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Abstract

Corynebacterium diphtheriae is the causative agent of diphtheria, a toxin mediated disease

of upper respiratory tract, which can be fatal. As a member of the CMNR group, C. diphther-

iae is closely related to members of the genera Mycobacterium, Nocardia and Rhodococ-

cus. Almost all members of these genera comprise an outer membrane layer of mycolic

acids, which is assumed to influence host-pathogen interactions. In this study, three differ-

ent C. diphtheriae strains were investigated in respect to their interaction with phagocytic

murine and human cells and the invertebrate infection model Caenorhabditis elegans. Our

results indicate that C. diphtheriae is able to delay phagolysosome maturation after internali-

zation in murine and human cell lines. This effect is independent of the presence of mycolic

acids, as one of the strains lacked corynomycolates. In addition, analyses of NF-κB induc-

tion revealed a mycolate-independent mechanism and hint to detrimental effects of the dif-

ferent strains tested on the phagocytic cells. Bioinformatics analyses carried out to elucidate

the reason for the lack of mycolates in one of the strains led to the identification of a new

gene involved in mycomembrane formation in C. diphtheriae.
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Introduction

The genus Corynebacterium belongs to the class of Actinobacteria and comprises a collection

of morphologically similar, irregular- or club-shaped non-sporulating (micro-)aerobic micro-

organisms. To date, 90 species were taxonomically classified [1,2]. More than half of these, i.e.

52 species, are occasional or rare causes of infections, while only a few are evoking severe dis-

eases. The most prominent member of the latter group is Corynebacterium diphtheriae, which

is also the type species of the genus. C. diphtheriae is the etiological agent of respiratory diph-

theria, which is restricted with about 5,000 annual reports mainly to developing countries

today, but nevertheless caused a severe outbreak with more than 157,000 cases in the states of

the former Soviet Union in 1990 to 1998 [3]. In addition, a number of outbreaks have recently

been reported from different countries [4].

Together with the genera Mycobacterium, Nocardia and Rhodococcus, the genus Corynebac-
terium forms the CMNR group within the high G + C Gram-positive bacteria. Almost all mem-

bers of the CMNR group are characterized by a mycolic acid layer, the mycomembrane, which

covers the peptidoglycan and is in many aspects functionally equivalent to outer membrane of

Gram-negative bacteria [5,6]. Mycolic acids are α-alkylated β-hydroxylated fatty acids with a

short α-alkyl and a meromycolate side chain, which can comprise between 12–18 carbon atoms

in case of corynebacteria [7] and 67–75 carbon atoms in mycobacteria. On the one hand, the

mycolic acids are covalently linked to the arabinogalactan-peptidoglycan meshwork of the cell

wall on the other hand to distinct sugars forming glycolipids, which are located in the outer leaf-

let of the mycomembrane. A prominent member of these glycolipids is trehalose dimycolate

(TDM). TDM is involved in host-pathogen interaction by Mycobacterium tuberculosis and Rho-
dococcus equi [8–10] and consequently of high interest in respect to pathogenicity of bacteria.

While M. tuberculosis mycolic acid synthesis, and the role of trehalose dimycolates in viru-

lence is well studied [11–15], only very limited information is available for corynebacterial

mycolates. Investigations of Corynebacterium pseudotuberculosis indicated a lethal effect of

mycomembrane lipids on caprine and murine macrophages. Lipid extracts of C. pseudotuber-
culosis had negative effects on glycolytic activity, membrane integrity and viability of cells [16].

Furthermore, recent investigations on Corynebacterium ulcerans indicated that the bacteria are

able to delay phagolysosome maturation in macrophages [17], a process resembling the situa-

tion of M. tuberculosis-macrophage interaction. Since we are interested in interaction of C.

diphtheriae with host cells [18–22], these studies prompted us to investigate the influence of

mycolic acids on the interaction with macrophage-like cell lines. Three different C. diphtheriae
strains were chosen: the non-toxigenic isolate DSM43988, the toxin-producer DSM43989 and

the type strain DSM44123, which is also non-toxigenic. Strain DSM43989 is a PW8 strain used

for toxoid production. In previous studies, DSM43989 showed low adhesion to and invasion

into epithelial cells in comparison to other non-toxigenic isolates [21] and we were interested

to elucidate the reason for this behavior. The number and types of surface pili are important

for adhesion and invasion [19,23,24]; however, their presence has been verified by atomic

force microscopy [19,23]. Recently, an influence of the mycolate profile on adherence proper-

ties of M. tuberculosis was shown [25] and also lineage-specific trends in mycolic acid reper-

toire were described [26]. Therefore, we tested whether a different glycolipid composition

might be the reason for different adhesion patterns.

Material and methods

Bacterial strains and growth conditions

C. diphtheriae strains (Table 1) were grown at 37˚C in Heart Infusion (HI) broth (Becton Dick-

inson, Sparks, MD, USA). For the determination of doubling times and recording of growth
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curves, bacteria from an overnight culture were inoculated to an OD600 of approx. 0.1 and

growth was followed spectrophotometrically. Experiments were carried out at least in tripli-

cates (biological replicates). For solid media either HI Agar, Brain Heart Infusion Agar

(Oxoid, Basingstoke, UK) or Columbia Blood Agar plates containing 5% sheep blood were

used (Oxoid, Basingstoke, UK).

For generation of GFP expressing strains used in fluorescence microscopy studies, electro-

competent C. diphtheriae were transformed with the plasmid pEPR1-p45gfp and positive

clones were selected on HI agar with kanamycin (25 μg ml-1 final concentration).

Determination of minimal inhibitory concentrations of antibiotics

For the determination of minimal inhibitory concentrations (MICs) of antibiotics, MIC Evalu-

ator strips were used as recommended by the supplier (Oxoid, Basingstoke, UK). In short,

100 μl of C. diphtheriae exponential phase cultures (OD600 approx. 0.3) were plated on HI agar

in 90 mm petri-dishes. Strips were placed on the agar surface followed by an overnight incuba-

tion at 37˚C. Based on the growth inhibition observed, MICs were directly read-out according

to the manufacturer’s protocol.

Lipid extraction, thin-layer chromatography and staining

C. diphtheriae strains were grown in shaking flasks to the exponential (OD600 approx. 0.5), har-

vested, washed with PBS and used for lipid extraction. Protocols for lipid and mycolic acid

extraction were the same as used for C. glutamicum [29,34]. Extracts of methyl esters of cory-

nomycolic acids (CMAMES) were separated by thin layer chromatography on a silica gel plate

using petroleum ether:acetone (95:5 v/v). CMAMES and other fatty acyl species were visual-

ized by staining with molybdophosphoric acid and subsequent charring. Total lipid extracts

were separated using chloroform:methanol:water (60:16:2 v/v/v) and visualized by staining

with alpha naphtol and subsequent charring.

