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ON EXTREMIZERS FOR STRICHARTZ ESTIMATES FOR
HIGHER ORDER SCHRÖDINGER EQUATIONS

DIOGO OLIVEIRA E SILVA AND RENÉ QUILODRÁN

Abstract. For an appropriate class of convex functions φ, we study the Fourier
extension operator on the surface {(y, |y|2 + φ(y)) : y ∈ R2} equipped with pro-
jection measure. For the corresponding extension inequality, we compute optimal
constants and prove that extremizers do not exist. The main tool is a new com-
parison principle for convolutions of certain singular measures that holds in all
dimensions. Using tools of concentration-compactness flavor, we further investi-
gate the behavior of general extremizing sequences. Our work is directly related to
the study of extremizers and optimal constants for Strichartz estimates of certain
higher order Schrödinger equations. In particular, we resolve a dichotomy from the
recent literature concerning the existence of extremizers for a family of fourth or-
der Schrödinger equations, and compute the corresponding operator norms exactly
where only lower bounds were previously known.
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1. Introduction

Recently there has been considerable interest in the study of extremizers, optimal
constants, and sharp instances of various Fourier extension inequalities. The purpose
of the present paper is three-fold. Firstly, we establish a sharp Fourier extension
inequality on certain non-compact hypersurfaces in Euclidean space. Secondly, we
use concentration-compactness tools to study the qualitative behavior of extremizing
sequences for this sharp inequality. Thirdly, we explore the link between Fourier
extension inequalities and Strichartz estimates for certain higher order Schrödinger
equations, and resolve some dichotomies concerning the existence of extremizers that
have appeared in the recent literature.

Throughout the paper, we normalize the Fourier transform as follows:

f̂(y) =

∫
Rd

f(x)e−i〈x,y〉 dx,

where 〈·, ·〉 denotes the usual inner product in Rd. Given a sufficiently nice function
φ : Rd → R, consider the hypersurface in Rd+1

Σφ = {(y, |y|2 + φ(y)) : y ∈ Rd} (1.1)

endowed with projection measure

σ(y, t) = δ
(
t− |y|2 − φ(y)

)
dy dt, (1.2)

which in turn is defined by requiring that the identity∫
Rd+1

g(y, t) dσ(y, t) =

∫
Rd

g(y, |y|2 + φ(y)) dy

holds for every Schwartz function g. The Fourier extension operator for the hyper-
surface Σφ is defined as

f̂σ(x, t) =

∫
Rd

f(y)e−i〈x,y〉e−it(|y|
2+φ(y)) dy, (x, t) ∈ Rd+1.

Estimates for this operator stem from the seminal works of Tomas [31], Stein [29]
and Strichartz [30]. In particular, under certain fairly general convexity assumptions
on φ, the inequality

‖f̂σ‖
L2+ 4

d (Rd+1)
.d,φ ‖f‖L2(Rd)

holds in dimensions d > 1, see e.g. [18, 19, 21]. To pursue this point further, let
us specialize the discussion to the two-dimensional case d = 2. Using the fact that
in this case the exponent 2 + 4

d
= 4 is an even integer together with Plancherel’s

Theorem, the inequality

‖f̂σ‖L4(R3) .φ ‖f‖L2(R2)

can be rewritten in bilinear convolution form as

‖fσ ∗ fσ‖L2(R3) .φ ‖f‖2
L2(R2). (1.3)

We emphasize that, since the surface Σφ is not compact, inequality (1.3) does not
hold in general if the projection measure is replaced by the usual surface measure
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on Σφ. Inequality (1.3) will be established under some mild assumptions on φ in
Theorem 1.2 below. As we will see, it will follow from the fact that the convolution
σ ∗σ defines a measure which is absolutely continuous with respect to Lebesgue mea-
sure on R3, and whose Radon–Nikodym derivative is given by an essentially bounded
function.

In the first part of the paper, we address the question of existence of extremizers
for the sharp version of inequality (1.3), and compute the optimal constant. More
precisely, consider the sharp inequality

‖fσ ∗ fσ‖L2(R3) 6 R2
φ‖f‖2

L2(R2), (1.4)

where the optimal constant is given by

Rφ := sup
06=f∈L2(R2)

‖fσ ∗ fσ‖
1
2

L2(R3)

‖f‖L2(R2)

. (1.5)

Definition 1.1. An extremizing sequence for inequality (1.4) is a sequence {fn} ⊂
L2(R2) satisfying ‖fn‖L2(R2) 6 1, such that

‖fnσ ∗ fnσ‖L2(R3) → R2
φ, as n→∞.

An extremizer for inequality (1.4) is a nonzero function f ∈ L2(R2) which satisfies

‖fσ ∗ fσ‖L2(R3) = R2
φ‖f‖2

L2(R2).

The unperturbed case φ = 0 was treated by Foschi [11], who proved that extrem-
izers for the corresponding extension inequality on the paraboloid Σ0 are given by
Gaussians, and computed R0 = (π

2
)
1
4 . A key step in Foschi’s program was the ele-

mentary but crucial observation that the convolution of projection measure on the
two-dimensional paraboloid defines a constant function in the interior of its support,
see [11, Lemma 3.2], and Remark 2.2 below. Alternative approaches are available:
Hundertmark–Zharnitski [17] base their analysis on a novel representation of the
Strichartz integral, and Bennett et al. [3] identify a monotonicity property of such
integrals under a certain quadratic heat-flow. These proofs rely on the large sym-
metry group enjoyed by the paraboloid. Perturbed paraboloids Σφ with φ 6= 0 no
longer enjoy this special feature, and understanding the associated Fourier extension
operator in sharp form is an important step towards the understanding of general
manifolds with positive Gaussian curvature. This motivates our first main result.

Theorem 1.2. Let φ : R2 → R be a nonnegative, twice continuously differentiable,
strictly convex function, whose Hessian H(φ) satisfies one of the following conditions:

(i) H(φ)(y0) = 0 for some y0 ∈ R2, or
(ii) There exists a sequence {yn} ⊂ R2 with |yn| → ∞, such that H(φ)(yn) → 0,

as n→∞.

Let σ denote the projection measure on the surface Σφ. Then the inequality

‖fσ ∗ fσ‖L2(R3) 6 R2
φ‖f‖2

L2(R2) (1.6)
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holds for every f ∈ L2(R2), and is sharp with optimal constant given by

Rφ =
(π

2

) 1
4
. (1.7)

The sequence {fn/‖fn‖L2} defined via

fn(y) :=

{
e−n(ψ(y)−ψ(y0)−〈∇ψ(y0),y−y0〉), in case (i),
e−an(ψ(y)−ψ(yn)−〈∇ψ(yn),y−yn〉), in case (ii),

(1.8)

where ψ := | · |2 + φ and {an} is an appropriately chosen sequence, is extremizing for
inequality (1.6). Moreover, extremizers for inequality (1.6) do not exist.

Let us briefly comment on the proof of Theorem 1.2. In order to compute the optimal
constant Rφ and to show that extremizers do not exist, we employ methods from [24,
26] that are based on Foschi’s ideas [11], with a novel ingredient which we highlight
below. The main steps are the following:

• One shows that R4
φ 6 ‖σ ∗ σ‖L∞ <∞.

• One exhibits an explicit sequence {fn} ⊂ L2(R2) such that

lim inf
n→∞

‖fnσ ∗ fnσ‖2
L2

‖fn‖4
L2

> ‖σ ∗ σ‖L∞ .

• From the previous two steps, one concludes R4
φ = ‖σ ∗ σ‖L∞ .

