes in peak signal intensity (+113%, P˂0.001), plateau intensity (+218%, 272 

P˂0.001) compared to baseline measurements. All CEUS recordings acutely after exercise 273 

cessation exhibited double peaks in signal intensity (as seen in the all-subject mean bolus 274 

curve, fig 3).  275 

During the nutrition protocol, there was no effect of time on neither peak intensity (P = 0.51) 276 

nor plateau intensity (P = 0.51). 277 

Discussion 278 

The present study demonstrates that CEUS using bolus injections of SonoVue appears to be as 279 

reliable as existing techniques  for assessing microvascular blood volume in vastus lateralis 280 

muscle. This conclusion is based on the finding that the coefficient of variation for our chosen 281 

indices of microvascular blood volume (MBV) were comparable to what has been observed in 282 

earlier studies using CEUS in other muscles (Mulder et al., 2008; Tobin et al., 2010). 283 

Furthermore, we were able to detect and demonstrate that exercise significantly increased 284 

microvasular blood volume acutely after exercise, whereas we could not detect any change in 285 

the immediate postprandial period. 286 



Reproducibility 287 
To assess intra- and interday reproducibility of the CEUS method, we performed repeated 288 

measurements during resting conditions on the same day, as well as on different days, 289 

respectively. There was no difference in intra- and interday reproducibility when using peak 290 

intensity or mean plateau intensity for measuring MBV. The bolus curves obtained in this study 291 

was very different between subjects, with some bolus curves exhibiting a good plateau phase, 292 

while others had no clear plateau phase. This difference between bolus curves could 293 

potentially cause data interpretation to be highly investigator-dependent. In the present study, 294 

bolus curves were analyzed by a blinded investigator, which we suggest is crucial for this type 295 

of data analysis. As peak intensity represents the highest signal intensity obtained in the bolus 296 

curve, this method for estimating MBV is not investigator-dependent. Our findings therefore 297 

indicate that peak signal intensity could be used instead of mean plateau intensity when 298 

measuring MBV by CEUS using bolus injections of SonoVue®. The coefficient of variation (CV) 299 

of our measurements of peak signal intensity and plateau signal intensity were comparable to 300 

that observed in prior studies  (Mulder et al., 2008; Tobin et al., 2010). Tobin and colleagues 301 

reported a CV of 4% while Mulder and colleagues found a CV of 11% when measuring signal 302 

intensity including background signal (A+B) (Mulder et al., 2008; Tobin et al., 2010). Compared 303 

to these studies, we found a numerically lower CV (1.4%). However, as changes in 304 

microvascular blood volume in response to vasodilatory stimuli are assessed by the ratio of A 305 

from the intervention and A obtained from baseline recordings, the reproducibility of the 306 

parameter A by itself is therefore more relevant than when combined with B, being the 307 

background noise of the probe without presence of microbubbles, as the parameter A+B. B is 308 

very large compared to A, and will contribute minimally to the variation of the total signal 309 

(A+B). This effectively causes a slightly larger SD to be divided by a far larger mean signal 310 

intensity, thereby lowering the CV. Therefore, we suggest that the CV of the actual 311 



measurement should be given only by including the A parameter. We got a CV here on 19% for 312 

peak signal intensity and 23% for plateau signal intensity. We cannot though, compare the 313 

reproducibility of our method with CEUS using a bolus injection protocol to CEUS using a 314 

continuous infusion protocol as there are no available studies reporting the reproducibility of 315 

the latter protocol. 316 

To assess interday reproducibility of the method, we compared measurements obtained on 317 

three separate days under comparable conditions. When being very thorough with identifying 318 

and repeating the scannings at the same area and ROI, we found that CVs for peak signal 319 

intensity (27%), plateau signal intensity (31%) were not significantly different for interday 320 

measurements compared to intraday measurements. These results indicate that 321 

reproducibility of the method is not compromised when comparing recordings obtained at 322 

different days. Weber and colleagues (Weber et al., 2006) found that signal intensity obtained 323 

through the use of CEUS recordings (with a continuous infusion protocol) in resting subjects 324 

correlated with capillary fiber contacts in human skeletal muscle. Capillarization increases over 325 

the course of a prolonged training period by 10-50% in the number of capillaries per fiber 326 

(Hoier and Hellsten, 2014). Therefore, although CEUS could potentially be used as a method of 327 

estimating changes in capillarization after e.g. a training protocol. the CEUS method as 328 

performed in this study probably does not have the required interday reproducibility to detect 329 

such changes.  330 

Intervention protocols 331 
Having verified the reproducibility of the CEUS measurement using a bolus injection, we 332 

performed experiments to investigate if the method was capable of detecting acute changes in 333 

microvascular perfusion in response nutrition. Furthermore, we used exercise as a positive 334 

control, to investigate if the method was capable of detecting larger changes in MBV. Hence, 335 



we performed CEUS recordings after intake of a protein-carbohydrate drink, and after the 336 

execution of one-legged knee extension exercise.  337 

The positive control, knee extensor exercise, induced a large increase in MBV, as indicated by 338 

increases in peak signal intensity (+113%) and plateau signal intensity (218%) acutely after 339 

exercise cessation.  Due to a lack of any gold standard method of measuring MBV it is not 340 

possible to determine which of our parameters for MBV (peak signal intensity or plateau signal 341 

intensity) that gives the most accurate estimate. Using the continuous infusion protocol, 342 