Table 1. Bacterial strains, plasmids and cell lines used in this study.

C. diphtheriae strains Genotype/Description Reference/Source

DSM43988 Strain 48255, ATCC 11913, avirulent throat culture DSMZ, Braunschweig, Germany

DSM43989 PW strain, strain 5159, ATCC 13812, producer of diphtheria toxin for toxoid production [27], DSMZ, Braunschweig, Germany

DSM44123 Type strain, C7s, ATCC 27010, CIP 100721, NCTC 11397 DSMZ, Braunschweig, Germany

C. glutamicum strains

ATCC 13032 Type strain [28]

Cg-Δpks C. glutamicum pks13 deletion strain [29]

Plasmids

pEPR1-p45gfp p45, gfpuv, KmR, rep, per, T1, T2 [30]

pK18mob Insertion vector, KmR, ori pUC, mob, 3793 bp [31]

pK18mob-B178_03333‘-2 pK18mob with 500 bp insertion of gene B178_03333 Kindly provided by C. Bolz, Erlangen

pZ8-1 Expression vector, ptac, KmR, ori pUC, ori C. glutamicum, 7072 bp Degussa AG, Halle, Germany

pZ8-1_B178_03333 pZ8-1 carrying the complete B178_03333 gene This work

Cell lines

J774E Mannose receptor-expressing clone of the J774 mouse macrophage cell line [32]

THP-1 Human leukemic monocytic cells [33]

THP1-Blue NFκB THP-1 cells with stable integrated NFκB inducible SEAP reporter construct Invivogen

https://doi.org/10.1371/journal.pone.0180105.t001
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Nematode killing assay

C. elegans N2 was maintained on E. coli OP50 for six to seven days until the worms became

starved, as described above [35]. Infection of L4 stage larval worms was carried out with 20 μl

of each bacterial strain (from an overnight culture) on NGM plates at 21˚C for 24 h. Worms

were assessed each day following infection, and the dead nematodes were counted and

removed every 24 h. For each strain, approximately 20 nematodes were used and the assays

were performed in triplicates.

Replication assay

Murine macrophage-like J774E cells and human monocytic THP-1 cells were cultured in 10%

FCS supplemented RPMI medium 1640 (containing 100 U penicillin ml-1 and 100 mg strepto-

mycin ml-1) at 37˚C with 5% CO2 in a humidified incubator. For replication assays, THP-1

cells were seeded in 24-well plates (Nunc) at a density of 2 x 105 and differentiated by addition

of 10 ng ml-1 phorbol 12-myristate 13-acetate (PMA) 24 h prior to infection. J774E cells were

seeded at a density of 1 x 105 in 24 well plates 24 h prior to infection. Overnight cultures of C.

diphtheriae grown in HI were re-inoculated to an OD600 of 0.1 in fresh medium and grown to

an OD600 of 0.4 to 0.6. An inoculum with an MOI of 1 or 10 was prepared in RPMI 1640 with-

out antibiotics and 500 μl per well were used to infect the cells. The plates were centrifuged for

5 min at 350 x g to synchronize infection and incubated for 30 min (37˚C, 5% CO2, 90%

humidity) to allow phagocytosis of bacteria. Subsequently, the supernatant containing non-

engulfed bacteria was aspirated, cells were washed once with PBS and remaining extracellular

bacteria were killed by addition of 100 μg ml-1 gentamicin in cell culture medium. After 2 h,

cells were either lysed and intracellular bacteria were recovered or further incubated with

medium containing 10 μg ml-1 gentamicin for analysis at later time points (8 h and 20 h). To

recover intracellular bacteria, the medium was aspirated and cells were lysed by adding 500 μl

of 0.1% Triton-X100 in PBS. Serial dilutions of lysate and inoculum were plated on blood agar

plates using an Eddy Jet Version 1.22 (IUL Instruments). After incubation at 37˚C for two

days, the number of colony forming units (CFU) was determined. The ratio of bacteria used

for infection (number of colonies on inoculum plates) and bacteria in the lysate (number of

colonies on the lysate plates) multiplied with 100 gave the percentage of viable intracellular

bacteria at different time points. When the survival of intracellular bacteria in THP-1 cells was

analyzed over the time, the number of CFU at 2 h was set to 100% and later time points were

calculated based on this value. The assay was performed in three biological replicates each per-

formed in triplicates and the mean values were calculated with standard deviations.

Fluorescence microscopy

For qualitative analysis of intracellular CFU, J774E and THP-1 cells were infected with GFP-

expressing bacteria and analyzed by fluorescence microscopy. Cells were seeded one day prior

to infection in a density of 1 x 105 cells on sterile coverslips in 24-well plates. Overnight cul-

tures of C. diphtheriae strains transformed with plasmids encoding gfp cultivated in HI

medium containing kanamycin were re-inoculated to an OD600 of 0.1 in fresh medium, har-

vested at the beginning of the exponential growth phase and used to infect macrophages as

described above. After different time points, the medium was aspirated and cells were fixed by

addition of 500 μl 4% paraformaldehyde in PBS and incubated for 20 min at 37˚C. The cells

were stored in PBS at 4˚C until tested for internalization by staining. For subsequent analysis

by microscopy, coverslips were incubated with 30 μl of Alexa Fluor 647 Phalloidin diluted

1:200 in Image-iT FX Signal Enhancer (Molecular Probes, Life Technologies) for 45 min in the

dark to stain the cytoskeleton of THP-1 cells. After washing twice with PBS, the coverslips
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were dried and embedded on glass slides in ProLong Gold antifade mountant with DAPI

(Molecular Probes, Life Technologies) and samples were stored in the dark at 4˚C. Micro-

graphs were taken with the confocal laser scanning microscope Leica SP5 CLSM-1P (Leica

Microsystems) and analyzed with the LAS software suite.

Staining of acidic compartments in infected macrophages

To analyze if C. diphtheriae co-localizes with acidic compartments, J774E and THP-1 cells we

were treated with 200 nM LysoTracker Red DND-99 (Molecular Probes, Life Technologies), a

red fluorescent dye that stains acidic compartments in live cells, 2 h before infection. Then,

cells were infected and further treated as described for fluorescence microscopy above.