• One proves that the set {(ξ, τ) ∈ R2+1 : (σ ∗ σ)(ξ, τ) = ‖σ ∗ σ‖L∞} has
Lebesgue measure zero.
• A careful review of Foschi’s method then implies

‖fσ ∗ fσ‖L2 < R2
φ‖f‖2

L2 ,

for every nonzero f ∈ L2(R2). In particular, extremizers do not exist.

The first and fourth steps above are based on a new comparison principle that trans-
lates into a pointwise inequality between convolution of projection measures on the
perturbed surface Σφ and the paraboloid Σ0, respectively. It leads to the computation
of the exact numerical value of the optimal constant Rφ. The comparison principle
holds in all dimensions d > 2, and we state it precisely as follows.

Theorem 1.3. For d > 2, let φ : Rd → R be a nonnegative, continuously differen-
tiable, strictly convex function. Let ϕ = | · |2 and ψ = | · |2 + φ. Let σ0, σ denote the
projection measures on the hypersurfaces Σ0,Σφ, respectively. Then(

σ ∗ σ
)
(ξ, 2ψ(ξ/2) + τ) 6

(
σ0 ∗ σ0

)
(ξ, 2ϕ(ξ/2) + τ), (1.9)

for every ξ ∈ Rd and τ > 0. Moreover, this inequality is strict for almost every point
in the support of the measure σ ∗ σ.

Certain related but distinct comparison principles have already proved useful in un-
derstanding the effect of global smoothing. See [28] for an instance in which such a
principle was used to derive new estimates for dispersive (and non-dispersive) equa-
tions from known ones, as well as an effective means to compare estimates for differ-
ent equations. The link with optimal constants and extremizers for a broad class of
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smoothing estimates is established in [4].

In the second part of the present paper, we adapt ideas from the concentration-
compactness principle of Lions [22] to examine the behavior of general extremiz-
ing sequences for inequality (1.6). Generally speaking, the theory of concentration-
compactness has proved a very efficient tool to exhibit the precise mechanisms which
are responsible for the loss of compactness in a variety of settings. In our concrete
problem, extremizers fail to exist because extremizing sequences concentrate. Con-
centration can only occur at points where the convolution σ ∗σ attains its maximum
value, or at spatial infinity. To make these concepts precise, we introduce the relevant
definitions.

Definition 1.4. A sequence {fn} ⊂ L2(R2) concentrates at a point y0 ∈ R2 if,
for every ε, ρ > 0, there exists N ∈ N such that, for every n > N ,∫

{|y−y0|>ρ}
|fn(y)|2 dy 6 ε‖fn‖2

L2(R2).

A sequence {fn} ⊂ L2(R2) concentrates along a sequence {yn} ⊂ R2 if, for every
ε, ρ > 0, there exists N ∈ N such that, for every n > N ,∫

{|y−yn|>ρ}
|fn(y)|2 dy 6 ε‖fn‖2

L2(R2).

A sequence {fn} ⊂ L2(R2) concentrates at infinity if, for every ε, ρ > 0, there
exists N ∈ N such that, for every n > N ,∫

{|y|6ρ}
|fn(y)|2 dy 6 ε‖fn‖2

L2(R2).

The following result holds under the general hypotheses of Theorem 1.2.

Theorem 1.5. Let φ : R2 → R be a nonnegative, twice continuously differentiable,
strictly convex function, whose Hessian satisfies condition (i) or condition (ii) from
Theorem 1.2. Then any extremizing sequence for inequality (1.6) has a further sub-
sequence which either concentrates at some point y0 ∈ R2 satisfying H(φ)(y0) = 0,
or concentrates at infinity.

It has long been understood that Tomas–Stein extension type inequalities are related
to Strichartz estimates for linear partial differential equations of dispersive type. To
illustrate this connection in the present situation, consider the multiplier operator

M̂φg = φ ĝ

acting on Schwartz functions g, and the associated Schrödinger equation{
iut +Mφu− µ∆u = 0, µ > 0,

u(·, 0) = f ∈ L2(Rd),
(1.10)

whose solution can be written as

u(x, t) =
1

(2π)d

∫
Rd

f̂(y)ei〈x,y〉eit(µ|y|
2+φ(y)) dy, (x, t) ∈ Rd+1. (1.11)
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In the third part of the paper, we consider Strichartz inequalities for solutions of
equation (1.10) in the two-dimensional case d = 2. In particular, we investigate the
family of inequalities

‖(µ+ |∇|2)
1
4 eit(φ(|∇|)−µ∆)f‖L4(R3) .µ,φ ‖f‖L2(R2), (1.12)

and mostly focus on the particular instance of a quartic perturbation, φ = | · |4.
In this case, inequality (1.12) can be proved via the method of stationary phase
together with the main theorem of [20], see the remarks preceding [19, Proposition
2.4], and [2, 21, 25] for further details. In the spirit of what had been done in the
one-dimensional setting in [18], this instance of inequality (1.12) was refined in [19],
with the goal of establishing a linear profile decomposition for a family of fourth order
Schrödinger equations. As a consequence, the authors of [19] obtained a dichotomy
result for the existence of extremizers in the cases µ ∈ {0, 1}, which by scaling extends
to the general case µ > 0, and can be summarized as follows: Either extremizers exist,
or extremizing sequences exhibit a certain classical Schrödinger behavior. See [19,
Theorems 4.1 and 4.2] for a precise formulation of these results. Along the way, the
authors of [19] obtained lower bounds for the norms of the corresponding Fourier
extension operators. The methods we use to study the sharp bilinear convolution
inequality (1.6) are robust enough to resolve this dichotomy, and to determine which
situation actually happens. In particular, we prove that extremizers exist if µ = 0,
but fail to exist if µ = 1. In the latter case, we also compute the operator norm
exactly.
To state our results precisely, let us start by considering the case of µ = 0 and φ = |·|4.
Then inequality (1.12) can be restated with the help of the Fourier transform, here
denoted by F , as

‖F(f | · |
1
2ν)‖L4(R3) . ‖f‖L2(R2), (1.13)

where the measure ν is given by ν(y, t) = δ
(
t− |y|4

)
dy dt. By Plancherel’s Theorem,

inequality (1.13) can be rewritten in sharp form as

‖f | · |
1
2ν ∗ f | · |

1
2ν‖L2(R3) 6 Q2‖f‖2

L2(R2), (1.14)

with optimal constantQ. The following result should be compared to [19, Theorem 4.1].

Theorem 1.6. The optimal constant for inequality (1.14) satisfies the bounds

π

4
√

3
< Q4 <

π

4
. (1.15)

Moreover, there exists an extremizer for inequality (1.14).

Still taking φ = | · |4, let us now consider the case of µ = 1. Then inequality (1.12)
can be restated as

‖F(f(1 + | · |2)
1
4σ)‖L4(R3) . ‖f‖L2(R2), (1.16)

where the measure σ is given by σ(y, t) = δ
(
t− |y|2 − |y|4

)
dy dt. By Plancherel’s

Theorem, inequality (1.16) can be rewritten in sharp form as

‖f
√
wσ ∗ f

√
wσ‖L2(R3) 6 S2‖f‖2

L2(R2), (1.17)
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with weight w = (1 + | · |2)
1
2 and optimal constant S. The following result is a special

case of Theorem 6.2 below.

Theorem 1.7. The value of the optimal constant for inequality (1.17) is given by
S4 = π

2
. Moreover, extremizers for inequality (1.17) do not exist, and extremizing

sequences concentrate at the origin.

In particular, Theorems 1.6 and 1.7 imply that Q4 < S4 = π
2
. The shape of (the

Fourier transform of) a general extremizing sequence for inequality (1.17) is then
given by [19, Theorem 4.2] and the remarks following it. Furthermore, as mentioned
in [19], it is of interest to extend the analysis to more general perturbations of the
Schrödinger equation. Our methods allow to make progress in a number of previously
untreated cases, and we comment on this in Remark 6.3 and §6.4 below.

