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One-Sentence Summary:  
A genetic disease–associated mutation disrupting a calcium-sensing receptor structural motif causes 
biased signaling through β-arrestin. 
 
Editor’s Summary:  
GPCR signaling biased by a salt bridge 
The calcium-sensing receptor (CaSR) is a G protein–coupled receptor (GPCR) that plays an important 
role in extracellular calcium homeostasis by stimulating intracellular calcium signaling and mitogen-
activated protein kinase (MAPK) pathways. Mutations in CASR that specifically affect either 
intracellular calcium or MAPK signaling have been associated with inherited forms of hypocalcemia. 
Gorvin et al. identified a CASR mutation that results in an Arg-to-Gly substitution at amino acid 
position 680 (R680G) in CaSR, in a family with hypocalcemia. Functional analysis of CaSRR680G in 
cultured cells revealed that this missense mutation did not affect intracellular calcium signaling but 
enhanced the ability of CaSR to stimulate MAPK through a mechanism that depended on the 
scaffolding protein β-arrestin, rather than on G proteins. Structural modeling and mutational analysis 
demonstrated that the substitution likely disrupted a salt bridge in CaSR. These findings identify a 
structural feature of CaSR that is important for controlling signaling bias. 
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ABSTRACT 

The calcium-sensing receptor (CaSR) is a G protein–coupled receptor (GPCR) that signals through 

Gq/11 and Gi/o to stimulate cytosolic calcium (Ca2+
i) and mitogen-activated protein kinase (MAPK) 

signaling to control extracellular calcium homeostasis. Studies of loss- and gain-of-function CASR 

mutations, which cause familial hypocalciuric hypercalcemia type 1 (FHH1) and autosomal dominant 

hypocalcemia type 1 (ADH1), respectively, have revealed the CaSR to signal in a biased manner. 

Thus, some mutations associated with FHH1 lead to signaling predominantly through the MAPK 

pathway, whereas mutations associated with ADH1 preferentially enhance Ca2+
i responses. Here, we 

report a previously unidentified ADH1-associated R680G CaSR mutation, which led to the 

identification of a CaSR structural motif that mediates biased signaling. Expressing the R680G CaSR 

mutant in HEK293 cells showed that this mutation increased MAPK signaling without altering Ca2+
i 

responses. Moreover, this gain-of-function in MAPK activity occurred independently of Gq/11 and Gi/o, 

and was mediated instead by a non-canonical pathway involving β-arrestin scaffolding proteins. 

Homology modeling and mutagenesis studies showed the R680G CaSR mutation selectively 

enhanced β-arrestin signaling by disrupting a salt bridge formed between Arg680 and Glu767, which are 

located in the CaSR transmembrane domain 3 and extracellular loop-2, respectively. Thus, our results 

demonstrate CaSR signaling through β-arrestin and the importance of the Arg680-Glu767 salt bridge in 

mediating signaling bias. 
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INTRODUCTION 

 

The calcium-sensing receptor (CaSR) is a family C G protein–coupled receptor (GPCR) that is highly 

abundant in the parathyroid glands and kidneys and plays an essential role in extracellular calcium 

(Ca2+
e) homeostasis by decreasing parathyroid hormone (PTH) secretion and increasing urinary 

calcium excretion in response to elevations in Ca2+
e concentrations (1). The human CaSR is encoded 

by the CASR gene located on chromosome 3q21.1 and consists of: an extracellular domain, which 

binds Ca2+
e and mediates receptor dimerization; seven transmembrane domains (TMDs); and an 

intracellular domain, which is involved in activation of downstream signaling effectors such as G 

proteins and phospholipase C (PLC) (2, 3). The CaSR stimulates two major signal transduction 

cascades. The first is the Gq/11-phospholipase C (PLC)-mediated generation of inositol 1,4,5-

trisphosphate (IP3), which induces a rapid rise in intracellular calcium (Ca2+
i) concentrations (4). The 

second is the mitogen-activated protein kinases (MAPKs), such as extracellular signal–regulated 

kinases 1 and 2 (ERK1/2), which phosphorylate proteins mediating cytosolic signaling and translocate 

into the nucleus to activate transcription factors involved in cellular proliferation and differentiation 

(5). The CaSR has been shown to activate MAPK signaling in a manner that depends on the G 

proteins Gq/11, and Gi/o, which inhibits cyclic adenosine monophosphate (cAMP) synthesis, and by a 

potentially G protein–independent mechanism involving β-arrestin types 1 and 2 (6). β-arrestins are 

intracellular scaffolding proteins that play a critical role in inactivating GPCRs by inhibiting 

interactions with G proteins and by targeting these receptors for clathrin-mediated endocytosis (7). 

Moreover, β-arrestins have been shown to enhance GPCR-mediated MAPK signaling from clathrin-

coated structures (8).  

 

The importance of the CaSR in the regulation of Ca2+
e has been highlighted by the identification of 

loss-of-function CaSR mutations that give rise to familial hypocalciuric hypercalcemia type 1 (FHH1) 

and neonatal severe hyperparathyroidism (NSHPT), as well as by gain-of-function CaSR mutations 

that cause autosomal dominant hypocalcemia type 1 (ADH1), which is characterized by 

hypocalcemia, hyperphosphatemia, normal or low circulating PTH concentrations, ectopic 
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calcifications, and a relative or absolute hypercalciuria (9, 10). Functional studies have demonstrated 

that these disease-causing mutations may influence the signaling responses of CaSR-expressing cells 

in a biased manner (11). Thus, some FHH1-causing mutations switch the CaSR from preferentially 

coupling to Ca2+
i to signaling equally through the Ca2+

i and MAPK pathways or predominantly 

through MAPK (11). In contrast, many ADH1-associated CaSR mutations lead to a signaling bias by 

causing CaSR to couple more strongly to Ca2+
i (11) than to MAPK pathways. Studies involving 

positive and negative allosteric CaSR-modulating compounds, known as calcimimetics and 

calcilytics, respectively, have also revealed biased signaling responses, with both classes of drugs 

influencing Ca2+
i to a greater extent than they do ERK1/2 phosphorylation (12). Although these 

findings have established that agonist-induced CaSR signaling may occur in a biased manner, the 

GPCR structural motifs that mediate ligand-dependent bias remain to be elucidated. Here, we describe 

a previously unidentified ADH1-causing mutation that affects the Arg680 residue of CaSR, which is 

located at the outer membrane end of TMD3. Our studies show that this residue is involved in 

forming a salt bridge with the extracellular loop 2 (ECL2) residue Glu767. This salt bridge influences 

β-arrestin signaling, and its disruption leads to enhanced MAPK signaling without altering Ca2+
i 

responses. 
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RESULTS 

A CaSRR680G mutation is responsible for autosomal dominant hypocalcemia type 1 (ADH1) in a 

family 

The proband, a 7-year-old male, presented with hypocalcemic symptoms (Table S1). The 

hypocalcemia was associated with a low serum PTH concentration. His father also had hypocalcemia, 

whereas his mother and two paternal half-siblings were normocalcemic (Fig. 1A, Table S1). DNA 

sequence analysis of CASR in the proband and his father (Fig. 1A) identified a heterozygous C-to-G 

transition at nucleotide c.2038 (Fig. 1B), which resulted in a missense substitution of Arg680 to Gly 

(R680G) (Fig. 1C) that is located in TMD3 of the CaSR protein (Fig. 1D). Bioinformatic analyses 

using the Polyphen-2 and MutationTasting websites (13, 14) predicted the R680G mutation to be 

damaging and likely disease-causing (Polyphen-2 score 1, MutationTasting score 0.99). The absence 

of this DNA sequence abnormality in >6500 exomes from the National Heart, Lung and Blood 

Institute Exome Sequencing Project (NHLBI-ESP) cohort and >60,700 exomes from the Exome 

Aggregation Consortium (ExAC) cohort, together with evolutionary conservation of the Arg680 

residue in the CaSR (Fig. 1D), also indicated that R680G likely represents a pathogenic mutation 

rather than a benign polymorphic variant. Furthermore, mutations involving this residue have been 

reported in two cases of FHH, in which Arg680
 was mutated to either a Cys or His residue, indicating 

that the Arg680 residue is important in CaSR function (11, 15). We therefore characterized the effects 

of the R680G missense mutation in vitro to determine its effect on CaSR-mediated signaling.   