Automated analysis of fluorescence microscopic pictures

The analysis of bacteria on fluorescence images poses a demanding challenge, as the bacteria

tend to stick together and form clusters. To avoid putative pitfalls due to problems with the

segmentation of single bacteria, data were analyzed in two ways [17]. In the first approach, the

area of all bacteria was analyzed on pixel level. For this purpose, an adaptive threshold based

on k-means clustering was applied to the images of the GFP channel to determine pixels,

which belong to bacteria. For each image the amount of co-localizing pixels were determined

by measuring the intensity values of corresponding pixels in the image of the LysoTracker Red

DND-99 channel. These intensities were compared to the threshold intensity value. Above the

empirically determined intensity threshold value the pixel were regarded as co-localized. The

second method was based on the evaluation of images at bacterial cell level. For this purpose,

pixels belonging to bacteria were grouped into regions. To prevent the analysis of cell clusters,

these regions were filtered according to a statistical shape model to analyze exclusively single

bacteria, which had to reach a minimum average intensity in the LysoTracker Red DND-99

channel to be positive for co-localization with acidic compartments.

NF-κB reporter assay

THP1-Blue NF-κB cells (InvivoGen) carrying a stable integrated NF-κB-inducible secreted

embryonic alkaline phosphatase (SEAP) reporter construct were used to analyze NF-κB induc-

tion. For this purpose, C. diphtheriae strains were inoculated to an OD600 of 0.1 in HI medium

and grown until an OD600 of 0.4–0.6 was reached. An inoculum with OD600 of 1 in 1000 μl

PBS was prepared and 20 μl of this inoculum or of 10−1 and 10−2 dilutions were mixed with

180 μl of a suspension with 5 x 105 THP1-Blue NF-κB cells in cell culture medium resulting in

MOIs of 100, 10 and 1. UV-killed bacteria in the same concentrations were used as control.

After incubation for 20 h, the 96-well plates were centrifuged (350 x g, 5 min) and 20 μl of the

cell free supernatant was mixed with pre-warmed SEAP detection reagent QUANTI-Blue

(InvivoGen). After further incubation at cell culture conditions for 3 h, the levels of NF-κB-

induced SEAP resulting in a color change from pink to blue was measured in a microplate

reader (TECAN Infinite 200 PRO) at 620 nm.

Determination of cytokine excretion

For determination of cytokine activation by the different C. diphtheriae strains, supernatants

of infected THP-1 cells were collected at different time points and stored at -20˚C. IL-6 and

G-CSF concentrations were measured using the DuoSet ELISA Kits according to the manufac-

turer’s recommendations (R&D systems). Briefly, the ELISA plates were coated over night

with a capture antibody at room temperature, washed three times with 0.05% Tween20 in PBS,
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blocked for 1 h at room temperature with 1% BSA in PBS and washed again three times. Subse-

quently, 100 μl samples of supernatant of infected cells or standard dilutions were added and

the plates were incubated for 2 h, washed again three times and further incubated for 2 h at

room temperature. After another washing step, a streptavidin-HRP solution was added and

the plates were stored for 20 min under light exclusion, washed again and incubated for

another 20 min in the dark with substrate solution. To stop color development, 2 N H2SO4

was added to the wells and the optical density was determined using a microplate reader

(TECAN Infinite 200 PRO) set to 450 nm with wavelength correction at 550 nm.

Genome sequencing and analysis

Genomic DNA of strains DSM43989 and DSM44123 were extracted from 1.5 ml cultures

grown overnight at 37˚C in BHI broth (Oxoid) using UltraClean Microbial DNA Isolation Kit

(MoBio) and were sequenced on an Illumina MiSeq instrument, according to the manufactur-

er’s instructions. The reads were assembled into contigs using SPADes 3.6.2 with a value of

k = 127 [36]. The draft assemblies were submitted to the PGAP pipeline for annotation [37].

The sequence types (STs) of these strains were identified by using MLST v 1.8 [38].

The protein sequence of genes reported to be involved in mycolic acid biosynthesis [39,40]

and trehalose biosynthesis [41] were searched using BLAST [42] in the genomes of strains

DSM43989, DSM44123 and DSM43988 (Accession No. AUZN00000000; [2]). Additional

genes with potential carboxylase, esterase/hydrolase, phosphopentethenyl transferase, acyl-

CoA synthetase and enoyl-CoA hydratase activities were identified in the genome of strain

NCTC 13129 (Accession No. BX248353; [43]) using UniProt database (http://www.uniprot.

org/) and were also searched in DSM43989, DSM44123 and DSM43988 genomes.

Construction of DIP0789 homolog B178_03333 overexpression plasmid

Standard techniques were used for plasmid isolation, transformation and cloning [44]. For

cloning of the overexpression vector the gene B178_03333was amplified by PCR using chro-

mosomal DNA of strain DSM43988 as template and the following primers: 5´-CGCGGGATC
CGTGGCGCAGGTAGAGGTGCG-3´ and 5´-CGCGGTCGACGAATCAGCGACCAGTAAAC-3´.

Using the BamHI and SalI sites introduced via the PCR primers the DNA fragment was ligated

to BamHI/SalI-restricted and dephosphorylated pZ8-1 DNA. The resulting overexpression

plasmid

pZ8-1_B178_03333was amplified in E. coli DH5αMCR. One microgram of unmethylated

plasmid isolated from this E. coli strain was used to transform C. diphtheriae DSM43989 using

a GenePulser II (Bio-Rad, Munich Germany). Electroporated cells were added to 1 ml of HI

broth and incubated for 2 h at 37˚C. An appropriate volume of culture was plated on medium

containing kanamycin.

Construction of insertion plasmid pK18mob_B178_03333´

For cloning of the insertion vector a 500 bp fragment of the gene B178_03333was amplified by

PCR using chromosomal DNA of strain DSM43988 as template and the following primers:

5´-CGCGCCCGGGGTGCGATGATATTACATCTG-3´and5´-GCGCCCGGGCCATTCCAG
CAATACGATG-3´. Using the XmaI site introduced via the PCR primers the DNA fragment

was ligated to XmaI-restricted and dephosphorylated pK18mob DNA. The resulting vector

pk18mob_B178_03333´was then amplified in E. coli DH5αMCR. One microgram of unmethy-

lated plasmid isolated from this E. coli strain was used to transform C. diphtheriae DSM43988

using a GenePulser II (Bio-Rad, Munich Germany). Electroporated cells were added to 1 ml of
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HI broth and incubated for 2 h at 37˚C. An appropriate volume of culture was plated on

medium containing kanamycin.

Results

Growth behavior of C. diphtheriae isolates

When C. diphtheriae strain DSM43988, DSM43989 and DSM44123 were streaked-out on BHI,

Columbia Blood agar or HI agar plates, colonies of DSM43989 appeared to be more whitish

and streak-outs seemed to be more confluent. Furthermore, biomass formation was impaired

compared to the other strains leading to a significantly diminished colony size of strain

DSM43989 (Fig 1A–1C). In accordance with this observation, analysis of growth in HI liquid

medium revealed a doubling time of 106 ± 2 min for DSM43989 compared to 72 ± 4 min for

DSM43988 and 64 ± 6 min for DSM44123 (data are mean values of at least three independent

biological replicates ± standard deviation; see also Fig 1G). Additionally, microscopic inspec-

tion of HI-grown cultures showed a tendency of aggregation in case of DSM43989, indicating

altered surface properties (Fig 1D–1F).