Our results complement the recent, vast and very interesting body of work concerning
sharp Fourier extension and Strichartz estimates. In addition to the works previously
cited in this introduction, see [6, 7, 8, 12, 14] for results in sharp Fourier extension
theory on spheres, and [5, 9, 10, 15, 23, 27] for other instances.

Overview. The paper is organized as follows. In Chapter 2, we briefly comment on
the model case of a pure power perturbation of the paraboloid, and derive a useful
integral formula for the convolution of projection measure on a generic convex per-
turbation of the two-dimensional paraboloid. Chapter 3 is the technical heart of the
first part of the paper, and is devoted to the aforementioned comparison principle.
In particular, we prove Theorem 1.3, and briefly remark on possible extensions of
this result to n-fold convolutions if n > 3. The proof of Theorem 1.2 is presented in
Chapter 4. We discuss the behavior of general extremizing sequences in Chapter 5.
In particular, we establish a precise form of the geometric principle that distant caps
interact weakly, show some auxiliary results of concentration-compactness flavor, and
prove Theorem 1.5. Finally, we deal with sharp Strichartz inequalities in Chapter
6. We treat the case of quartic perturbations in §6.1, establishing a generalization
of Theorem 1.7. We study the convolution of projection measure associated to pure
powers in §6.2, and use this knowledge to tackle the case of the pure quartic in §6.3,
establishing Theorem 1.6, and of other pure powers in §6.4.

A word on forthcoming notation. The usual inner product between vectors
x, y ∈ Rd will continue to be denoted by 〈x, y〉. This is to clarify the distinction
from the d × d matrix obtained as the matrix product between the vector x and
the transpose of the vector y, denoted x · yT . The usual matrix product between a
d × d matrix A and a vector x ∈ Rd will likewise be indicated by A · x. The d × d
identity matrix will be denoted by Id, or simply by I if no confusion arises. The
open ball of radius r > 0 centered at x ∈ Rd will be denoted by Br(x). If x = 0,
then we will simply write Br instead of Br(0). The corresponding closed balls will
be denoted by B̄r(x) and B̄r = B̄r(0), respectively. The alternative notation for the

Fourier transform F(f) = f̂ will occasionally be used. Finally, 1E will stand for the



8 DIOGO OLIVEIRA E SILVA AND RENÉ QUILODRÁN

indicator function of a given subset E ⊂ Rd, and the complement of E will at times
be denoted by E{.

2. On scaling and convolutions

2.1. An explicit example. For d > 1, a > 0 and p > 2, consider the family of
Fourier extension operators associated to certain polynomial perturbations of the
paraboloid equipped with projection measure, given by

Ta(f)(x, t) =

∫
Rd

f(y)e−i〈x,y〉e−it(|y|
2+a|y|p) dy, (x, t) ∈ Rd+1. (2.1)

The family {Ta} enjoys the following scaling property. Given a, b > 0, let λ = ( b
a
)

1
p−2 .

Changing variables y  λy in the integral (2.1), we see that

Ta(f)(x, t) = λ
d
2

∫
Rd

fλ(y)e−i〈λx,y〉e−iλ
2t(|y|2+b|y|p) dy = λ

d
2Tb(fλ)(λx, λ

2t),

where the rescaled function fλ(y) = λ
d
2 f(λy) satisfies ‖fλ‖L2 = ‖f‖L2 . It follows that

‖Ta(f)‖
L2+ 4

d (Rd+1)
= ‖Tb(fλ)‖

L2+ 4
d (Rd+1)

,

and therefore

sup
0 6=f∈L2(Rd)

‖Ta(f)‖
L2+ 4

d (Rd+1)

‖f‖L2(Rd)

= sup
06=f∈L2(Rd)

‖Tb(f)‖
L2+ 4

d (Rd+1)

‖f‖L2(Rd)

.

From this identity, we conclude that optimal constants are independent of a, and that
extremizers exist for some value of a > 0 if and only if they exist for every value of
a > 0. If extremizers exist for one value of a > 0, then the simple dilation indicated
above produces an extremizer for any other value of a > 0. Theorem 1.2 provides a
refinement of this rudimentary analysis in the two-dimensional case. In particular,
it states that the optimal constant is also independent of p, and that extremizers
do not exist.

2.2. Convolution of singular measures. The goal of this section is to exhibit an
explicit formula for the convolution of projection measure on perturbed paraboloids.
For the sake of concreteness, we limit our discussion to the two dimensional case
d = 2. See [1, Lemma 3.1] for a formula in the same spirit of identity (2.2) below.

Proposition 2.1. Let ψ := | · |2 + φ, where φ > 0 is a convex C2(R2) function. Let
σ denote projection measure on the surface Σφ. Then the following assertions hold
for the convolution measure σ ∗ σ:

(a) It is absolutely continuous with respect to Lebesgue measure on R3.
(b) Its support is given by

supp(σ ∗ σ) = {(ξ, τ) ∈ R2+1 : τ > 2ψ(ξ/2)}.
(c) Its Radon–Nikodym derivative, also denoted by σ ∗ σ, is given by the formula

(σ ∗ σ)(ξ, τ) =

∫
S1

(∫ 1

−1

〈ω,H(ψ)(ξ/2 + tα(ξ, τ, ω)ω) · ω〉 dt
)−1

dµω, (2.2)
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provided τ > 2ψ(ξ/2). Here, the measure µ denotes arc length measure on
the unit circle S1, and the function α is given by

α(ξ, τ, ω) =
√
τ/2− ψ(ξ/2)λ

(√
τ/2− ψ(ξ/2)ω

)
, (2.3)

where the function λ is implicitly defined via identity (2.6) below.
(d) The convolution σ∗σ defines a continuous function of the variables ξ, τ in the

interior of its support. It extends continuously to the boundary of the support,
with values given by

(σ ∗ σ)(ξ, 2ψ(ξ/2)) =
π√

det(H(ψ)(ξ/2))
. (2.4)

Remark 2.2. In the special case φ = 0, the Hessian of ψ is a constant multiple of the
identity matrix, and formula (2.2) recovers the result from [11, Lemma 3.2] for the
convolution of projection measure σ0 on the two-dimensional paraboloid Σ0 ⊂ R3:
For τ > |ξ|2/2,

(σ0 ∗ σ0)(ξ, τ) =

∫
S1

(∫ 1

−1

〈ω, 2ω〉 dt
)−1

dµω =
π

2
.

Proof of Proposition 2.1. The absolute continuity of σ ∗ σ with respect to Lebesgue
measure follows in the same way as in the proof of [1, Lemma 3.1 (b)], with minor
modifications only. We provide the details for the convenience of the reader. In order
to show that the pairing 〈σ ∗ σ,1E〉 = 0 for each set E of Lebesgue measure zero
in R3, set y = (y1, y2), z = (z1, z2), and change variables tj = yj + zj, sj = yj − zj
(j = 1, 2) to get

〈σ ∗ σ,1E〉 =

∫
(R2)2

1E(y + z, ψ(y) + ψ(z)) dy dz

=
1

4

∫
R

(∫
R2

∫
R

1E(t1, t2, Ft(s1, s2)) ds1 dt
)

ds2,

where the function Ft is defined as

Ft(s) = ψ
(t+ s

2

)
+ ψ

(t− s
2

)
.