 

CaSRR680G is present at the plasma membrane and does not exhibit abnormal intracellular 

calcium signaling 

FHH1-causing mutations at Arg680 have been reported to decrease CaSR accumulation at the cell 

surface (11). We therefore evaluated whether the ADH1-causing R680G mutation may also affect the 

abundance of CaSR at the plasma membrane. Western blot analyses, using cytoplasmic and plasma 

membrane fractions of HEK293 cells transiently transfected with plasmid constructs that expressed 

6 
 



either the wild-type (CaSRWT) or mutant (CaSRR680G) CaSR fused to the N-terminus of enhanced GFP 

(pEGFP-N1) (16, 17), revealed both CaSRWT and CaSRR680G to be present at the cell surface (fig. 

S1A-S1D). Furthermore, quantification of the abundance of CaSRWT and CaSRR680G at the plasma 

membrane by Western blot analyses of cells that transiently expressed each protein and were 

biotinylated using the membrane-impermeant sulfo-NHS-SS-biotin, revealed that the abundance of 

CaSRWT and CaSRR680G at the cell surface was not significantly different (fig. S1, S2A-S2C). Thus, 

unlike the FHH-causing mutations at Arg680, the R680G mutation did not alter the abundance of the 

CaSR at the plasma membrane. 

To assess the effects of the R680G mutation on CaSR-mediated Ca2+
i responses, we transiently 

transfected HEK293 cells with pEGFP-N1-CASR constructs that expressed EGFP-tagged versions of  

CaSRWT , CaSRR680G, or the previously characterized ADH1-causing L173F mutant CaSR (CaSRL173F) 

(16). Expression of CaSRs was confirmed by Western blot analysis (Fig. 2A). The Ca2+
i responses in 

cells expressing wild-type or mutant CaSRs, as measured by a Fluo-4 intracellular calcium assay (18), 

increased in a dose-dependent manner in response to stimulation with increasing Ca2+
e concentrations 

([Ca2+]e) of 0-15mM (Fig. 2, B and C), as expected. Expression of CaSRL173F resulted in a leftward 

shift of the concentration-response curve (Fig. 2B), with a significantly lower half maximal (EC50) 

value, compared to expression of CaSRWT (Fig. 2, B and C), whereas the EC50 value for cells 

expressing CaSRR680G was not significantly different from cells expressing CaSRWT. Thus, the EC50 

for cells expressing CaSRWT was 2.64mM (95% confidence interval (CI) = 2.40-2.89mM), compared 

to 1.68mM (95%CI = 1.50-1.89mM) for CaSRL173F-expressing cells, and 2.73mM (95%CI = 2.56-

2.90mM) for CaSRR680G -expressing cells (Fig. 2, B and C). Therefore, the R680G mutation did not 

affect Ca2+
i signaling downstream of CaSR. Previous studies have demonstrated that the Arg680 

residue lies within the binding pocket for the calcilytic compound NPS-2143 (18). To investigate 

whether the R680G mutation may disrupt NPS-2143–mediated allosteric inhibition of the CaSR, we 

measured the Ca2+
i responses of cells expressing the L173F or R680G mutant forms of CaSR in the 

presence of 500nM NPS-2143, a concentration 25 times greater than that required to normalize a 

reported gain-of-function CaSR mutation (19). Treatment with 500nM NPS-2143 significantly 
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increased the EC50 of CaSRWT-expressing cells to 3.81mM (95% CI = 3.56-4.08mM) compared to 

untreated CaSRWT-expressing cells and that of CaSRL173F-expressing cells to 3.34mM (95% CI = 3.12-

3.57mM) compared to untreated CaSRL173F-expressing cells (Fig. 2, B and C). In contrast, this 

concentration of NPS-2143 had no significant effect on the EC50 values of cells expressing CaSRR680G 

(Fig. 2, B and C). Thus, the R680G mutation abrogated the effect of NPS-2143 on CaSR-mediated 

Ca2+
i responses. 

To verify the findings of the Ca2+
i Fluo-4 assays, we performed luciferase reporter assays using a 

construct containing a nuclear factor of activated T-cells (NFAT) response element, which is activated 

by increases in Ca2+
i (20). We measured NFAT luciferase reporter activity in HEK293 cells 

transiently co-transfected with the reporter construct and CaSRWT , CaSRR680G or CaSRL173F. Western 

blot analysis confirmed the expression of wild-type and mutant CaSRs in these cells (Fig. 2D), and 

the NFAT reporter activity increased in a dose-dependent manner following stimulation with 

increasing [Ca2+]e (Fig. 2E). Cells expressing CaSRL173F showed significantly increased NFAT fold-

change responses (fold-change = 13.8 ± 1.1 following exposure to 5mM [Ca2+]e), compared to cells 

expressing CaSRWT (fold-change = 6.1 ± 0.7, Fig. 2E). In contrast, CaSRR680G-expressing cells had 

similar NFAT reporter activity (fold-change = 8.7 ± 1.7) to that of cells expressing CaSRWT (Fig. 2E).  

 

The R680G mutation increases MAPK signaling downstream of CaSR 

To assess whether the R680G CaSR mutation may influence MAPK signaling, we measured fold-

changes in phosphorylated ERK1/2 in response to increasing [Ca2+]e in HEK293 cells transiently 

expressing  CaSRWT, CaSRR680G, or CaSRL173F. Densitometric analysis of Western blots revealed that 

stimulation with 5mM [Ca2+]e, when compared to 0mM [Ca2+]e, increased ERK1/2 phosphorylation 

responses of cells expressing wild-type and mutant CaSRs (Fig. 3A and 3B and fig. S3A-S3D), but 

ERK1/2 phosphorylation was significantly greater in cells expressing the mutant forms of CaSR 

compared to cells expressing the wild-type CaSR. To further assess these responses, we measured 

accumulation of phosphorylated ERK1/2 in response to 0-10mM [Ca2+]e using AlphaScreen analysis 
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(Fig. 3C and 3D) following Western blotting to confirm the expression of wild-type and mutant 

CaSRs in the cells (Fig. 3C). Ca2+
e stimulation induced a dose-dependent increase in phosphorylated 

ERK1/2 fold-change responses in all cells (Fig. 3D). These responses were significantly increased at 

10mM [Ca2+]e, a concentration that has been reported to lead to near-maximal signaling responses in 

CaSR-expressing HEK293 cells (21), in both the CaSRR680G- and CaSRL173F-expressing cells (4.7 ± 

0.1 and 5.2 ± 0.2, respectively), compared to cells expressing CaSRWT (3.6 ± 0.1) (Fig. 3D). We also 

investigated the effect of the R680G CaSR mutation on MAPK signaling by measuring gene 

transcription induced by a luciferase reporter construct containing a serum-response element (SRE), 

which is a downstream target of ERK1/2 signaling (21, 22). Western blot analysis confirmed 

expression of wild-type and mutant CaSRs in cells used for the SRE reporter experiments (Fig. 3E), 

and exposure to Ca2+
e led to a dose-dependent increase in SRE reporter activity in all cell types (Fig. 

3F). Expression of the CaSRR680G or CaSRL173F significantly increased fold-change responses at 10mM 

[Ca2+]e (R680G = 25 ± 4,; and L173F = 38 ± 8) compared to cells expressing CaSRWT (15 ± 2) (Fig. 