Corynomycolic acid profiles of C. diphtheriae strains

Clumpy and slow growth are often a result of loss of corynomyclic acid biosynthesis [45–47].

We thus analysed the DSM43989 strain for the presence of corynomycolic acids. Methyl esters

of corynomycolic acids (CMAMES) extracted from either total lipids (representing trehalose-

bound corynomycolates) or delipidated cells (representing cell wall-bound corynomycolates)

were separated by TLC and visualized by staining with phosphomolybdic acid (MPA) and

charring. A drastic phenotype was observed for DSM43989 (Fig 2A): no free mycolates or

mycolates attached to the cell wall were detectable using thin-layer chromatography, indicating

that the strain either lost the ability to synthesis mycolates or produces a precursor that is labile

to the extraction process. This result was confirmed by thin-layer chromatography and direct

visualization of trehalosyl dimycolates (TDM) (Fig 2B). As in case of a C. glutamicum pks13
mutant, no TDM was detectable in DSM43989.

Resistance to antibiotics

For mutant strains of M. tuberculosis with altered mycolic acid composition, changes in the

resistance to antibiotics were reported previously [12,48]. In this study, a strong impact of the

mycolic acid layer on antibiotics resistance of C. diphtheriae was observed. Determination of

minimal inhibitory concentrations revealed a more than ten-fold increased sensitivity of strain

mycolic acid-free strain DSM43989 towards β-lactam antibiotics (ampicillin, amoxicillin, imi-

penem and penicillin G) compared to the mycolic acid-containing isolates. An about four- to

fivefold increased sensitivity of DSM43989 against tetracycline and the aminoglycoside genta-

micin was observed. The effects for the glycopeptide vancomycin and the oxazolidione linezo-

lid were weaker showing a twofold increase in sensitivity and no difference was observed for

sensitivity against the macrolides clindamycin and erythromycin (Table 2).

Colonization of the invertebrate infection model C. elegans

In order to evaluate the consequences of mycolic acid deficiency in strain DSM43989, the colo-

nization of C. elegans, an established infection model for corynebacteria [20,22,49,50], was

tested. A nematode killing assays revealed a clear detrimental effect of DSM43989 on C. ele-
gans, although the killing of worms by the mycolic acid-free strain was slower compared to

DSM43988 and DSM44123 (Fig 3). This correlates with the slower growth of DSM43989
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compared to DSM43988 and DSM44123. The observations made for the killing assay were

in line with results of fluorescence microscopy analyses of C. elegans colonized by GFP-

expressing bacteria (Fig 4). While the E. coli control showed no fluorescence (Fig 4A), the slow

growing DSM43989 pEPR1-p45gfp showed a strongly reduced fluorescence signal (Fig 4C)

compared to DSM43988 pEPR1-p45gfp and DSM44123 pEPR1-p45gfp (Fig 4B and 4D),

Effect on survival in macrophage cell lines

As a more complex system, the different C. diphtheriae strains were analyzed in respect to their

interaction with murine and human macrophage-like cells. While murine cell lines exhibit no

Fig 1. Growth properties of C. diphtheriae isolates. Colonies of C. diphtheriae strains DSM43988 (A),

DSM43989 (B) and DSM44123 (C) grown on HI medium agar plates. Microscopic images of C. diphtheriae

strains DSM43988 (D), DSM43989 (E) and DSM44123 (F) (scale bar: 10 μm). (G) Growth curve of the

corresponding strains. DSM43988, filled circle; DSM43989, filled square; DSM44123, open rhombus.

Experiments were carried out in triplicates (biological replicates) and standard deviations are shown.

https://doi.org/10.1371/journal.pone.0180105.g001
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diphtheria toxin receptor, human cells are susceptible to diphtheria toxin and consequently, it

is possible to distinguish between the influence of mycolic acids and diphtheria toxin with the

combination of macrophage cell lines used here.

Murine J774E cells readily took up the bacteria without further priming and colony form-

ing units were detectable after cell lysis 2, 8 and, to a minor extend also 20 hours after infection.

Interestingly, DSM43989 showed the highest number of colony forming units of all strains

after 2 hours (Fig 5A). For a better comparison of the kinetics of survival in macrophages

murine, the 2 hour values were set to 100% and survival rates were calculated. In this case,

DSM43988 was highly resistant to macrophage action with about 90% of the internalized

Fig 2. TLC analysis of cell wall extracts from different C. diphtheriae strains. (A) Methyl esters of

corynomycolic acids (CMAMES) extracted using petroleum ether:acetone (95:5 v/v) from either total lipids

(representing trehalose-bound corynomycolates) or delipidated cells (representing cell wall-bound

corynomycolates) were separated by TLC and visualized by staining with phosphomolybdic acid (MPA) and

charring. (B) TLC analysis of total lipid extracts from Corynebacterium strains using chloroform:methanol:

water (60:16:2 v/v/v). Fractions are visualised by charring with alpha naphtol. TDM: trehalose dimycolate; C.

glutamicum wild type was used as positive and the pks13 mutant Cg-Δpks as negative control. Results for

DSM43989 are shown for untransformed strain (wt), transformed with the empty vector pZ8-1 (ev) and

complemented by transformation with pZ8-1_B178_03333 (ov).

https://doi.org/10.1371/journal.pone.0180105.g002
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bacteria being still viable after 8 hours. DSM43989 and DSM44123 showed a very similar

behavior in respect to macrophage resistance with about 40 and 30% survival rate after 8

hours, respectively (Fig 5B).

When human THP1 cells were used, compared to the murine macrophages, a ten-fold

decrease was observed in internalization rates. In this set-up DSM43989 showed very low

internalization values (Fig 5C), while the kinetics of survival was better than in the murine sys-

tem. Since tox+ strain DSM43989 and tox- strain DSM44123 showed an almost identical sur-

vival rate (Fig 5D), it can be concluded that the diphtheria toxin had no dramatic influence in

the time range tested. This observation is in accordance with previous observations made for

C. diphtheriae-infected epithelial cells [19].

Table 2. Resistance of C. diphtheriae strains against different antibiotics. Experiments were carried out in triplicates (independent biological replicates)

and minimal inhibitory concentrations (given in μg ml-1) were determined after 16 h of incubation at 37˚C.