The key observation is that Ft(s1, s2) is a strictly convex function of s1 for each
fixed s2 and t. The change of variables s1 7→ u given by the (at most 2–to–1) map
u = Ft(s1, s2) shows that the triple integral in (s1, t) is zero (for each s2) since E is
a Lebesgue null set. This establishes (a).
For (b), consider vectors y, y′ ∈ R2, and note that

ξ := y + y′ and τ := ψ(y) + ψ(y′)

satisfy τ > 2ψ(ξ/2) because the function ψ is convex. For the reverse inclusion, let
(ξ, τ) ∈ R2+1 be given, such that τ > 2ψ(ξ/2). We want to find y, y′ ∈ R2, such that

y + y′ = ξ and ψ(y) + ψ(y′) = τ.
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It is enough to find y such that ψ(y) + ψ(ξ − y) = τ , for then y′ = ξ − y. Note that
ψ(y) + ψ(ξ − y) > 2ψ(ξ/2) by convexity of ψ, with equality if y = ξ/2. Moreover,

ψ(y) + ψ(ξ − y)→∞, as |y| → ∞.
The function y 7→ ψ(y) + ψ(ξ − y) is continuous because ψ is convex, and the result
follows from applying the Intermediate Value Theorem in the appropriate direction.
We now come to part (c). Let (ξ, τ) be such that τ > 2ψ(ξ/2). Fubini’s Theorem
and a simple change of variables yield1

(σ ∗ σ)(ξ, τ) =

∫
R

(∫
R2

δ
(
τ − t− ψ(ξ − y)

)
δ
(
t− ψ(y)

)
dy
)

dt

=

∫
R2

δ
(
τ − ψ(ξ/2 + y)− ψ(ξ/2− y)

)
dy. (2.5)

We would like to perform another change of variables y = T (w), where T (w) = λw,
and λ = λ(w) > 0 is an implicit real-valued function of w which takes only positive
values, and is defined via

ψ(ξ/2 + λw) + ψ(ξ/2− λw) = 2|w|2 + 2ψ(ξ/2). (2.6)

For fixed ξ, a unique positive solution λ = λ(w) exists if w 6= 0. By the Implicit
Function Theorem, equation (2.6) defines λ as a continuously differentiable function
of w, as long as the derivative of the map

λ 7→ ψ(ξ/2 + λw) + ψ(ξ/2− λw)

is nonzero. In view of the strict convexity of the function ψ, this is indeed the case
if λ > 0. Further details in a more general context will be provided in the course
of the proof of Lemma 3.2 below. Since the function λ is continuously differentiable
and T (w) = λ(w)w, we have that

T ′(w) = λI +∇λ · wT , (2.7)

where I denotes the 2 × 2 identity matrix, the gradient is taken with respect to w,
and the term ∇λ · wT stands for the 2 × 2 matrix obtained as the product of the
gradient ∇λ (seen as a vector in R2) and the transpose of the vector w. To compute
the gradient ∇λ, note that implicit differentiation of (2.6) with respect to w yields

T ′(w) · u = 4w, where u = u(w, ξ) := ∇ψ(ξ/2 + λw)−∇ψ(ξ/2− λw). (2.8)

From (2.7) and (2.8), it follows that

∇λ =
4w − λu
〈w, u〉

. (2.9)

One easily computes

detT ′(w) = det(λI +∇λ · wT ) = (1 + λ−1〈w,∇λ〉) det(λI),

and identity (2.9) then implies

detT ′(w) =
4|w|2λ(w)

〈w, u(w, ξ)〉
. (2.10)

1For a treatment of integration on manifolds using delta calculus, see [13, Appendix A].
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Note that this is a nonnegative quantity because of the strict convexity of ψ. Go-
ing back to the integral expression for σ ∗ σ, changing variables as announced, and
switching to polar coordinates, yields

(σ ∗ σ)(ξ, τ) =

∫
R2

δ
(
τ − 2ψ(ξ/2)− 2|w|2

)
detT ′(w) dw

=

∫ ∞
0

δ
(
τ − 2ψ(ξ/2)− 2r2

)( ∫
S1

detT ′(rω) dµω

)
r dr,

where µ denotes arc length measure on the unit circle S1 ⊂ R
2. Using expression

(2.10) for the Jacobian factor detT ′, changing variables 2r2 = s, and appealing to
Fubini’s theorem, we have that

(σ ∗ σ)(ξ, τ) =

∫
S1

(∫ ∞
0

δ
(
τ − 2ψ(ξ/2)− s

) √s/2λ(
√
s/2ω)

〈ω, u(
√
s/2ω, ξ)〉

ds
)

dµω.

Evaluating the inner integral,

(σ ∗ σ)(ξ, τ) =

∫
S1

√
τ/2− ψ(ξ/2)λ(

√
τ/2− ψ(ξ/2)ω)

〈ω, u(
√
τ/2− ψ(ξ/2)ω, ξ)〉

dµω.

Defining the function α = α(ξ, τ, ω) as in (2.3), and recalling the expression in (2.8)
for the vector u,

(σ ∗ σ)(ξ, τ) =

∫
S1

〈
ω,
∇ψ(ξ/2 + αω)−∇ψ(ξ/2− αω)

α

〉−1

dµω. (2.11)

Formula (2.2) now follows from the Fundamental Theorem of Calculus.
As for part (d), the continuity in the interior of the support follows from an inspec-
tion of representation formula (2.2), after recalling the fact that the function λ is
continuous. The boundary value is obtained by noting that, for each ω ∈ S1, the
function α(ξ, τ, ω) tends to 0 as (ξ, τ) approaches the boundary of the support from
its interior, since the function λ satisfies 0 6 λ 6 1. This yields

(σ ∗ σ)(ξ, 2ψ(ξ/2)) =
1

2

∫
S1

1

〈ω,H(ψ)(ξ/2) · ω〉
dµω,

from which identity (2.4) follows by using an orthonormal basis of R2 consisting of
eigenvectors of the Hessian matrix H(ψ)(ξ/2). The proof is now complete. �

Remark 2.3. Identity (2.11) already implies a weak form of the comparison principle
(Theorem 1.3) in the two-dimensional case. Analogous reasoning leads to similar
formulae for higher dimensional hypersurfaces. This is one of the motivations for the
next chapter, which shares some features with the proof of Proposition 2.1. However,
the analysis there seems more flexible, and may be adaptable to other situations
as well.
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3. A comparison result

This chapter is devoted to the proof of Theorem 1.3, which holds in dimensions
d > 2. Before stating the technical lemmata that will be used in its proof, let us
consider two convex functions ψ, ϕ : Rd → R. Given ξ, y ∈ Rd, define the following
auxiliary functions of one real variable:

g(t) := ψ(ξ/2− ty) + ψ(ξ/2 + ty)− 2ψ(ξ/2), (3.1)

h(t) := ϕ(ξ/2− ty) + ϕ(ξ/2 + ty)− 2ϕ(ξ/2). (3.2)

Note that g = h ≡ 0 if y = 0. Some properties of the functions g, h in a useful special
case are collected in the following lemma.

Lemma 3.1. Let ψ, ϕ : Rd → R be differentiable, convex functions, such that their
difference ψ − ϕ is also convex. Given ξ, y ∈ Rd, define the functions g, h as above.
Then:

(a) g(t) > h(t) > 0, for every t ∈ R.
(b) The functions g and h are convex.
(c) g′(0) = h′(0) = 0.
(d) If ψ is strictly convex and y 6= 0, then g attains its unique global minimum at

t = 0.
(e) If ψ is strictly convex and y 6= 0, then there exists a unique nonnegative

λ = λ(y, ξ) such that

h(1) = g(λ),

and moreover λ ∈ [0, 1].
(f) If h(1) > 0, then λ > 0. If h(1) < g(1), then λ < 1.