3F). Thus, the R680G mutation increased MAPK signaling, consistent with this being a gain-of-

function mutation (11). To determine whether the CaSRR680G may interfere with the effect of NPS-

2143 on CaSR-induced MAPK signaling, we repeated the SRE experiment in the presence of 500nM 

NPS-2143 and following stimulation with 10mM [Ca2+]e. The presence of NPS-2143 did not alter 

expression of the wild-type or mutant CaSRs (Fig. 3G) or affect the SRE reporter responses of cells 

expressing the CaSRR680G, but it reduced SRE reporter responses of cells expressing CaSRWT or 

CaSRL173F (Fig. 3H). Thus, the R680G mutation abolished the effect of NPS-2143 on CaSR-mediated 

MAPK signaling. 

 

The increased MAPK responses of CaSRR680G occur independently of Gq/11 and Gi/o 

Compared to CaSRWT, CaSRR680G exhibited increased ERK1/2 phosphorylation (Fig. 3) without 

altered Ca2+
i responses (Fig. 2). To determine whether this biased signaling depended on G proteins, 

we further investigated Gq/11- and Gi/o-mediated signaling in HEK293 cells transiently transfected with  

CaSRWT, CaSRR680G, or CaSRL173F (Fig. 4A). The Gq/11 pathway was first evaluated by measuring the 
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fold-change accumulation of IP1, which is a stable metabolite of IP3 (23), in response to alterations in 

[Ca2+]e. Increasing [Ca2+]e led to a concentration-dependent fold-change increase in IP1, which was 

significantly higher in CaSRL173F-expressing cells (68 ± 8), but was not significantly different in 

CaSRR680G-expressing cells (24 ± 5), when compared to CaSRWT-expressing cells (30 ± 8) (Fig. 4B). 

The Gq/11 pathway was evaluated further by assessing the effects of two inhibitors of the Gq/11 

pathway, YM-254890 and UBO-QIC, both of which selectively block guanosine diphosphate (GDP) 

dissociation from Gq (24, 25), on SRE reporter activity in cells expressing wild-type or mutant 

CaSRs(Fig. 4C). YM-254890 abolished SRE reporter responses in CaSRWT- and  CaSRL173F-

expressing cells (Fig. 4D), but had no effect on CaSRR680G-expressing cells (Fig. 4D) when compared 

to  cells expressing CaSRWT. Similarly, UBO-QIC significantly decreased SRE reporter responses in 

CaSRWT- and CaSRL173F-expressing cells but did not significantly alter responses in CaSRR680G-

expressing cells (Fig. 4E). These findings indicated that the R680G mutation does not increase 

signaling through Gq/11 proteins.  

We assessed signaling though the Gi/o pathway by measuring cAMP accumulation in cells expressing 

the wild-type or mutant forms of CaSR (Fig. 5A) in response to increasing [Ca2+]e. A dose-dependent 

decrease in cAMP was observed in all cells (Fig. 5B), and cells expressing CaSRL173F had a more 

pronounced cAMP inhibition at 2.5mM Ca2+
e and a significantly lower half maximal inhibitory 

concentration (IC50) value of 1.05mM (95%CI = 0.88-1.22), compared to cells expressing CaSRWT 

(IC50 = 3.11mM (95%CI = 2.88-3.34mM) (Fig. 5C). In contrast, the cAMP responses of cells 

expressing CaSRR680G (IC50 = 3.10mM (95%CI = 2.90-3.30)) did not significantly differ from cells 

expressing CaSRWT (Fig. 5, B-C). To confirm that the R680G mutation does not enhance MAPK 

signaling through a Gi/o-dependent pathway, we also evaluated SRE reporter activity in the presence 

of pertussis toxin (PTx), which is a selective Gi/o inhibitor. Treatment with PTx or vehicle had no 

effect on the expression of CaSRWT, CaSRR680G, or CaSRL173F (Fig. 5D). However, addition of PTx led 

to a similar (>50%) reduction in SRE reporter fold-change responses in both wild-type and mutant 

CaSR-expressing cells compared to the respective vehicle-treated cells (Fig. 5E), although PTx-

treated CaSRR680G-expressing cells continued to show significantly increased SRE reporter responses 

compared to PTx-treated cells expressing CaSRWT (Fig. 5F). Thus, inhibition of Gi/o-mediated 
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signaling does not rectify the increased SRE reporter responses caused by the R680G mutation, and 

overall the combined results indicate that the gain of function associated with the R680G mutation 

likely involves a mechanism that is independent of Gq/11 and Gi/o. 

 

The increased MAPK responses of CaSRR680G are mediated by β-arrestin 

To determine whether the increased MAPK signaling responses of cells expressing CaSRR680G may be 

mediated by a β-arrestin–dependent pathway, we performed SRE reporter assays in the presence of 

single siRNAs targeting either β-arrestin1 or β-arrestin2 or a scrambled siRNA sequence. Treatment 

of HEK293 cells transiently expressing CaSRWT, CaSRR680G, or CaSRL173F with β-arrestin1– or β-

arrestin2–targeted siRNA resulted in efficient knockdown of β-arrestin1 and β-arrestin2, respectively, 

compared to cells treated with scrambled siRNA (fig. S4A-S4B) and did not affect CaSR expression 

(Fig. 6A and 6B). In the presence of scrambled siRNA, Ca2+
e-induced SRE reporter fold-change 

responses in CaSRR680G- and CaSRL173F-expressing cells were significantly increased compared to 

cells expressing CaSRWT , (Fig. 6, C to F). Treatment with β-arrestin1 or β-arrestin2 siRNA 

significantly reduced the SRE reporter activity in CaSRWT-expressing cells by 20-30% compared to 

CaSRWT-expressing cells treated with scrambled siRNA (Fig. 6C and 6D). Moreover, the knockdown 

of β-arrestin1 or β-arrestin2 in cells expressing CaSRR680G led to a marked reduction (>80%) in SRE 

reporter activity compared to the same cells treated with scrambled siRNA (Fig. 6C and 6D). 

However, the increase in SRE reporter activity of cells expressing CaSRL173F was not altered by 

knocking down β-arrestin1 or β-arrestin2 (Fig. 6E and 6F). These findings were further evaluated in 

SRE reporter studies in which cells expressing CaSRWT, CaSRR680G, or CaSRL173F were exposed to 

10mM [Ca2+]e (fig. S5A and S5B). These experiments showed that β-arrestin1 and β-arrestin2 

knockdown reduced SRE responses in cells expressing CaSRR680G, such that the SRE fold-change 

response was either decreased or not significantly different to that of cells expressing CaSRWT (fig. 

S5A and S5B). Moreover, the addition of NPS-2143 did not further reduce the SRE fold responses in 

cells expressing CaSRR680G (fig. S5A and S5B). In contrast, knocking down β-arrestin1 or β-arrestin2 

in cells expressing CaSRL173F had no effect on SRE fold-change responses when compared to 

11 
 



CaSRWT-expressing cells not treated with siRNA, whereas treatment with NPS-2143 rectified these 

SRE fold-change responses in CaSRL173F-expressing cells so that they were similar to those of cells 

expressing CaSRWT (fig. S5C and S5D). These findings confirm that the Arg680 residue is required for 

NPS-2143 to affect CaSR activity and indicate that signaling through β-arrestins does not represent a 

general mechanism for ADH1-mediated increases in MAPK responses, but does represent the 

preferred signaling pathway of CaSRR680G. 