Antibiotics DSM43988 DSM43989 DSM44123

Amoxycillin 0.25/0.25/0.25 < 0.015/< 0.015/0.03 0.25/0.25/0.25

Ampicillin 0.25/0.25/0.5 < 0.015/< 0.015/< 0.015 0.25/0.25/0.25

Clindamycin 0.06/0.06/0.06 0.06/0.06/0.06 0.06/0.06/0.06

Erythromycin 0.015/0.015/0.015 0.015/0.015/<0.015 0.015/0.015/0.015

Gentamicin 0.25/0.25/0.25 0.06/0.06/0.06 0.25/0.25/0.25

Imipenem 0.015/0.03/0.03 0.002/< 0.002/0.002 0.06/0.03/0.03

Linezolid 1.0/1.0/0.5 0.25/0.5/0.5 0.5/0.5/1.0

Penicillin G 0.12/0.12/0.25 0.015/0.015/<0.015 0.25/0.25/0.25

Tetracycline 0.25/0.5/0.5 0.06/0.06/0.12 0.5/0.5/0.5

Vancomycin 0.5/1.0/1.0 0.5/0.5/0.25 1.0/1.0/1.0

https://doi.org/10.1371/journal.pone.0180105.t002

Fig 3. Nematode survival assay. (A) Infection of C. elegans N2 with E. coli OP50 (x), and C. diphtheriae

strains DSM43988 (■), DSM43989 (▲) and DSM44123 (●). Data shown are the mean of three parallel

experiments with 20 worms per plate repeated three times independently, error bars represent deviations

from mean values.

https://doi.org/10.1371/journal.pone.0180105.g003
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Delay of phagolysosome maturation by C. diphtheriae

A hallmark of macrophage function after phagocytosis is the formation of phagolysosomes by

fusion of phagosomes and acidic lysosomes in order to destroy the phagocytosed pathogens. It

is well known for M. tuberculosis and Rhodococcus equi that mycolic acids influence phago-

some maturation. Therefore, formation of acidic compartments within J774E and THP-1 mac-

rophages was monitored using a LysoTracker dye. In parallel, Alexa Fluor 647 Phalloidin and

DAPI staining visualized cytoskeleton and nuclei, respectively, and Corynebacterium strains

were labeled by GFP.

When J774E cells (Fig 6) were infected, in case of C. glutamicum ATCC 13032

pEPR1p45gfp, which was used as control, the majority of bacteria was co-localized with acidic

compartments already after 2 h with almost 100% co-localization after 4 h. This situation dif-

fered significantly in case of the different C. diphtheriae isolates as a very low rate of co-locali-

zation was detected after 2 h. After 4 hours, only about half of the bacteria were co-localizing

with lysosomes, and only after 20 hours, the majority of GFP-labeled bacteria were co-localiz-

ing with acidic compartments.

A similar picture was observed with THP-1 cells (Fig 7). Again, co-localization with C. glu-
tamicum was fast, while co-localization with C. diphtheriae strains DSM43988 pEPR1p45gfp,

DSM43989 pEPR1p45gfp and DSM44123 pEPR1p45gfpwas delayed. The data indicate a delay

of phagolysosome formation in murine and human macrophage cell lines by C. diphtheriae
independent of the presence or absence of mycolic acids.

For an unbiased and more quantitative approach, fluorescence microscopy images were

automatically evaluated either at the level of bacterial cells or at pixel level (Fig 8). The more

error-prone analysis at bacterial cell level, which relies on proper segmentation of single cells,

showed no clear difference between DSM43989 pEPR1-p45gfp compared to ATCC 13032

pEPR1-p45gfp while the remaining two C. diphtheriae strains showed a delayed co-localization

Fig 4. Fluorescence microscopy of C. elegans colonization. Nematodes infected with bacteria were

mounted onto agar pads, paralyzed with 0.6% 2-phenoxy-2-propanol and photographed using a Leica

DMI4000B. In each of three independent experiments, approximately 20 worms were infected.

Representative results are shown. C. elegans fed with (A) E. coli OP50 pEPR1p45gfp, (B) C. diphtheriae

DSM43988 pEPR1p45gfp, (C) C. diphtheriae DSM43989 pEPR1p45gfp and (D) C. diphtheriae DSM44123

pEPR1p45gfp.

https://doi.org/10.1371/journal.pone.0180105.g004
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with acidic compartments of J774E macrophages (Fig 8A). In contrast, all C. diphtheriae
strains showed a delay of phagolysosome formation compared to C. glutamicum when images

of THP-1 cells were analyzed (Fig 8A). Automated analyses of fluorescence microscopy images

using the more robust, pixel-based method showed consistently that all GFP-tagged C.

diphtheriae strains were able to slow down phagosome maturation in murine and human cell

lines compared to the non-pathogenic GFP-expressing C. glutamicum (Fig 8B).

Response of macrophage cell lines to infection

In addition to phagolysosome formation, macrophage function was addressed by monitoring

different signaling pathways. First, supernatants of J774E and THP-1 cells infected with C.

diphtheriae strains at an MOI of 10 for 2, 8 and 20 hours were collected and used for determi-

nation of IL-6 and G-CSF secretion. In these measurements, no statistically relevant differ-

ences in the behavior of strain DSM43989 were observed. After 20 h, all strains reached about

800 pg ml-1 of IL-6 and 1,500 pg ml-1 for G-CSF in J774E supernatants (Fig 9A and 9B). Cyto-

kine secretion was stronger in THP-1 cells reaching about 1,400 pg ml-1 for IL-6 (with excep-

tion of DSM439888, which reached only about 900 pg ml-1) and 3,000 pg ml-1 for G-CSF

(Fig 9C and 9D).

Fig 5. Replication of C. diphtheriae in macrophages. Uptake and survival of strains was tested in murine

J774E (A, B) and human THP-1 (C, D) cells. The percentage of CFU in respect to the applied inoculum (A, C)

and relative to the value 2 hours after infection set to 100% (B, D) is shown.

https://doi.org/10.1371/journal.pone.0180105.g005
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As a second approach, NF-κB induction was analyzed in response to infection with C.

diphtheriae. Cells of the reporter cell line THP-1-Blue NF-κB were incubated for 20 hours with

viable and UV-killed bacteria of non-pathogenic C. glutamicum ATCC 13032 and pathogenic

C. diphtheriae DSM43988, DSM43989 and DSM44123 (Fig 10). Viable C. diphtheriae led to

strongest NF-κB activation when MOI 1 was tested, while the MOI of 10 led to decreased NF-

κB induction, which might be due to detrimental effects on the cells. The activation by the

non-pathogenic C. glutamicum was independent of its MOI (Fig 10A). In contrast, a weaker

NF-κB activation was observed for MOI 1 compared to MOI 10, when dead bacteria were

used (Fig 10B). Therefore, the activation by dead bacteria seems to be dose-dependent. More-

over, dead bacteria reached the values obtained for viable cells only in case 10-fold higher

MOIs were applied.

Taken together, these data indicate a functional NF-κB signal transduction pathway in

THP-1 cells, indicating that delay of phagolysosome formation is caused by a specific mecha-

nism, which is independent of C. diphtheriae mycolates.