Proof. The inequality h > 0 follows from the (midpoint) convexity of the function ϕ.
The inequality g > h follows from the (midpoint) convexity of the function ψ − ϕ.
This establishes (a). Statement (b) is a consequence of the following two general
facts: sums of convex functions are convex, and restrictions of convex functions to
lines are convex. Differentiability of the functions g, h follows from that of ψ, ϕ. In
light of (a), both g and h attain a (local, and therefore global) minimum at t = 0
since g(0) = h(0) = 0, and (c) follows. Further notice that g is strictly convex if ψ
is strictly convex, provided y 6= 0. Since a strictly convex function can have at most
one global minimum, (d) follows from (c). We now consider statement (e). Since
g is continuous and g(0) 6 h(1) 6 g(1), the Intermediate Value Theorem ensures
the existence of λ ∈ [0, 1] such that h(1) = g(λ). There exists no λ in the interval
(1,∞) with the same property because g is strictly convex, and therefore g(t) > g(1)
if t > 1. The uniqueness of λ also follows from the strict convexity of g. Statement
(f) is immediate, and this concludes the proof of the lemma. �

Henceforth we restrict attention to continuously differentiable functions ψ, ϕ which
are strictly convex, and introduce two sets which will play a role in the proof of
Theorem 1.3. Given ξ ∈ Rd and c ∈ R, define the ψ-ellipsoid as

Eψ(ξ, c) := {y ∈ Rd : ψ(ξ/2− y) + ψ(ξ/2 + y)− 2ψ(ξ/2) = c}, (3.3)
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and similarly for the ϕ-ellipsoid Eϕ(ξ, c). We will abuse notation mildly by occasion-
ally referring to these sets simply as “ellipsoids”. The sets Eψ(ξ, c) and Eϕ(ξ, c) are
non-empty provided c > 0, and codimension 1 hypersurfaces if c > 0. This claim
requires a short justification which goes as follows. Since the function ψ is differen-
tiable and strictly convex, its gradient ∇ψ is a strictly monotone mapping, in the
sense that

〈∇ψ(x)−∇ψ(x′), x− x′〉 > 0, for every x 6= x′,

see, for instance, [16, p. 112]. As a consequence, any positive number c > 0 is a
regular value of the function Fψ : Rd → R, defined via

y 7→ Fψ(y) = ψ(ξ/2− y) + ψ(ξ/2 + y)− 2ψ(ξ/2),

and the claim follows for the ellipsoid Eψ(ξ, c) = F−1
ψ (c). The assertion for ϕ can be

verified in an identical way. Further note that, for each fixed ξ ∈ Rd, the disjoint
union of the ellipsoids Eψ(ξ, c) as the parameter c > 0 ranges over the nonnegative
real numbers equals the whole of Rd, and similarly for ϕ.
After these preliminary observations, define the transformation

T : Rd \ {0} → R
d, T (y) = λ(y, ξ)y, (3.4)

where λ(y, ξ) is given by part (e) of Lemma 3.1. In other words, the real number
λ = λ(y, ξ) is the unique nonnegative solution of the equation

ϕ(ξ/2− y) + ϕ(ξ/2 + y)− 2ϕ(ξ/2) = ψ(ξ/2− λy) + ψ(ξ/2 + λy)− 2ψ(ξ/2). (3.5)

Relevant properties of the transformation T are recorded in the next result.

Lemma 3.2. Let ψ, ϕ : Rd → R be continuously differentiable, strictly convex func-
tions with a convex difference ψ−ϕ. Let ξ ∈ Rd be given, and consider the transfor-
mation T given by (3.4). Then:

(a) T is injective.
(b) T is continuously differentiable.
(c) If T ′(y) denotes the Jacobian matrix of T at a point y 6= 0, then

detT ′(y) = λ(y)d−1 〈∇ϕ(ξ/2 + y)−∇ϕ(ξ/2− y), y〉
〈∇ψ(ξ/2 + T (y))−∇ψ(ξ/2− T (y)), y〉

. (3.6)

(d) T defines a bijection from the ellipsoid Eϕ(ξ, c) onto the ellipsoid Eψ(ξ, c), for
every c > 0.

Proof. To prove (a), let us consider nonzero vectors y, z ∈ Rd such that T (y) = T (z).
Then

ψ(ξ/2− λ(y)y) + ψ(ξ/2 + λ(y)y) = ψ(ξ/2− λ(z)z) + ψ(ξ/2 + λ(z)z),

where, for notational convenience, we have dropped the dependence of λ on ξ. This
implies

ϕ(ξ/2− y) + ϕ(ξ/2 + y) = ϕ(ξ/2− z) + ϕ(ξ/2 + z).

Since y = rz for some r > 0, and the function t 7→ ϕ(ξ/2− tz)+ϕ(ξ/2+ tz) is strictly
increasing on (0,∞), we obtain r = 1. This means y = z, as desired.
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Property (b) will follow from the Implicit Function Theorem, after showing that the
derivative of the map t 7→ g(t) = ψ(ξ/2− ty) + ψ(ξ/2 + ty)− 2ψ(ξ/2) is nonzero for
each ξ, y ∈ Rd with y 6= 0, provided t > 0. This derivative equals

g′(t) = 〈∇ψ(ξ/2 + ty)−∇ψ(ξ/2− ty), y〉,

which is nonzero because of the strict convexity of ψ. Indeed, in the proof of Lemma
3.1 we have already argued that g is a strictly convex C1 function which attains its
unique global minimum at t = 0, hence g′(t) > 0 for every t > 0. Alternatively, recall
that the gradient ∇ψ is a strictly monotone mapping.
To verify (c), we compute the Jacobian matrix of T in an analogous way to what
was done in the proof of Proposition 2.1. Implicit differentiation with respect to the
variable y of identity (3.5) with λ = λ(y) yields

(λI +∇λ · yT ) · u = v,

where the vectors u, v ∈ Rd are defined by

u = ∇ψ(ξ/2 + T (y))−∇ψ(ξ/2− T (y)),

v = ∇ϕ(ξ/2 + y)−∇ϕ(ξ/2− y).

For y 6= 0, it follows that

∇λ =
v − λu
〈u, y〉

,

where the denominator 〈u, y〉 is strictly positive because the gradient ∇ψ is strictly
monotone and the vector T (y) is collinear with y. Using this together with the Matrix
Determinant Lemma, we arrive at identity (3.6):

detT ′(y) = det(λI +∇λ · yT ) = det(λI)(1 + λ−1〈y,∇λ〉) = λd−1 〈v, y〉
〈u, y〉

.

We finally turn to (d). That the transformation T has the desired mapping properties
from Eϕ into Eψ follows from the defining identity (3.5). In view of (a), the restriction
of T to the set Eϕ is an injective map. So we are left with verifying surjectivity. The
previous considerations show that, given c > 0 and z ∈ Eψ(ξ, c), it suffices to find
any vector y ∈ Rd for which T (y) = z (for such y will then necessarily belong to
Eϕ(ξ, c)). But T is a continuous map which preserves rays emanating from the origin,
such that |Ty| 6 |y| for every y 6= 0, and

lim
|y|→∞

|Ty| =∞.