Sjøberg and colleagues (Sjøberg et al., 2011) found that MBV increased 310% in response to 343 

one legged knee extensor exercise at 25 W for 10 min. Vincent and colleagues (Vincent et al., 344 

2006) found that MBV increased approximately ~200% in the muscles of the forearm in 345 

response to high-intensity isometric handgrip exercise. Even though our results cannot be 346 

directly compared with the above mentioned results due to differences in exercise protocols 347 

and muscles investigated, our results seem to be in agreement with prior studies and CEUS 348 

recordings using bolus injection can presumably be used for assessing changes in muscle blood 349 

volume in response to acute exercise. 350 

Surprisingly, we were not able to detect any changes in MBV in response to feeding. Tobin and 351 

colleagues were also not able to detect any changes in MBV in response to a 75 g glucose load 352 

(Tobin et al., 2010), which is in contrast with prior CEUS studies (Churchward-Venne et al., 353 

2014; Keske et al., 2009; Mitchell et al., 2015, 2013; Timmerman et al., 2012; Vincent et al., 354 

2006). However, most of the latter studies have assessed microvascular perfusion via CEUS 355 

using a continuous infusion of contrast agent. Tobin and colleagues suggested that the lack of 356 

effect of their feeding protocol on MBV could be due to the feeding stimulus being 357 

inadequate. In the present study however, the feeding stimulus was comparable to that of the 358 

studies showing an effect of feeding on MBV. Therefore, it seems unlikely that the lack of an 359 



effect of feeding on microvascular perfusion in our study is due to an insufficient feeding 360 

stimulus. Instead, the lack of an effect is probably due to the either inadequacy of the method 361 

to detect the changes, or no effect of feeding on MBV in our subjects. As insulin has been 362 

many times to act as a vasodilator in healthy subjects (Dawson et al., 2002; Sjøberg et al., 363 

2011; Timmerman et al., 2010; Vincent et al., 2002), and given that an effect of feeding on 364 

MBV in skeletal muscle has been detected in many studies prior to ours, the lack of an effect 365 

observed in the present study is likely due to an inadequate sensitivity of our method. Prior 366 

studies have found postprandial increases in MBV of 36-67% (Keske et al., 2009; Mitchell et al., 367 

2015, 2013; Vincent et al., 2006).We found an intraday variation for our MBV indices of 19-368 

23%, which therefore might be inadequate in order to detect an effect in the lower range of 369 

what has been observed in earlier studies. As there is no golden standard method for assessing 370 

microvascular perfusion, it is difficult to verify the validity of our results. Approaching the limit 371 

of detection with the bolus injection approach of micobubbles, it would have been valuable to 372 

have other measurements of blood flow by e.g. measuring leg blood flow to investigate of 373 

feeding had any effect on total perfusion of the leg. However, prior investigations have 374 

observed that changes in total leg blood flow are delayed compared to changes in 375 

microvascular blood flow (Mitchell et al., 2015, 2013) and hence the microvascular blood flow 376 

and blood volume changes are likely to be due to resdistribution of microvascular flow(Clark et 377 

al., 2006). Changes in a. femoralis blood flow might therefore not be indicative of changes in 378 

microvascular perfusion. Alternatively, it would have been interesting to look into the 379 

sensitivity of the method by applying a dose-response investigation of vasodilator substances 380 

and measuring changes in MBV, and thereby investigate the ability of the method to detect 381 

smaller changes in MBV..  382 

In conclusion, we found that CEUS using bolus injections of SonoVue appears to be as reliable 383 

as existing techniques  for assessing microvascular blood volume in the vastus lateralis muscle. 384 



However, our results also demonstrate that CEUS using bolus injections of SonoVue® is not 385 

capable of detecting changes in skeletal muscle microvascular perfusion in response to 386 

feeding, likely due to the method having inadequate sensitivity. Given that a large number of 387 

prior studies have detected postprandial changes in MBV using continuous infusion protocols 388 

of contrast agent (Keske et al., 2009; Mitchell et al., 2013; Vincent et al., 2006), we therefore 389 

recommend to use such a protocol if feeding-induced changes in microvascular perfusion is of 390 

interest. Our method was capable of detecting changes in microvascular perfusion in response 391 

to exercise, and could therefore potentially be used if exercise induced changes in 392 

microvascular perfusion is of interest. 393 
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TABLE 1 477 

 478 

 479 

 480 

TABLE 2 481 

 482 

  483 

                      Intraday CV (%)                          Interday CV (%)

Peak intensity Plateau intensity Peak intensity Plateau intensity
A 19 ± 4.2 23 ± 3.3 27 ± 9.8 31 ± 7.3

A + B 1.8 ± 0.4 1.4 ± 0.2 2.9 ± 0.9 1.8 ± 0.4

Baseline 0 min Baseline 30 min 60 min
Peak intensity (dB) 1.7 ± 0.1 3.6 ± 0,1* 1.3 ± 0.2 1.1 ± 0.1 1.1 ± 0.1
Plateau intensity (dB) 0.9 ± 0.1 2.7 ± 0.1* 0.9 ± 0.1 0.8 ± 0 0.9 ± 0.1

Exercise protocol Nutrition protocol
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