Comparative genome sequence analysis

Since we were interested in the molecular background of mycolic acid deficiency in

DSM43989, the genome sequence of this strain was determined together with DSM44123. The

genomes of strains DSM43989 and DSM44123 were assembled into 45 and 28 contigs with

total assembly sizes of 2.45 Mb and 2.37 Mb, respectively. The genome sequences of these

strains are available from the GenBank with the accession numbers LJXS00000000 and

Fig 6. Labeling and tracking of acidic organelles in macrophages cells infected with C. diphtheriae.

J774E cells were incubated with LysoTracker Red DND-99 for 120 min before cells were infected with C.

glutamicum ATCC 13032 pEPR1p45gfp and C. diphtheriae strains DSM43988 pEPR1p45gfp, DSM43989

pEPR1p45gfp and DSM44123 pEPR1p45gfp at an MOI of 10 for 30 min. Extracellular bacteria were killed by

the addition of gentamicin and after 2, 4 and 20 h, cells were fixed. Nuclei were stained with DAPI, the

cytoskeleton with Alexa Fluor 647 Phalloidin and micrographs were taken using the confocal laser-scanning

microscope Leica SP5 II and analysed with the LAS software suite. Non-pathogenic C. glutamicum

immediately co-localize with acidic compartments (2 h) whereas C. diphtheriae strains only show co-

localization after longer incubation time (4 h to 20 h). Representative pictures are shown. Scale bars: 10 μm.

https://doi.org/10.1371/journal.pone.0180105.g006
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LJXR00000000, respectively. The genome sequence of strain DSM43988 was obtained from

the GenBank and was included in the comparative analyses (Accession No. AUZN00000000,

[2]).

Strain DSM43989 is distinct from DSM44123 and DSM43988 as the former belong to

sequence type (ST) 44 and both the latter strains are ST26. A closer bioinformatics analysis

revealed that all genes necessary for mycolic acid synthesis in corynebacteria were present in

genomes of the studied C. diphtheriae strains including DSM43989 (Table 3). Since C. glutami-
cum strains carrying deletions of otsA and treY or of otsA, treY and treS were also devoid of tre-

halosyl mycolates [41,50,51], the genome sequences of these C. diphtheriae strains were also

BLAST-searched for corresponding genes. While the treYZ pathway was absent in all C.

diphtheriae genome sequences, otsAB, different mycolyltransferase-encoding genes and genes

coding for enzymes involved in glycogen metabolism were observed in all three genomes.

A BLAST search of genes identified in strain NCTC 13129 with a potential involvement in

the mycolic acid biosynthesis revealed their presence in all three C. diphtheriae genomes

(Table 3). However, DIP0789, annotated to encode an enoyl-CoA hydratase, was a pseudogene

in DSM43989.

The role of the putative enoyl-CoA hydratase

To investigate the putative role of the DIP0789, the corresponding gene B178_03333was

amplified from chromosomal DNA of DSM43988 and cloned into expression plasmid pZ8-1.

When complementation of the growth defect was tested, no positive effect of the correspond-

ing plasmid was observed: strain DSM43989 transformed with the empty vector control pZ8-1

reached a doubling time of 131 ± 22 min, while the overexpression of B178_03333 in

Fig 7. Labeling and tracking of acidic organelles in macrophages cells infected with C. diphtheriae.

THP-1 cells were incubated with LysoTracker Red DND-99 for 120 min before cells were infected with C.

glutamicum ATCC 13032 pEPR1p45gfp and C. diphtheriae strains DSM43988 pEPR1p45gfp, DSM43989

pEPR1p45gfp and DSM44123 pEPR1p45gfp at an MOI of 10 for 30 min. Extracellular bacteria were killed by

the addition of gentamicin and after 2, 4 and 20 h, cells were fixed. Nuclei were stained with DAPI, the

cytoskeleton with Alexa Fluor 647 Phalloidin and micrographs were taken using the confocal laser-scanning

microscope Leica SP5 II and analysed with the LAS software suite. Non-pathogenic C. glutamicum

immediately co-localize with acidic compartments (2 h) whereas C. diphtheriae strains only show co-

localization after longer incubation time (4 h to 20 h). Representative pictures are shown. Scale bars: 10 μm.

https://doi.org/10.1371/journal.pone.0180105.g007
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DSM43989 led to a doubling time of 132 ± 19 min (means and standard deviations from three

independent experiments). Since the synthesis of the mycolic layer is a highly complex process

not only the presence of a protein might be important, but also time and activity level might be

crucial for full complementation of a defect. Therefore, as a more sensitive approach, cell wall

extracts were investigated by thin-layer chromatography. In fact, in contrast to the empty vec-

tor control, the complementation of DSM43989 with B178_03333 clearly restored the

CMAMES levels in the DSM43989 strain carrying the corresponding overexpression vector

and as well as the production of TDM (Fig 2A and 2B), showing that the role of the enoyl-CoA

Fig 8. Automated analysis of co-localization of bacteria with acidic compartments. At least 8

fluorescence microscopy images were analyzed for each data set as described in the Materials and Methods

section. (A) Co-localization of corynebacteria with acidic compartments at bacterial level and (B) co-

localization at pixel level in murine J774E and human THP-1 macrophage-like cell lines.

https://doi.org/10.1371/journal.pone.0180105.g008
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hydratase is key in restoring the function. According to the literature, the MS analysis of

CMAMES from C. diphtheriae and other members of the genus should reveal peaks within the

500–595 m/z range that account for the presence of the most abundant species, i.e. C30-C34

[52,53]. MS data revealed the total absence of peaks within that m/z range in the DSM43989

and DSM43989 empty vector strains for both cell wall bound lipids and total lipids methyl

ester fractions. These peaks were restored by complementation with B178_03333, although the

heterogeneity and the abundance of cell wall bound corynomycolic acids methyl esters could

not be entirely restored (S1 Fig). The results obtained suggest that the putative enoyl-CoA

hydratase DIP0789 is involved in mycolic acid synthesis in C. diphtheriae.

Discussion

Almost all Corynebacterinae are characterized by a typical, lipid-rich cell wall structure with an

outer membrane layer dominated by mycolic or corynomycolic acids linked to arabinogalac-

tan or esterified to trehalose as trehalose monomycolate (TMM) and trehalose dimycolate

(TDM) [54]. Due to the hydrophobic character of the mycolic acid layer, it functions as a per-

meability barrier [55,56], and might prevent the access of harmful substances. In line with this

idea, the mycolate-free strain DSM43989 showed in fact a higher susceptibility to antibiotics,

especially β-lactam antibiotics.