The result follows from the Intermediate Value Theorem. �

Recall that |T (y)| 6 |y|, for every y 6= 0. We would like to argue that the trans-
formation T is contractive in the sense that | detT ′| < 1. Unfortunately, an explicit
computation involving the example ϕ(x) = |x|4 and ψ(x) = |x|2 + |x|4 + |x|6 reveals
that, perhaps unintuitively, one should not expect that to be the case in general.
We will be interested in convex perturbations of the paraboloid, and so the following
result will suffice for our purposes.
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Lemma 3.3. Let d > 2. Let ϕ = | · |2 and ψ = | · |2 + φ, where φ > 0 is a strictly
convex C1(Rd) function. Let ξ ∈ Rd be given, and consider the transformation T
given by (3.4). Then

| detT ′(y)| < 1, for every y 6= 0. (3.7)

Proof. Fix y 6= 0. For the particular choices of ψ, ϕ as in the statement of the
lemma, define real-valued functions g, h via identities (3.1) and (3.2). In this case,
h′(t) = 4|y|2t, a homogenous function of degree 1. Identity (3.6) then implies

detT ′(y) = λ(y)d−1 h′(1)

g′(λ(y))
= λ(y)d−2h

′(λ(y))

g′(λ(y))
. (3.8)

We have already argued that g − h is a nonnegative, differentiable, strictly convex
function satisfying (g − h)(0) = 0 and (g − h)′(0) = 0. It follows that (g − h)′(t) > 0
for every t > 0, which means that the fraction on the right-hand side of identity (3.8)
is strictly less than 1 as long as λ(y) > 0. That this is indeed the case follows from
part (f) of Lemma 3.1, since h(1) = 2|y|2 > 0. The proof is finished by noting that
λ(y) 6 1 and d > 2 together imply λ(y)d−2 6 1. �

We have now collected all the ingredients needed to prove Theorem 1.3.

Proof of Theorem 1.3. As in the proof of Proposition 2.1, the convolutions can be
written as

(σ ∗ σ)(ξ, τ) =

∫
Rd

δ
(
τ − ψ(ξ/2− y)− ψ(ξ/2 + y)

)
dy, (3.9)

(σ0 ∗ σ0)(ξ, τ) =

∫
Rd

δ
(
τ − ϕ(ξ/2− y)− ϕ(ξ/2 + y)

)
dy.

A straightforward adaptation of the arguments there shows that the convolution
σ ∗ σ is supported on the region {(ξ, τ) : τ > 2ψ(ξ/2)}. Since φ > 0, this region is
contained in the support of the convolution σ0∗σ0, i.e., the set {(ξ, τ) : τ > 2ϕ(ξ/2)}.
For each fixed ξ ∈ Rd, consider the transformation T given by (3.4), which by Lemma
3.2 maps the ellipsoid Eϕ(ξ, τ) bijectively onto Eψ(ξ, τ), for every τ > 0. Changing
variables y  Ty in the expression (3.9) for σ ∗ σ, and appealing to the defining
identity (3.5), yields

(σ ∗ σ)(ξ, τ) =

∫
Rd

δ
(
τ − ψ(ξ/2− Ty)− ψ(ξ/2 + Ty)

)
| detT ′(y)| dy

=

∫
Rd

δ
(
τ − 2φ(ξ/2)− ϕ(ξ/2− y)− ϕ(ξ/2 + y)

)
| detT ′(y)| dy. (3.10)

From Lemma 3.3, we know that | detT ′| 6 1, and so Hölder’s inequality implies

(σ ∗ σ)(ξ, τ) 6 (σ0 ∗ σ0)(ξ, τ − 2φ(ξ/2)),

for every ξ ∈ Rd and τ > 0. This is equivalent to inequality (1.9). We now use the full
power of (3.7) to argue that this inequality must be strict at every point in the interior
of the support of σ ∗ σ. Let (ξ, τ) be one such point, for which c := τ − 2ψ(ξ/2) > 0.
It is straightforward to check that the singular measure that is being integrated in
(3.10) is supported on the ellipsoid Eϕ(ξ, c). Since c > 0, this ellipsoid does not
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contain the origin, and by Lemma 3.3 the strict inequality | detT ′(y)| < 1 holds at
every point y ∈ Eϕ(ξ, c). This can be strengthened to | detT ′(y)| 6 c0 for some fixed
c0 < 1 (which depends on φ, ξ, τ but not on y), since the set Eϕ(ξ, c) is compact and
the function y 7→ detT ′(y) is continuous. The result now follows from replacing the
δ-function appearing in the integral (3.10) by an appropriate ε-neighborhood of the
ellipsoid Eϕ(ξ, c), and then analyzing the cases of equality in Hölder’s inequality. To
conclude the proof of the theorem, let ε→ 0+. �

Remark 3.4. The previous discussion can be partially generalized to the case of
n-fold convolutions for n > 3. Defining the functions

gn(t) =
n−1∑
j=1

ψ(ξ/n− tyj) + ψ(ξ/n+ t

n−1∑
j=1

yj)− nψ(ξ/n),

hn(t) =
n−1∑
j=1

ϕ(ξ/n− tyj) + ϕ(ξ/n+ t

n−1∑
j=1

yj)− nϕ(ξ/n),

we have the following generalization of Lemma 3.1, whose straightforward proof
(omitted) can be done by induction on n.

Lemma 3.5. Let n > 2. Let ψ, ϕ : Rd → R be differentiable, convex functions,
such that their difference ψ−ϕ is also convex. Given ξ, y1, . . . , yn−1 ∈ Rd, define the
functions gn, hn as above. Then:

(a) gn(t) > hn(t) > 0, for every t ∈ R.
(b) The functions gn and hn are convex.
(c) g′n(0) = h′n(0) = 0.
(d) If ψ is strictly convex and (y1, . . . , yn−1) 6= (0, . . . , 0), then gn attains its unique

global minimum at t = 0.
(e) If ψ is strictly convex and (y1, . . . , yn−1) 6= (0, . . . , 0), then there exists a

unique nonnegative λ = λ(y1, . . . , yn−1, ξ) such that

hn(1) = gn(λ),

moreover λ ∈ [0, 1].
(f) If hn(1) > 0, then λ > 0. If hn(1) < gn(1), then λ < 1.

An n-linear version of Theorem 1.3 would follow from satisfactory substitutes for
Lemmata 3.2 and 3.3. The latter is more intricate if n > 3, and the authors have not
investigated the extent to which the argument would need to be changed.

4. Optimal constants and nonexistence of extremizers

This chapter is devoted to the proof of Theorem 1.2. In what follows, the function
φ : R2 → R is assumed to be nonnegative, twice continuously differentiable and
strictly convex, σ denotes projection measure on the surface Σφ ⊂ R3, and ψ = |·|2+φ.
We start by stating two lemmata which explore the connection between pointwise
values of the convolution measure σ ∗ σ, and concentration at a point.
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Lemma 4.1. Let y0 ∈ R2 be given, and let {fn} ⊂ L2(R2) be a sequence concentrating
at y0. Then

lim sup
n→∞

‖fnσ ∗ fnσ‖2
L2(R3)

‖fn‖4
L2(R2)

6 (σ ∗ σ)(2y0, 2ψ(y0)). (4.1)

Lemma 4.2. Let y0 ∈ R2 be given, and let fn(y) = e−n(ψ(y)−ψ(y0)−〈∇ψ(y0),y−y0〉). Then
the sequence {fn/‖fn‖L2} concentrates at y0, and

lim
n→∞

‖fnσ ∗ fnσ‖2
L2(R3)

‖fn‖4
L2(R2)

= (σ ∗ σ)(2y0, 2ψ(y0)). (4.2)

Proof of Lemma 4.2. We first prove that the given sequence concentrates at y0. With
that purpose in mind, fix ρ > 0. The function

γ(y) := ψ(y)− ψ(y0)− 〈∇ψ(y0), y − y0〉

satisfies γ > 0, γ(y0) = 0, ∇γ(y0) = 0 and H(γ)(y0) = 2I+H(φ)(y0). It follows that,
for any sufficiently small ε > 0, there exists r = rε > 0 such that the inequality

γ(y) 6 (1 + ε)
(
|y − y0|2 +

1

2
〈y − y0, H(φ)(y0) · (y − y0)〉

)
holds, for every y ∈ R2 satisfying |y − y0| 6 r. The L2 norm of the function fn can
be bounded from below as follows:

‖fn‖2
L2 =

∫
R2

e−2nγ(y) dy >
∫
{|y−y0|6r}

e−2n(1+ε)
(
|y−y0|2+ 1

2
〈y−y0,H(φ)(y0)·(y−y0)〉

)
dy

=

∫
{|y|6r}

e−2n(1+ε)〈y,A·y〉 dy >
1

(detA)
1
2

∫
{|y|6αr}

e−2n(1+ε)|y|2 dy

=
2π

(detA)
1
2

1− e−2n(1+ε)α2r2

4n(1 + ε)
,

where the (positive-definite) matrix A is given by A = I + 1
2
H(φ)(y0), and α > 0

denotes the square root of the smallest eigenvalue of A. Noting that

γ(y) = |y − y0|2 + φ(y)− φ(y0)− 〈∇φ(y0), y − y0〉 > |y − y0|2,

we obtain ∫
{|y−y0|>ρ}

|fn(y)|2 dy 6
∫
{|y−y0|>ρ}

e−2n|y−y0|2 dy = 2π
e−2nρ2

4n
.