 

The R680G mutation disrupts an Arg680-Glu767 salt bridge that is required for β-arrestin–

mediated CaSR signaling  

To determine the mechanism by which the R680G mutation, which is located in the third 

transmembrane domain (TMD3) of CaSR (Fig. 7A), may influence β-arrestin–mediated signaling, we 

constructed a homology model of the TMDs and evaluated the structural consequences of the R680G 

mutation (Fig. 7B–7D). A homology model was chosen because a crystal structure of the TMD of the 

CaSR does not exist. We therefore generated a homology model based on the crystal structure of the 

TMD of the related family C GPCR human metabotropic glutamate receptor 1 (mGluR1) (26), which 

is likely to have a similar structural topology to the CaSR TMD. For the homology modelling we 

utilized the mGluR1 TMD in complex with the negative allosteric modulator 4-fluoro-N-(4-(6-

isopropylamino)pyrimidin-4-yl)thiazol-2-yl)-N-methylbenzamide (FITM) (26). Arg680 of CaSR, 

which is located in the extracellular portion of TMD3, corresponds to Gln660 in TMD3 of mGluR1 

(Fig. 7C and 7D). The CaSR TMD homology model indicated that the Arg680 side chain may 

potentially form a salt bridge with the side chain of the neighbouring Glu767 residue, located in the 

extracellular loop 2 (ECL2) or, less likely, with the side chain of the more distantly sited Glu837 

residue, which is located on TMD7 (Fig. 7D). Thus, the R680G mutation likely disrupts a salt bridge 

between the Arg680 and Glu767 residues, or possibly a salt bridge between the Arg680 and Glu837 

residues. CaSR mutations of both the Glu767 and Glu837 residues have previously been shown to 

increase signaling by the CaSR (26-29), and we therefore postulated that the β-arrestin–mediated 
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increase in MAPK signaling caused by the R680G mutation may result from the disruption of a salt 

bridge between Arg680 and either Glu767 or Glu837.  

To test this hypothesis we mutated the Glu767 and Glu837 residues to Arg (E767R and E837R, 

respectively), because this would allow us to determine whether reversing the residue charge, which 

would cause a switch from a favorable salt bridge to unfavourable electrostatic interaction with 

Arg680, would affect β-arrestin–mediated CaSR signaling. The effect of the E767R and E837R 

mutations on MAPK signaling downstream of CaSR was initially assessed by Western blot analysis 

of ERK1/2 phosphorylation in response to treatment of cells with 0mM and 5mM Ca2+
e. The 

abundance of phosphorylated ERK1/2 in response to 5mM Ca2+
e was similar in cells expressing 

CaSRWT and CaSRE837R (fig. S6A-S6D and fig. S7A-S7D). However, cells expressing CaSRE767R had 

significantly more ERK1/2 phosphorylation compared to cells expressing CaSRWT, consistent with a 

gain of function (fig. S6 and fig. S7). These findings were further evaluated in SRE reporter studies in 

cells treated with siRNAs targeting β-arrestins. Expression of the CaSRs was confirmed by Western 

blot analysis (Fig. 8A and 8B). In the presence of scrambled siRNA, Ca2+
e-induced SRE reporter 

activity in cells expressing CaSRE767R was significantly increased compared to cells expressing 

CaSRWT, whereas cells expressing CaSRE837R had SRE reporter responses similar to cells expressing 

CaSRWT (Fig. 8C and 8D). Moreover, treatment with siRNAs targeting β-arrestin1 or β-arrestin2 had 

no effect on SRE responses in cells expressing CaSRE837R (Fig. 8C and 8D) or CaSRWT, except when 

the cells were treated with 10mM Ca2+
e. These results indicate that Glu837 is unlikely to be involved in 

forming a salt bridge with Arg680 or other adjacent residues (fig. S8A-S8B), and that mutations of 

Glu837 are likely to alter CaSR function by another mechanism.   

In contrast, SRE reporter activity decreased significantly upon knockdown of β-arrestin1 or β-

arrestin2 in cells expressing CaSRE767R in the presence of 2.5-10mM Ca2+
e, compared to the same cells 

treated with scrambled siRNA (Fig. 8C and 8D). These findings indicate that, similar to the R680G 

mutation, the E767R mutation significantly increased CaSR-induced MAPK signaling through a β-

arrestin–mediated pathway and that Glu767 was likely required to form a salt bridge with Arg680. To 

confirm that the Arg680-Glu767 salt bridge was required for MAPK signaling, we generated a double-
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mutant CaSR, in which the Arg680 residue was mutated to Glu680 (R680E) and the Glu767 (E767R) 

residue was mutated to Arg767 (E767R). This Glu680-Arg767 double-mutant CaSR (CaSRR680E-E767R) was 

predicted to form a salt bridge between residues 680 and 767, and thus mediate MAPK signaling 

similar to CaSRWT. To determine the effect of the combined mutations on MAPK signaling, we 

initially assessed ERK1/2 phosphorylation by Western blot analysis (fig. S6 and fig. S9A-S9D), after 

confirming expression of CaSR by Western blot analysis of lysates from cells expressing wild-type 

and mutant CaSRs (Fig. 8E and 8F). The abundance of phosphorylated ERK1/2 in response to 5mM 

Ca2+
e was similar in cells expressing CaSRWT and cells expressing the double mutant Glu680-Arg767 

form of CaSR (fig. S6 and fig. S9). SRE reporter responses did not differ significantly between cells 

expressing the wild-type and double mutant forms of CaSR, and knockdown of β-arrestin1 or β-

arrestin2 only reduced SRE reporter responses in the presence of 10mM Ca2+
e, similarly to cells 

expressing CaSRWT (Fig. 8G and 8H). Thus, these double mutant studies demonstrated the importance 

of the salt bridge between residues 680 and 767 for CaSR-induced MAPK signaling.    

   

DISCUSSION 

Our studies have identified a previously undescribed ADH1-causing mutation affecting the CaSR 

(R680G), which causes a biased signaling response to Ca2+
e and leads to a gain-of-function in MAPK 

signaling without altering Ca2+
i responses (Figs. 2, 3 and 6). The effect of this mutation contrasts with 

the majority of mutations associated with ADH1, which bias the CaSR towards Ca2+
i signaling (11). 

The CaSR is most abundant in the parathyroid glands (30), and the demonstration that the R680G 

CaSR mutation leads to selective MAPK activation suggests that this signaling pathway may 

influence the parathyroid set-point for PTH release. Thus, the hypocalcemia in the family harboring 

this CaSR mutation may have been caused by the MAPK pathway increasing the sensitivity of 

parathyroid cells to Ca2+
e, which impaired the synthesis and release of PTH at physiological Ca2+

e 

concentrations. Consistent with this, an ex-vivo study has previously shown alterations in MAPK 

activity to acutely influence PTH secretion from cultured human parathyroid cells (31). However, the 

physiological significance of CaSR-mediated biased signaling leading to MAPK activation remains to 
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be elucidated. Furthermore, our studies have revealed the importance of functionally characterizing 

CaSR variants by measuring both Ca2+
i and MAPK signaling responses because the R680G mutation 

may have been mistakenly classified as a benign polymorphism if only the Ca2+
i activity downstream 

of this mutant receptor had been assessed. Therefore, CaSR variants previously detected in 

hypocalcemic and hypercalcemic probands and classified as polymorphisms may require further 

evaluation to ensure that biased signaling is not a feature of these variants. 

Our studies also reveal that the Arg680 residue is critical for the binding and efficacy of the allosteric 

CaSR modulator NPS-2143. Allosteric CaSR modulators have been predicted to bind to a cavity 

formed by the extracellular portions of the CaSR TMDs (18), and it is noteworthy that the Arg680 

residue is located at the entrance to this putative binding cavity. Moreover, the NPS-2143 calcilytic 

compound is predicted to bind to this cavity, and our results showing that the CaSR R680G mutation 

abolishes NPS-2143–mediated Ca2+
i and MAPK responses demonstrate the importance of the CaSR 

Arg680 residue in mediating the action of this calcilytic drug (18).  