Besides the passive function as building block for a permeability barrier, TDMs of patho-

genic mycobacteria have been recognized for decades for their role in induction of inflamma-

tory responses, granuloma formation and adjuvant activity [57,58]. While mycolic acid

synthesis is essential in M. tuberculosis, C. diphtheriae is not only viable without mycolic acids,

but also survival in macrophages seems not to be impaired. This result could not be observed

for the non-pathogenic strain C. glutamicum [17]. This is astonishing on first sight, since in

Fig 9. Cytokine ELISA of macrophages after infection with C. diphtheriae. Supernatants of J774E (A, B)

and THP-1 (C, D) cells infected with C. diphtheriae were collected at 2 (black bars), 8 (grey bars) and 20 h

(light grey bars) post-infection and used as samples for determination of (A, C) IL-6 and (B, D) G-CSF

concentrations. Data shown are mean values of three independent biological replicates each performed in

triplicates ± standard deviation.

https://doi.org/10.1371/journal.pone.0180105.g009
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Fig 10. NF-κB activation in THP1-Blue NF-κB reporter cells after C. diphtheriae infection. THP1-Blue

NF-κB cells were incubated for 20 h with A) viable and B) UV-killed bacteria of the non-pathogenic C.

glutamicum ATCC13032 and pathogenic C. diphtheriae strains DSM43988, DSM43989 and DSM44123 at an

MOI of 1 (grey bars), 10 (black bars). Supernatants were taken and mixed with QuantiBlue SEAP detection

solution leading to a change in color upon NF-κB activation. Data shown are mean values of three

independent biological replicates each performed in triplicates ± standard deviation.

https://doi.org/10.1371/journal.pone.0180105.g010
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Table 3. Presence and absence of genes involved in mycolic acid synthesis in C. diphtheriae strains. The NCTC 13129 sequence was used as com-

parison. DIP1118, which is absent in DSM43988 and DSM43989 is annotated as two smaller genes in DSM44123. Partial genes, potentially due to gaps in

the genomic sequence, are shaded in grey. DIP0789, highlighted in yellow, is a pseudogene in DSM43989.

NCTC

13129

Gene ID Function DSM43988 DSM43989 DSM44123

DIP0658 accD1/

pccB1

Propionyl CoA carboxylase beta chain 1 B178_02716 AO271_00190 AOT42_01525

DIP0660 pccB2 Propionyl CoA carboxylase beta chain 2 B178_02731 AO271_00180 AOT42_01535

DIP0740 accD2 Acyl-CoA carboxylase beta subunit B178_03126 AO271_10895 AOT42_01905

DIP0649 accBC Acyl-CoA carboxylase alpha subunit B178_03136 AO271_00235 AOT42_01480

DIP0787 accDA Acetyl-CoA carboxylase carboxyl transferase

subunit

B178_03318—

B178_03323

AO271_01375 AOT42_07885

DIP0657 accE Acetyl-CoA carboxylase subunit B178_02711 AO271_00195 AOT42_01520

DIP2188 - Propionyl CoA carboxylase beta B178_09863 AO271_04260 AO271_04260

DIP2183 mmpL1 Putative drug exporter of the RND superfamily B178_09823 AO271_04230 AOT42_05820

DIP0250 mmpL2 Putative drug exporter of the RND superfamily B178_00902—

B178_00917

AO271_09785 AOT42_10445

DIP1118 - Integral membrane protein (MmpL family) - AOT42_03000-AOT42_03005 -

DIP1812 cmrA Corynebacterineae mycolate reductase A B178_08010 AO271_08895 AOT42_06590

DIP0365 cmtA/slpA Trehalose corynomycolyl transferase A (surface-

layer protein A)

B178_01563 AO271_04745 AOT42_00045

DIP2194 cmtB Trehalose corynomycolyl transferase B B178_09908 AO271_04295 AOT42_05760

DIP2193 cmtC/csp1 Trehalose corynomycolyl transferase C B178_09898 AO271_04285 AOT42_05770

DIP2339 cmtD Trehalose corynomycolyl transferase D B178_10633 AO271_06825 AOT42_03595

DIP1966 otsA Alpha,alpha-trehalose-phosphate synthase B178_08689 AO271_05880 AOT42_07065

DIP1968 otsB Trehalose 6-phosphate phosphatase B178_08699 AO271_05870 AOT42_07055

DIP1066 glgE Alpha-1,4-glucan:maltose-1-phosphate

maltosyltransferase

B178_04681 AO271_03420 AOT42_02730

DIP1065 glgB 1,4-alpha-glucan (glycogen) branching enzyme B178_04676 AO271_03415 AOT42_02725

DIP1572 glgX Glycogen debranching protein B178_06829 AO271_08725 AOT42_09590

DIP1846 fas Fatty acid synthase B178_08075-B178_08090 AO271_10830 AOT42_06660

DIP1116 - Putative exported esterase/hydrolase - AO271_03670 AOT42_02980

DIP1200 - Putative membrane protein B178_05156 AO271_06340 AOT42_08635

DIP2015 - Putative exported lipase - - -

DIP1472 - 4’-Phosphopentethenyl transferase B178_06664 AO271_07215 AOT42_04865

DIP1845 - 4’-Phosphopentethenyl transferase B178_08070 AO271_10835 AOT42_06655

DIP2191 elrF Envelope lipids regulation factor B178_09888 AO271_04275 AOT42_05780

DIP2189 pks13 Polyketide synthase involved in mycolic acid

biosynthesis

B178_09868 AO271_04265 AOT42_05790

DIP2190 fadD1 Acyl-CoA synthetase B178_09883 AO271_04270 AOT42_05785

DIP1725 fadD2 Acyl-CoA synthetase B178_07560 AO271_02620 AOT42_06170

DIP0358 fadD3 Acyl-CoA synthetase B178_01528 AO271_04780 AOT42_00010

DIP1038 fadD4 Acyl-CoA synthetase B178_04551 AO271_03280 AOT42_02595

DIP0386 fadD6 Acyl-CoA synthetase B178_01673 AO271_04655 AOT42_00130

DIP0387 fadD7 Acyl-CoA synthetase B178_01678 AO271_04660 AOT42_00135

DIP0789 echA2 Enoyl-CoA hydratase B178_03333 AO271_01385 AOT42_07875

DIP0885 echA5 3-hydroxyisobutyryl-CoA hydrolase B178_03750 AO271_01750 AOT42_07510

DIP0421 menB 1,4-dihydroxy-2-naphthoyl-CoA synthase

(DHNA-CoA synthase)

B178_01848 AO271_04490 AOT42_00305

https://doi.org/10.1371/journal.pone.0180105.t003
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analogy to mycobacteria a function of corynotrehalosylmycolates in pathogenicity was at least

discussed [6]. However, at least two mycolic acid-free pathogenic Corynebacterium species are

known, Corynebacterium amycolatum and Corynebacterium kroppenstedtii [59–62], which suc-

cessfully interact with human hosts, showing at mycolic acids may not be crucial in Corynebac-
terium host interaction. In fact, for C. diphtheriae pathogenicity determinants like DIP0733

were described recently [22,63], which might comprise similar functions as trehalosyldimyco-

lates of M. tuberculosis.
Interestingly, Park-Williams strain DSM43989 was found to be mycolic acid deficient in

this study, despite the fact that all genes previously known to be necessary for mycolic acid syn-

thesis were found intact. Comparative genome sequence analyses revealed the DIP0789 as a

pseudogene in DSM43989 and partial restoration of corynomycolic acids following comple-

mentation with a functional copy of the gene from DSM43988 revealed a previously unknown

role in corynomycolate biosynthesis. Interestingly, no full complementation was achieved.