Therefore

‖fn‖−2
L2

∫
{|y−y0|>ρ}

|fn(y)|2 dy 6 (1 + ε)(detA)
1
2

e−2nρ2

1− e−2n(1+ε)α2r2
→ 0,

as n→∞, as had to be shown. We now turn to the proof of identity (4.2). Start by
noting that the function γ equals the restriction of the linear affine function

(ξ, τ) 7→ τ − ψ(y0)− 〈∇ψ(y0), ξ − y0〉
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to the surface Σφ ⊂ R3. It follows that

(fnσ ∗ fnσ)(ξ, τ) = e−n(τ−〈∇ψ(y0),ξ〉)e2n(ψ(y0)−〈∇ψ(y0),y0〉)(σ ∗ σ)(ξ, τ),

which in turn implies the pointwise identity

(fnσ ∗ fnσ)2 = (f 2
nσ ∗ f 2

nσ)(σ ∗ σ). (4.3)

Given r > 0, let

Er := {(y, ψ(y)) ∈ R2+1| y ∈ Br(y0)} ⊂ Σφ

denote the cap of radius r and center (y0, ψ(y0)) on the surface Σφ. From identity
(4.3), it follows that

‖fnσ ∗ fnσ‖2
L2(R3) =

∫
R3

(
f 2
n1Erσ ∗ f 2

n1Erσ
)
(ξ, τ)

(
σ ∗ σ

)
(ξ, τ) dξ dτ

+

∫
R3

(
f 2
n1E{

r
σ ∗ f 2

n1E{
r
σ
)
(ξ, τ)

(
σ ∗ σ

)
(ξ, τ) dξ dτ

+ 2

∫
R3

(
f 2
n1Erσ ∗ f 2

n1E{
r
σ
)
(ξ, τ)

(
σ ∗ σ

)
(ξ, τ) dξ dτ,

where E{r stands for the complement of the set Er in Σφ. Dividing by ‖fn‖4
L2 , we can

bound the last summand by

‖fn‖−4
L2

∫
R3

(
f 2
n1Erσ ∗ f 2

n1E{
r
σ
)
(ξ, τ)

(
σ ∗ σ

)
(ξ, τ) dξ dτ

6 sup
(ξ,τ)∈R3

(σ ∗ σ)(ξ, τ)
‖fn1E′r‖2

L2

‖fn‖2
L2

‖fn1E′{r ‖
2
L2

‖fn‖2
L2

,

where E ′r := Br(y0) ⊂ R2, and E ′{r stands for the complement of the set E ′r in R2.
The right-hand side of this inequality tends to zero, as n→∞, because the sequence
{fn/‖fn‖L2} concentrates at the point y0. The second summand can be treated in
an analogous way. The first summand, after appropriate normalization, is bounded
from above by

‖fn‖−4
L2

∫
R3

(
f 2
n1Erσ ∗ f 2

n1Erσ
)
(ξ, τ)

(
σ ∗ σ

)
(ξ, τ) dξ dτ

6
‖fn1E′r‖4

L2

‖fn‖4
L2

sup
(ξ,τ)∈Er+Er

(σ ∗ σ)(ξ, τ),

and from below by

‖fn‖−4
L2

∫
R3

(
f 2
n1Erσ ∗ f 2

n1Erσ
)
(ξ, τ)

(
σ ∗ σ

)
(ξ, τ) dξ dτ

>
‖fn1E′r‖4

L2

‖fn‖4
L2

inf
(ξ,τ)∈Er+Er

(σ ∗ σ)(ξ, τ).
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Since ‖fn1E′r‖L2/‖fn‖L2 → 1, as n→∞, we obtain

lim sup
n→∞

‖fnσ ∗ fnσ‖2
L2(R3)

‖fn‖4
L2(R2)

6 sup
(ξ,τ)∈Er+Er

(σ ∗ σ)(ξ, τ),

and

lim inf
n→∞

‖fnσ ∗ fnσ‖2
L2(R3)

‖fn‖4
L2(R2)

> inf
(ξ,τ)∈Er+Er

(σ ∗ σ)(ξ, τ).

Identity (4.2) follows because the convolution σ ∗ σ defines a continuous function up
to the boundary of its support, and r > 0 was arbitrary. Taking r → 0+ finishes the
proof. �

Sketch of proof of Lemma 4.1. Integrate the pointwise bound

|(fσ ∗ fσ)(ξ, τ)|2 6
(
|f |2σ ∗ |f |2σ

)
(ξ, τ)

(
σ ∗ σ

)
(ξ, τ),

which was observed in [11, 24, 26] to hold almost everywhere, and proceed as in the
proof of the corresponding inequality in Lemma 4.2. �

Proof of Theorem 1.2. As in the proof of Lemma 4.1, the Cauchy–Schwarz inequality
implies

‖fσ ∗ fσ‖2
L2(R3) 6 ‖σ ∗ σ‖L∞(R3)‖f‖4

L2(R2). (4.4)

It follows that (a possibly non-sharp version of) inequality (1.6) holds, as long as the
L∞ norm of the convolution σ ∗ σ is finite. This, in turn, can be seen using identity
(2.2), since the Hessian of ψ satisfies H(ψ) = 2I +H(φ), and the matrix H(φ)(x) is
positive semidefinite, for every x ∈ R2. Estimate (4.4) also shows that the optimal
constant in inequality (1.6) satisfies

R4
φ 6 ‖σ ∗ σ‖L∞ .

Now, let σ0 denote the projection measure on the paraboloid Σ0. From Theorem
1.3 and Remark 2.2, we know that ‖σ ∗ σ‖L∞ 6 ‖σ0 ∗ σ0‖L∞ = π

2
. That these two

quantities are actually the same follows from the fact that the convolution σ ∗ σ
attains the value π/2 at the boundary point (2y0, 2ψ(y0)) in case (i), or at infinity in
case (ii). Identity (1.7) will then follow from the inequality

R4
φ >

π

2
, (4.5)

which we establish using the sequences given by (1.8). We consider the two cases
separately. In case (i), since H(φ)(y0) = 0, it follows from identity (2.4) that
(σ ∗ σ)(2y0, 2ψ(y0)) = π

2
, and therefore the sequence {fn/‖fn‖L2}, where

fn(y) = e−n(ψ(y)−ψ(y0)−〈∇ψ(y0),y−y0〉),

is extremizing for inequality (1.6) in light of Lemma 4.2. In case (ii), we have that
(σ ∗ σ)(2yn, 2ψ(yn)) → π