The CaSR has previously been shown to activate the MAPK cascade through Gq/11 and Gi/o (5), and in 

keeping with this, our analysis of the reported ADH1-causing L173F CaSR mutant showed this to 

enhance MAPK signaling through Gq/11 and Gi/o (Fig. 3 to 5). Thus, two inhibitors of the Gq/11 

pathway, YM-254890 and UBO-QIC, and PTx, a selective inhibitor of Gi/o, abolished and reduced, 

respectively, the enhanced MAPK signaling associated with the L173F mutant CaSR (Fig. 4 and 5). 

In contrast, assessment of the newly identified ADH1-causing R680G mutant CaSR using the Gq/11 

and Gi/o inhibitors revealed that the associated increased MAPK signaling remained significantly 

increased compared to the MAPK signaling in similarly treated cells expressing wild-type CaSR (Fig. 

4 and 5), although it was reduced when compared to untreated cells expressing the G680 CaSR 

mutant (Fig. 4 and 5). However, the increased MAPK signaling due to the R680 mutation, but not that 

due to the F173 mutation, was significantly reduced by knockdown of β-arrestin1 or β-arrestin2 when 

compared to similarly treated cells expressing wild-type CaSR (Fig. 4 and 5).  Taken together, these 

results indicate that the gain-of-function F173 mutant CaSR signals through the canonical Gq/11 and 

Gi/o pathways, but the gain-of-function G680 mutant CaSR signals through the canonical pathways as 
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well as a non-canonical pathway that is independent of Gq/11 and Gi/o and involves the β-arrestin 

proteins (Fig. 6).  

The β-arrestins may enhance ERK1/2 signaling by acting as protein scaffolds that mediate the 

association of ERK1/2 with upstream MAPK components such as Raf-1 and the MAPK and ERK 

kinases 1 and 2 (MEK1/2) (32). The assembly of the β-arrestin–MAPK complex is triggered by 

GPCR activation and occurs after agonist-bound GPCRs have undergone clathrin-mediated 

endocytosis (33). Thus, CaSR endocytosis is likely required to mediate β-arrestin–dependent MAPK 

activation, and this is consistent with our reported finding of impaired CaSR-MAPK signaling due to 

FHH3-associated loss-of-function mutations of the adaptor-related protein 2 σ-subunit (AP2σ), which 

mediates the formation of clathrin-coated vesicles (21). Moreover, our present study has revealed that 

β-arrestins 1 and 2 mediated the gain of function caused by the R680G CaSR mutation (Fig. 6), and it 

is of note that both of these β-arrestin isoforms, which are present in parathyroid glands, have been 

reported by co-immunoprecipitation and mammalian two-hybrid assays to directly bind to the CaSR 

cytoplasmic terminus (34).  

The role of β-arrestins in GPCR endocytosis and signal transduction has been characterized (7, 32), 

although the GPCR domains and structural motifs that mediate these interactions with β-arrestins 

have not been fully elucidated. A crystal structure analysis of the GPCR family A member β2-

adrenergic receptor (β2-AR) complexed with β-arrestin 1 has shown that the GPCR cytoplasmic 

terminus, third intracellular loop, and inner membrane aspect of the TMDs facilitate β-arrestin binding 

to the GPCR (35). In addition, mutations affecting the cytoplasmic regions of family A and B GPCRs 

have been shown to selectively influence β-arrestin–mediated signaling (36, 37). Our finding that 

mutation of the CaSR Arg680 residue, which is located at the outer end of TMD3 (Fig. 7), also 

modulates β-arrestin signaling, reveals the importance of the extracellular regions of GPCRs for 

influencing β-arrestin function. Our homology modeling and functional analysis of engineered CaSR 

mutants has revealed that the Arg680 residue forms a salt bridge with the Glu767 residue located in 

ECL2 (Fig. 8) and that this salt bridge likely maintains the CaSR in an inactive conformation. Indeed, 

disruption of this salt bridge by mutating either Arg680 or Glu767 led to a gain of function in β-arrestin–
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mediated MAPK signaling, whereas restoration of the salt bridge in the Glu680-Arg767 double mutant 

normalized CaSR function (Fig. 8). The Arg680-Glu767 salt bridge therefore mediates a functionally 

important interaction between TMD3 and ECL2 (Fig. 7 and 8). ECL2 connects the outer ends of 

TMD4 and TMD5 (Fig. 7A and 7B), and thus it seems likely that disruption of the Arg680-Glu767 salt 

bridge may lead to a lateral displacement of TMD3 away from TMD4 or TMD5, thereby facilitating 

β-arrestin binding in a manner analogous to that reported in a cryo-EM structural analysis of the β2-

AR–β-arrestin complex, which showed that binding of β-arrestin to the β2-AR TMD domain core 

region is mediated by an outward shift in the positioning of the TMD3, TMD5, and TMD6 helices 

(35).  

In conclusion, we have identified a CaSR mutation (R680G) that gives rise to ADH1 by exclusively 

activating a β-arrestin–mediated MAPK signaling pathway downstream of the CaSR. These studies 

provide key insights into CaSR structure and function and indicate that a salt bridge between TMD3 

and ECL2 plays a critical role in the control of β-arrestin–mediated CaSR signaling. Moreover, 

discovery of this novel β-arrestin–specific pathway may help facilitate the development of targeted 

therapeutics that can activate CaSR-mediated β-arrestin signaling in a biased manner. 
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MATERIALS AND METHODS 

DNA sequence analysis  

Written informed consent was obtained from the individuals and their relatives, and where appropriate 

the parents and guardians of children, using protocols approved by local and national ethics 

committees. Mutational analysis of the CASR exons and adjacent splice-sites was performed as 

described (38). Publicly accessible databases (dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) 

(39); 1000 genomes (http://browser.1000genomes.org) (40); the National Heart, Lung and Blood 

Institute (NHLBI) Exome Sequencing Project  (http://evs.gs.washington.edu/EVS/, EVS data release 

ESP6500SI) with details from the exomes of approximately 6500 individuals; and the Exome 

Aggregation Consortium (ExAC) (exac.broadinstitute.org) with details from exomes of 60,706 

unrelated individuals (41)), were examined for the presence of the c.2038C>G sequence variant.  

 

 

Protein sequence analysis and alignment and three-dimensional modeling of the CaSR 

structure  

 The effect of the R680G mutation was predicted using Polyphen-2 

(http://genetics.bwh.harvard.edu/pph2/) (13) and MutationTasting (http://www.mutationtaster.org/) 

(14). Protein sequences of CaSR orthologs were aligned using ClustalOmega 

(http://www.ebi.ac.uk/Tools/msa/clustalo/) (42). The HHpred homology detection server 

(https://toolkit.tuebingen.mpg.de/hhpred) was used to identify proteins in the Protein Data Bank with 

structural similarity to the CaSR and to perform amino acid sequence alignment (43). The amino acid 

sequence identity between human metabotropic glutamate receptor 1 (mGluR1)(44) and the CaSR is 

28% for 282 aligned amino acid residues. The CaSR sequence was threaded onto the mGluR1 

template coordinates, and Modeller (https://toolkit.tuebingen.mpg.de/modeller) was used to construct 

a homology model (45). Figures were prepared using the PyMOL Molecular Graphics System 

(Schrodinger, LLC). 
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Cell culture, transfection, and siRNA-mediated knockdown 

Studies were performed in HEK293 cells maintained in DMEM-Glutamax media (ThermoFisher) 

with 10% fetal bovine serum (Gibco) at 37ºC, 5% CO2. Mutations were introduced into the pEGFP-

N1-CaSRWT construct by site-directed mutagenesis using the Quikchange Lightning Kit (Agilent 

Technologies) and gene-specific primers (SigmaAldrich) as described (46, 47), Engineered mutations 

were verified using dideoxynucleotide sequencing with the BigDye Terminator v3.1 cycle sequencing 

kit (Life Technologies) and an automated detection system (ABI3730 automated capillary sequencer; 