This observation might either hint to a complex regulation and activity of the corresponding

gene product or the existence of additional unknown factors responsible for the lack of myco-

lates in DSM43989. However, partial complementation of corynomycolic acid biosynthesis in

corynomycolate-deficient mutants is not without precedent; corynomycolic acid biosynthesis

was only partially restored in a C. glutamicum pks13 mutant following introduction of a pks13
containing plasmid [64].

DIP0789 is annotated as an enoyl-CoA hydratase, an enzyme known to be involved in the

isomerization of 2-trans-enoyl-ACP to 3-cis-enoyl-ACP in FAS-II fatty acid biosynthetic path-

way (hydratase/isomerase superfamily: Pfam000378; [11,65]). The gene is present in single

copy in most C. diphtheriae genomes but it is a pseudogene in strains DSM43989 and NCTC

05011 [24,66]; genome accession no: AJVH00000000.1). It is not clear if strain NCTC 05011

also expressed the mycolic acid deficiency phenotype. This gene has been annotated as two

smaller genes in strain PW8 (CDPW8_0784 and CDPW8_0785; genome accession no:

CP003216.1) but it may just be a miss annotation as the nucleotide sequence of DIP0789 show

100% coverage and 99% identity in PW8.

A protein BLAST search revealed a wide presence of homologous genes within CMNR

group. While corynebacterial species including C. ulcerans, C. pseudotuberculosis and C. gluta-
micum appears to possess a single homolog of enoyl-CoA hydratase encoding gene, multiple

copies have been observed in some members of genera Mycobacterium and Rhodococcus. Sur-

prisingly, many paralogues of echA in M. tuberculosis appear to be missing canonical active site

residues essential for isomerase function [67]. Interestingly, EchA6 from M. tuberculosis
appears to be a non-catalytic protein that plays an important role in mycolic acid biosynthesis,

possibly as functioning as a conduit for long chain fatty acids recycled into the mycolate bio-

synthesis machinery.

Enoyl-CoA hydratase enzymes had been reported in the context of the catabolism of fatty

acids [68,69], but the non-catalytic EchA6 encode by Rv0905 has recently been described as a

fatty acid shuttle in mycobacteria, where it binds to acyl-CoA units, interacts with FAS-II mod-

ule components and its depletion leads to the suppression of mycolic acid biosynthesis [67].

Although it was reported as essential under the tested conditions, mutant strains were

obtained in previous screenings [70,71]. The functional link between EchA6 and DIP0789 is

not necessarily obvious, and since there is only one FAS-I system in C. diphtheriae and the

Corynebacterium genus lacks of a FAS-II system [43,72], clarification whether Rv0905 and

DIP0789 have the same role or not is needed. A BLAST analysis reveals a 38% of identity for

their protein sequences, but more interesting, both genes are in the same cluster with accD
genes Rv0904c and DIP0787, respectively, showing 49% of identity between their protein

sequences. In C. glutamicum, accD2 and accD3 genes have been found to be involved in
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mycolic acids biosynthesis [29], but the synteny between the enoyl-CoA hydratase and the

AccD is missing. Nevertheless, in C. diphtheriae, it seems plausible that the Rv0905 homolog

could have a role in mycolic acids biosynthesis by carrying acyl-CoA units between β-

oxidation and lipid biosynthesis, connecting both pathways in a regulatory fashion.

In summary, the results obtained in this study show that mycolic acids may have varying

functions in different members of the CMNR group. Furthermore, our data indicate that also

the complex synthesis pathway of the cell envelope including the corynomycolic acid layer is

not fully understood in corynebacteria.

Supporting information

S1 Fig. Mass spectrometry analyses of lipid extracts from different Corynebacterium
strains. Analyses reveal the total absence of peaks within the 500–595 m/z range (indicated by

black line under abscissa) accounting for the most abundant species C30-C34 in DSM43989

and DSM43989 pZ8-1 for both cell wall bound (A) and total lipid methyl ester fractions (B).

Peaks were restored under the overexpression of B178_03333 in DSM43989 and were also

present in DSM43988 and DSM44123 as well as in C. diphtheriae strain INCA402 and C. gluta-
micum wild type ATCC 13032 used as additional controls.
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50. Gebhardt H, Meniche X, Tropis M, Kramer R, Daffé M, Morbach S. The key role of the mycolic acid con-

tent in the functionality of the cell wall permeability barrier in Corynebacterineae. Microbiology. 2007;

153:1424–34. https://doi.org/10.1099/mic.0.2006/003541-0 PMID: 17464056
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54. Marrakchi H, Laneelle MA, Daffé M. Mycolic acids: structures, biosynthesis, and beyond. Chem Biol.

2014; 21:67–85. https://doi.org/10.1016/j.chembiol.2013.11.011 PMID: 24374164

55. Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H. Disclosure of the mycobacterial outer

membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl

Acad Sci U S A. 2008; 105:3963–7. https://doi.org/10.1073/pnas.0709530105 PMID: 18316738

56. Stephan J, Bender J, Wolschendorf F, Hoffmann C, Roth E, Mailänder C, et al. The growth rate of Myco-

bacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol Microbiol. 2005;

58:714–30. https://doi.org/10.1111/j.1365-2958.2005.04878.x PMID: 16238622

57. Geisel RE, Sakamoto K, Russell DG, Rhoades ER. In vivo activity of released cell wall lipids of Myco-

bacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates. J Immunol. 2005;

174:5007–15. PMID: 15814731

58. Hunter RL, Olsen MR, Jagannath C, Actor JK. Multiple roles of cord factor in the pathogenesis of pri-

mary, secondary, and cavitary tuberculosis, including a revised description of the pathology of second-

ary disease. Ann Clin Lab Sci. 2006; 36:371–85. PMID: 17127724

59. Collins MD, Burton RA, Jones D. Corynebacterium amycolatum sp.nov., a new mycolic acid-less Cory-

nebacterium species from human skin. FEMS Microbiol Lett. 1988; 49:349–52.
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