Applied Biosystems) as previously reported (48). Wild-type and mutant CaSR pEGFP-N1 constructs, 

and luciferase reporter constructs (pGL4.30-NFAT and pGL4.33-SRE, Promega) were transiently 

transfected into HEK293 cells using Lipofectamine 2000 (LifeTechnologies) 48 hours before 

experiments, as described (49). Single siRNAs targeted to β-arrestin1 (Catalog No: 6218S, Cell 

Signalling Technology) or β-arrestin2 (Catalog No: sc29208, SantaCruz Biotechnology), or scrambled 

siRNA (Catalog No: SR301839, Origene) were transfected 24 hours before experiments at a 

concentration of 100nM. Successful transfection was confirmed by Western blot analysis, with the 

calnexin housekeeping protein being used as a loading control (46). Primary antibodies recognizing 

the following proteins were used for Western blot analysis at a dilution of 1:1000: CaSR (ADD, 

ab19347, Abcam), calnexin (Ab2301, Millipore), phosphorylated ERK1/2 (9101L, Cell Signaling 

Technology), total ERK1/2 (4695S, clone 137F5, Cell Signaling Technology), plasma membrane 

calcium ATPase (PMCA1) (ab190355, Abcam), β-arrestin1 (ab175266, Abcam), and β-arrestin2 (H-

9, sc-13140, SantaCruz). The Western blots were visualized using an Immuno-Star WesternC kit 

(BioRad) on a BioRad Chemidoc XRS+ system (46). For cell fractionation studies, cells were 

transfected with CaSR constructs and 48 hours later plasma membrane and cytoplasmic fractions were 

isolated using a plasma membrane extraction kit (Catalog No 65400, Abcam), as described (50). 

Plasma membrane fractions were dissolved in 0.5% Triton-X100 in PBS, and the cytoplasmic fraction 

in the supplied homogenization buffer. Each fraction was resuspended in Laemmli buffer and Western 

blot analysis performed, as described (48). Calnexin was used as a loading control for cytoplasmic 

fractions, and the PMCA1 protein used as a loading control for plasma membrane fractions. For 

studies of phosphorylated proteins, cells were treated for 5 minutes with either 0mM or 5mM Ca2+
e, 
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prior to lysis and proteins separated by SDS-PAGE. Following transfer to polyvinylidene difluoride 

(PVDF) membranes, blots were pre-incubated (blocked) in 5% bovine serum albumin (BSA) in Tris-

buffered saline with Tween-20 (TBSt) (Sigma) prior to probing for phosphorylated ERK. Blots were 

stripped with Restore Plus Western Blot Stripping Buffer (ThermoFisher) for 15 min, and then  

blocked in non-fat dried milk powder (commercially available as Marvel) dissolved in TBSt and 

reprobed for total ERK. Densitometry was performed using ImageJ 1.30 software (NIH, USA) and 

analysed using GraphPad Prism software (GraphPad software) and are expressed as mean±SEM. For 

studies involving NPS-2143 (ab145050, Abcam), cells were either incubated with DMSO (vehicle) or 

with 500 nM NPS-2143 in DMSO at 30 min prior to undertaking Fluo-4 Ca2+
i experiments (18), and 

for four hours prior to undertaking luciferase reporter assay experiments (49).  

 

Surface biotinylation experiments 

Biotinylation assays were performed by adapting previously published methods (51). Briefly, 

HEK293 cells were grown in T75 flasks and transiently transfected with 8 µg wild-type or mutant 

CaSR constructs. Forty-eight hours later cells were biotinylated using the membrane-impermeant 

sulfo-NHS-SS-biotin (Pierce, 2.5 mg/ml in PBS) for 30 minutes on ice. Cells were then rinsed with 

ice-cold PBS plus 100mM glycine, and solubilized in cell lysis buffer (150mM NaCl, 50mM Tris-

HCl, pH 7.4, 1mM EDTA, 1% Triton X-100) supplemented with 1 tablet of cOmplete, EDTA-free 

protease inhibitor cocktail (Roche). Cells were lysed for 1 hour at 4°C, pelleted at 13,000 x g for 15 

minutes, and biotinylated proteins isolated by incubation with streptavidin-agarose beads (Pierce) 

overnight at 4°C on a rotating wheel. Precipitates were washed with lysis buffer, and biotinylated 

proteins were eluted from beads using Laemmli buffer. Biotinylated proteins were then resolved by 

SDS-PAGE and probed for CaSR as described above. A 1:10 dilution of total protein was resolved 

alongside biotinylated proteins as a control.  Specificity of surface biotinylation was confirmed by the 

absence of the intracellular calnexin in the biotinylated fraction, but presence in total protein fractions. 

Densitometry was performed using ImageJ 1.30 software (NIH, USA) and analysed using GraphPad 

Prism software (GraphPad software) and are expressed as mean±SEM. 
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Intracellular calcium measurements 

Ca2+
e-induced Ca2+

i responses were measured by Fluo-4 calcium assays adapted from previously 

reported methods (18). Briefly, CaSR-expressing HEK cells were plated in poly-L-lysine–treated 

black-walled 96-well plates (Corning), and transiently transfected with 1000ng/ml pBI-CMV2-

GNA11. On the following day, cells were incubated in serum-free media for 2 hours, then loaded with 

Fluo-4 dye according to manufacturer’s instructions (Invitrogen). Cells were loaded for 40 minutes at 

37°C, then either a 20% aqueous solution of 2-hydoxypropyl-β-cyclodextrin (vehicle) or 500 nM 

NPS-2143 was added. Cells were then incubated for a further 20 minutes at 37°C (18). Baseline 

measurements were made and increasing doses of CaCl2 (0-10 mM) injected into each well using an 

automated system. Changes in Ca2+
i were recorded on a PHERAstar instrument (BMG Labtech) at 

37°C with an excitation filter of 485nm and an emission filter of 520nm. The peak mean fluorescence 

ratio of the transient response after each individual stimulus was measured using MARS data analysis 

software (BMG Labtech) and expressed as a normalized response. Nonlinear regression of 

concentration-response curves was performed with GraphPad Prism using the normalized response at 

each [Ca2+]e for each separate experiment and used to determine the EC50 (i.e. [Ca2+]e required for 

50% of the maximal response). Assays were performed in 4 biological replicates for each of the 

expression constructs. Statistical analysis was performed using the F-test (52, 53).  

 

Luciferase reporter assays 

Luciferase reporter assays were undertaken to measure SRE and NFAT responses. Cells were plated 

in 24-well plates and transiently transfected with 100ng/ml of the wild-type or mutant CaSR pEGFP-

N1 constructs, 100ng/ml luciferase construct (either pGL4-NFAT or pGL4-SRE), and 10ng/ml pRL. 

At 48 hours after transfection, cells were incubated in serum-free media overnight. Cells were then 

incubated in serum-free media containing 0-10mM CaCl2 for 4 hours. For studies with pertussis toxin 

(PTx, Catalog No: P7208, Sigma), cells were pre-incubated with 10μM forskolin (MP Biomedicals) 

overnight, then 300ng/ml PTx, or ethanol-diluent vehicle (Sigma) added with 0-10 mM CaCl2 (54). 
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For studies with Gq/11 inhibitors, cells were pre-treated with 10µM YM-254890 or vehicle (DMSO) 

for 5 minutes, or with 1µM UBO-QIC or vehicle (DMSO) for 2 hours.  Cells were lysed and assays 

performed using Dual-Glo Luciferase (Promega) on a Veritas Luminometer (Promega), as previously 

described (48). Luciferase:renilla ratios are shown as fold-changes relative to responses at basal CaCl2 

concentrations (0.1mM). Area under the curve (AUC) was calculated using GraphPad Prism and 

expressed as mean±SEM.   

 

AlphaScreen assays 

AlphaScreen assays to measure phosphorylated ERK 1/2 and cAMP were performed in 48-well plates 

using cells transiently transfected with 100ng of the wild-type or mutant CaSR pEGFP-N1 constructs 

48-hours prior to performance of assays. For phosphorylated ERK 1/2 studies, cells were incubated in 

serum-free media for 12 hours prior to 5-minute treatment with 0.1-10mM CaCl2. Cells were then 

lysed in Surefire lysis buffer (Perkin Elmer), and phosphorylated ERK 1/2 and total ERK1/2 assays 

were performed as previously described (21). For the cAMP assays, cells were treated with 10μM 

forskolin for 30 minutes prior to CaCl2 treatment in stimulation buffer [1x Hanks Buffered Saline 

Solution, 0.1% BSA, 0.1% 3-isobutyl-1-methylxanthine (IBMX), 0.5mM HEPES] plus 0.1-10mM 

CaCl2. Cells were incubated for 15 minutes, then lysed in a HEPES-based solution (0.1% BSA, 0.3% 

Tween-20, 5mM HEPES, pH7.4) and incubated for 4 hours. The fluorescence signal in AlphaScreen 

assays was measured using the PHERAstar FS microplate reader (BMG Labtech) (48). Nonlinear 

regression of concentration-response curves was performed with GraphPad Prism for the 

determination of IC50 (i.e., [Ca2+]e required for 50% inhibition of the maximal response). 

 

IP1 assay 

Assays were performed in 48-well plates and cells transiently transfected with 100ng of the wild-type 

or mutant CaSR pEGFP-N1 constructs 48 hours prior to performance of assays. At 24 hours prior to 

experiments, cells were re-plated in a 384-well plate, and 12-hours later, the media was changed to 

serum-free media. IP-One homogenous time-resolved fluorescence (HTRF) assays (Cisbio, Codolet, 

France) were performed according to manufacturer’s instructions and as previously described (23). 
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Cells were incubated for 30 minutes with stimulation buffer containing a single dose of CaCl2 (0.1-

10mM), followed by lysis in the manufacturer-supplied lysis buffer. Plates were read on a 

PHERAStar FS microplate reader one hour later (BMG Labtech). 

 

Statistical analysis 

A minimum of four independent biological replicates were used for all statistical comparisons. EC50 

and IC50 values were analysed using the F-test, as reported (53). All other data was analyzed by 2-way 

ANOVA with Tukey’s multiple-comparisons test. Statistical analyses were undertaken using 

GraphPad Prism (GraphPad), and a value of p<0.05 was considered significant for all analyses.  
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SUPPLEMENTARY MATERIALS 

Fig. S1. Plasma membrane and cytoplasmic CaSR in HEK293 cells 

Fig. S2. Abundance of CaSR in plasma membrane fractions  

Fig. S3. ERK phosphorylation in the ADH1-associated R680G and L173F mutant CaSRs used for 

densitometry analysis 

Fig. S4 siRNA-mediated knockdown of β-arrestin1- and β-arrestin2 

Fig. S5. Effect of NPS-2143 on β-arrestin–mediated MAPK signaling following stimulation with 

10mM [Ca2+]e  

Fig. S6. Effect of the engineered mutants E767R and E837R CaSRs on MAPK signaling 

Fig. S7. ERK phosphorylation in engineered E767R and E837R CaSR mutants used for densitometry 

analysis 

Fig. S8. Analysis of the CaSR Glu837 residue by homology modelling using the structure of mGluR1 

Fig. S9. Western blots to assess ERK phosphorylation in the engineered Glu680-Arg767 double CaSR 

mutant used for densitometry analysis 

Table S1. Clinical and biochemical findings in the parents and proband with the R680G CaSR 

mutation 
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FIGURE LEGENDS  

Fig. 1. Identification of an R680G CaSR mutation in a family with autosomal dominant 

hypocalcemia type 1 (ADH1) 

 

(A) Pedigree of family with ADH1. The proband (individual II.3) is indicated by an arrow. (B) A 

heterozygous C-to-G transition at nucleotide c.2038 was identified in the proband and his father  by 

Sanger DNA sequencing and confirmed to cosegregate with hypocalcemia. (C) This C-to-G transition 

changes a CGC codon to GGC and is predicted to result in a missense amino acid substitution from 

Arg to Gly at position 680 in the CaSR protein. (D) Multiple sequence alignment of residues 

surrounding the Arg680 (R) residue encompassing extracellular loop 1 (ECL1) and transmembrane 
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domain 3 (TMD3). The Arg680 (R) residue, which is evolutionarily conserved, is located within 

TMD3, and the mutant Gly680 (G) residue is shown in red. Conserved residues are shaded in gray. 
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Fig. 2. The CaSR R680G mutation does not affect intracellular Ca2+ signaling 

 

(A) Western blot analysis of HEK293 cells expressing wild-type (WT) or ADH1-associated mutant 

(R680G and L173F) CaSRs. Calnexin is a loading control. (B) Intracellular Ca2+ (Ca2+
i) responses to 

changes in extracellular Ca2+ concentration ([Ca2+]e) in cells expressing the indicated wild-type or 

mutant CaSRs in the absence or presence of the allosteric CaSR inhibitor NPS-2143. Inset shows 

magnification of the curves between 2-3.5mM [Ca2+]e. Data are shown as the mean±SEM from 4-7 

transfections, and EC50 values with 95% confidence intervals (CIs) are provided (F-test). (C) 

Histogram showing EC50 values with 95% CIs for cells expressing wild-type or R680G or L173F 

mutant CaSRs in the absence or presence of NPS-2143. (D) Western blot analysis of cells expressing 

the indicated wild-type and mutant forms of CaSR and used for assessment of NFAT reporter 

responses. (E) [Ca2+]e-induced NFAT reporter responses of cells expressing wild-type or mutant 

CaSRs. Responses at each [Ca2+]e are shown as a fold-change of basal (0.1mM) [Ca2+]e responses and 

presented as mean±SEM of 4 transfections. *p<0.05, **p<0.01 ****p<0.0001 using 2-way ANOVA 

with Tukey’s multiple-comparisons tests versus cells expressing wild-type CaSR at each [Ca2+]e .  
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Fig. 3. The CaSR R680G mutation increases downstream MAPK signaling 

 

(A) Western blot analysis showing Ca2+
e-induced phosphorylation of ERK1/2 (pERK1/2) in HEK293 

cells expressing wild-type (WT) or ADH1-associated CaSR mutants (R680G or L173F). (B) 

Densitometric analysis of Western blot data in panel A. (C) Western blot analysis showing transgenic 

expression of the indicated forms of CaSR in cells used to assess Ca2+
e-induced phosphorylation of 

ERK1/2 by AlphaScreen analysis. Calnexin is a loading control. (D) Ca2+
e-induced ERK1/2 

phosphorylation in CaSR-expressing cells as measured by AlphaScreen analysis, shown as the ratio of 

phosphorylated ERK1/2 (pERK) to total ERK. (E) Western blot analysis showing transgenic 
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expression of the indicated forms of CaSR in cells used to assess Ca2+
e-induced SRE reporter activity. 

(F) Ca2+
e-induced SRE reporter activity in CaSR-expressing cells. (G) Western blot analysis showing 

transgenic expression of CaSR in cells used to assess the effects of NPS-2143 on Ca2+
e-induced SRE 

responses. (H) SRE reporter activity in CaSR-expressing cells in the absence or presence of the 

allosteric CaSR inhibitor. Data shows mean±SEM values for N=4-20 independent transfections. 

**p<0.01, ***p<0.001, ****p<0.0001 for CaSRR680G versus CaSRWT; $$$p<0.001, $$$$p<0.0001 for 

CaSRL173F versus CaSRWT in panels B, D and F. §§p<0.01, §§§p<0.001 for NPS-2143-treated cells 

compared to respective untreated cells in panel H. Two-way ANOVA with Tukey’s multiple-

comparisons test. 
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Fig. 4. The CaSR R680G mutation does not affect Gq/11-mediated signaling 

 

(A) Western blot analysis of HEK293 cells expressing wild-type (WT) or ADH1-associated CaSR 

mutants (R680G or L173F). These cells were used for assessment of IP1 responses. Calnexin is a 

loading control. (B) Ca2+
e-induced IP1 fold change in cells expressing the indicated forms of CaSR. 

(C) Western blot analysis of cells used to assess the effect of the Gαq/11 inhibitors YM-254890 (YM) 

and UBO-QIC (UBO), on SRE reporter activity. (D) [Ca2+]e-induced SRE reporter activity in cells 

expressing the indicated forms of CaSR in the presence or absence of YM. (E) [Ca2+]e-induced SRE 

reporter in cells expressing the indicated forms of CaSR in the presence or absence of UBO-QIC. 

Data shows mean±SEM for 8-12 independent transfections. *p<0.05, **p<0.01 ****p<0.0001 for 

untreated cells expressing CaSRWT versus untreated (black) or YM- or UBO-QIC–treated (blue) cells 

expressing CaSRR690G in panels D and E. $p<0.05, $$p<0.01, $$$$p<0.0001 for untreated cells 

expressing CaSRWT versus untreated (black), or YM- or UBO-QIC–treated (red) cells expressing 

CaSRL173F in panels B, D and E (2-way ANOVA with Tukey’s multiple-comparisons test).  
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Fig. 5. The CaSR R680G mutation does not affect Gi/o-mediated signaling 

 

(A) Western blot analysis of HEK293 cells expressing wild-type (WT) or ADH1-associated CaSR 

mutants (R680G or L173F). These cells were used for assessment of cAMP responses. Calnexin is a 

loading control. (B) Ca2+
e-induced fold change in cAMP abundance in cells expressing the indicated 

forms of CaSR. (C) Histograms showing the cAMP IC50 with 95% confidence intervals for cells 

expressing the indicated forms of CaSR. (D) Western blot analysis of cells expressing the indicated 

forms of CaSR in the presence of pertussis toxin (PTx) or vehicle (Veh). These cells were used to 

assess effect of PTx on SRE reporter activity. (E) Fold change in [Ca2+]e-induced SRE reporter 

activity in cells expressing the indicated forms of CaSR in the absence or presence of PTx. (F) 

Histograms showing area under the curve (AUC) of SRE reporter responses in vehicle- or PTx-treated 

cells expressing the indicated forms of CaSR. Data shows mean±SEM for 4-12 independent 
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transfections. *p<0.05, ****p<0.0001 for CaSRR680G compared to CaSRWT in panels E-F. $p<0.05, 

$$$$p<0.0001 for CaSRL173F compared to CaSRWT in panels B, C, E and F (2-way ANOVA with 

Tukey’s multiple-comparisons test).  
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Fig. 6. Increased MAPK responses in cells expressing CaSRR680G involve a G-protein–

independent, β-arrestin–dependent pathway 

 

(A-B) Western blot analysis of HEK293 cells expressing wild-type (WT) or ADH1-associated CaSR 

mutants (R680G or L173F) and treated with scrambled siRNA (-) or siRNAs targeting (A) β-arrestin1 

(βarr1) or (B) β-arrestin2 (βarr2). Calnexin was used as a loading control. (C-D) [Ca2+]e-induced SRE 

reporter responses in cells expressing CaSRR680G and treated with a scrambled siRNA or with siRNAs 

targeting (C) βarr1or (D) βarr2 or a scrambled siRNA. (E-F) [Ca2+]e-induced SRE reporter responses 

in cells expressing CaSRL173F and treated with siRNAs targeting βarr1 (E) or βarr2 (F) or a scrambled 

siRNA. The responses of cells treated with siRNAs targeting β-arrestin were compared to the 

respective cells treated with scrambled siRNA using a 2-way ANOVA with Tukey’s multiple-
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comparisons test. $p<0.05 and $$p<0.0001 for scrambled vs siRNA for cells expressing wild-type 

(black) or R680G (blue) CaSR; *p<0.05, **p<0.01, ***p<0.001, ***p<0.0001 for scrambled siRNA 

treatment of cells expressing wild-type CaSR vs mutant CaSR (blue) and scrambled siRNA treatment 

of cells expressing wild-type CaSR vs targeted (β-arrestin) siRNA treated mutant CaSR (black). Data 

is shown as mean±SEM for 8-16 independent transfections.  
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Fig. 7. The Arg680 residue of CaSR forms a salt bridge with either Glu767 or Glu837 

 

(A) Schematic diagram of a CaSR monomer showing the extracellular bi-lobed venus flytrap domain 

(VFTD), seven transmembrane domains (TMDs 1-7) with extracellular loops 1–3 (ECL1–3) and 

intracellular loops 1–3 (ICL1–3), and the cytoplasmic domain. The locations of Arg680
 in TMD3 

(R680, blue), Glu767 in ECL2 (E767, red), and Glu837 in TMD7 (E837, magenta) are indicated. (B) 

Ribbon diagram showing the transmembrane domains of mGluR1 derived from the published crystal 

structure (44) and a model of the CaSR transmembrane regions based on homology to mGluR1. 

TMDs 1-7 are numbered; e and i indicate the extracellular and cytoplasmic components of the plasma 

membrane, respectively. (C) Close-up view of the mGluR1 binding pocket for the negative allosteric 

modulator 4-fluoro-N-(4-(6-isopropylamino)pyrimidin-4-yl)thiazol-2-yl)-N-methylbenzamide (FITM) 

(magenta and purple molecule), and (D) the corresponding region in the CaSR. Distances between 

selected atoms are indicated with dashed lines.  
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Fig. 8. Disruption of the Arg680-Glu767 salt bridge leads to increased β-arrestin–mediated 

MAPK signaling 

 

(A-B) Western blot analysis of HEK293 cells expressing wild-type or engineered mutant forms of 

CaSR (E767R or E837R) and treated with siRNAs targeting (A) β-arrestin1 (βarr1) or (B) β-arrestin2 

(βarr2). (C-D) [Ca2+]e-induced SRE reporter responses in cells expressing CaSRE767R or CaSRE837R and 

treated with a scrambled siRNA or with siRNAs targeting (C) βarr1or (D) βarr2. (E-F) Western blot 

analysis of HEK293 cells expressing wild-type CaSR, E767R CaSR, or a double mutant (dm) form of 

CaSR incorporating both the R680E and E767R mutations and treated with a scrambled siRNA or 

siRNA targeting (E) βarr1 or (F) βarr2. These cells were used to assess SRE reporter activity 
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following knockdown of βarr1 or βarr2. (G-H) [Ca2+]e-induced SRE reporter responses in cells 

expressing the double mutant CaSRR680E-E767R and treated with a scrambled siRNA or with siRNAs 

targeting (G) βarr1or (H) βarr2. Data shows mean±SEM for 8-16 independent transfections. *p<0.05, 

**p<0.001, ****p<0.0001 for E767R versus WT CaSR in panels C-D; $p<0.05, $$p<0.01, 

$$$$p<0.0001 for targeted versus scrambled siRNAs for wild-type (black) or E767R (blue) CaSR in 

panels C-D; $$p<0.01, $$$p<0.001, $$$$p<0.0001 for a comparison between Glu680-Arg767 or wild-type 

CaSR-expressing cells treated with targeted siRNA and respective cells treated with scrambled siRNA 

in panels G-H (2-way ANOVA with Tukey’s multiple-comparisons).  
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