2
, as n → ∞. Choose a sequence {an} ⊂ N in such a way

that, for every n ∈ N, the function given by

fn(y) = e−an(ψ(y)−ψ(yn)−〈∇ψ(yn),y−yn〉)
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satisfies ∣∣∣∣‖fnσ ∗ fnσ‖2
L2

‖fn‖4
L2

− (σ ∗ σ)(2yn, 2ψ(yn))

∣∣∣∣ 6 1

n
,

and ∫
{|y−yn|> 1

n
}
|fn(y)|2 dy 6

1

n
‖fn‖2

L2 . (4.6)

That this is possible follows again from Lemma 4.2. Since

‖fnσ ∗ fnσ‖2
L2

‖fn‖4
L2

→ π

2
, as n→∞,

the sequence {fn/‖fn‖L2} is again extremizing for inequality (1.6). This establishes
(4.5) in both cases (i) and (ii), and therefore identity (1.7) is proved. Incidentally,
note that condition (4.6) ensures that {fn/‖fn‖L2} concentrates along the sequence
{yn}. Since |yn| → ∞, as n→∞, it concentrates at infinity.
We finish by showing that extremizers for inequality (1.6) do not exist. Aiming
at a contradiction, let f be an extremizer. An application of Cauchy–Schwarz and
Hölder’s inequalities yields

R4
φ‖f‖4

L2 = ‖fσ ∗ fσ‖2
L2

6
∫
R3

|(f 2σ ∗ f 2σ)(ξ, τ)|(σ ∗ σ)(ξ, τ) dξ dτ

6 ‖σ ∗ σ‖L∞
∫
R3

|(f 2σ ∗ f 2σ)(ξ, τ)| dξ dτ

= ‖σ ∗ σ‖L∞‖f‖4
L2 .

Since R4
φ = ‖σ ∗ σ‖L∞ = π

2
and f 6= 0, all inequalities in this chain of inequalities

must be equalities. In particular, the convolution σ ∗ σ must be constant equal to
‖σ∗σ‖L∞ almost everywhere inside the support of f 2σ∗f 2σ, which is a set of positive
Lebesgue measure since f 6= 0. This contradicts the strict inequality

(σ ∗ σ)(ξ, τ) < ‖σ ∗ σ‖L∞ , for almost every (ξ, τ) ∈ supp(σ ∗ σ),

which in turn is an immediate consequence of the second part of Theorem 1.3. This
contradiction shows that extremizers do not exist. The proof of the theorem is now
complete. �

5. On extremizing sequences

From the previous chapter, we know that extremizers for inequality (1.6) do not
exist. As mentioned in the Introduction, this failure of compactness can be under-
stood via the concentration-compactness principle, which is the subject of the present
chapter. Heuristically, an extremizing sequence for inequality (1.6) should concen-
trate around the points where the function σ ∗ σ achieves its essential supremum.
Lemma 4.1 and formula (2.4) imply that, if an extremizing sequence concentrates
at a point y0, then necessarily H(φ)(y0) = 0. Lemma 4.2 provides the construction
of an explicit extremizing sequence concentrating at any point y0 ∈ R2, provided
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H(φ)(y0) = 0. Therefore, concentration occurs at a point if and only if the Hes-
sian vanishes at that point. Further information concerning extremizing sequences
concentrating at spatial infinity will be obtained below.

5.1. Weak interaction between distant caps. Reasoning in a similar way to the
proof of (2.2) from Proposition 2.1, we find that the identity

(fσ ∗ gσ)(ξ, τ) =

∫
S1

f(ξ/2 + α(ξ, τ, ω)ω)g(ξ/2− α(ξ, τ, ω)ω)∫ 1

−1
〈ω,H(ψ)(ξ/2 + tα(ξ, τ, ω)ω) · ω〉 dt

dµω (5.1)

holds, in particular, in the case when f, g are indicator functions of balls or their
complements. Formula (5.1) allows for a quantification of the general principle that
“distant caps interact weakly”. This is a geometric feature that translates into useful
bilinear estimates, and has been observed in a variety of related contexts; see, for
instance, [7, 23]. The precise statement is as follows.

Lemma 5.1. Let r, ρ > 0 satisfy ρ > 3r. Then, for any y0 ∈ R2,

‖1Br(y0)σ ∗ 1B{
ρ(y0)σ‖L∞(R3) 6

1

2
arcsin

( 2r

ρ− r

)
. (5.2)

As a result, the following statements hold:

(a) For any r > 0 and y0 ∈ R2,

lim
ρ→∞
‖1Br(y0)σ ∗ 1B{

ρ(y0)σ‖L∞(R3) = 0. (5.3)

(b) For any ρ > 0 and y0 ∈ R2,

lim
r→0+

‖1Br(y0)σ ∗ 1B{
ρ(y0)σ‖L∞(R3) = 0.

(c) For any r > 0,

lim
ρ→∞

sup
y∈R2

‖1Br(y)σ ∗ 1B{
ρ(y)σ‖L∞(R3) = 0. (5.4)

Moreover,

(d) If B,B′ ⊆ R2 are disjoint balls, then

‖1Bσ ∗ 1B′σ‖L∞(R3) 6
π

4
.

Proof. We establish identity (5.2) for y0 = 0 only, the case of general y0 ∈ R2 being
similar. Let ρ > r > 0. If f = 1Br and g = 1B{

ρ
, then the integrand in (5.1) is

nonzero only if the point (ξ, τ) satisfies

ξ/2 + α(ξ, τ, ω)ω ∈ Br, and ξ/2− α(ξ, τ, ω)ω /∈ Bρ.

By the triangle inequality, this can only happen if

|ξ| > |ξ/2− α(ξ, τ, ω)ω| − |ξ/2 + α(ξ, τ, ω)ω| > ρ− r. (5.5)
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In this case, if ρ > 3r, then |ξ/2| > r, and therefore the ray ξ/2+ tω, t > 0, intersects
the ball Br only if ω belongs to an arc of S1 of measure exactly 2 arcsin( 2r

|ξ|). Denoting

arc length measure on the unit circle by µ as usual, we conclude that

µ({ω ∈ S1 : ξ/2 + α(ξ, τ, ω)ω ∈ Br, ξ/2− α(ξ, τ, ω)ω /∈ Bρ})

6 2 arcsin
(2r

|ξ|

)
6 2 arcsin

( 2r

ρ− r

)
.

It follows that, for every (ξ, τ) ∈ R3,

(1Brσ ∗ 1B{
ρ
σ)(ξ, τ) 6

1

2
arcsin

( 2r

ρ− r

)
,

where we bounded the denominator in (5.1) from below by 4. Parts (a) and (b)
follow at once, and a similar reasoning for y0 6= 0 establishes (c). For part (d),
note that the definition (2.6) of the function λ implies λ(−w, ξ) = λ(w, ξ) for every
w, ξ, and therefore the function α satisfies α(ξ, τ,−ω) = α(ξ, τ, ω), for every ω ∈ S1.
It then follows that, if ξ/2 + α(ξ, τ, ω)ω ∈ B and ξ/2 − α(ξ, τ, ω)ω ∈ B′, then
ξ/2 + α(ξ, τ,−ω)(−ω) /∈ B and ξ/2 − α(ξ, τ,−ω)(−ω) /∈ B′. As a consequence, the
subset of S1 where the integrand in (5.1) is nonzero has measure bounded from above
by π, and the result follows as before. �

5.2. Concentration-compactness. The three lemmata in this section hold under
the general hypotheses of Theorem 1.2, which for brevity will not be included in the
corresponding statements.

Lemma 5.2. Under the hypotheses of Theorem 1.2, suppose that there exist a subset
X ⊂ (R2)2 and δ > 0 such that, for every (y, z) ∈ X,

(σ ∗ σ)(y + z, ψ(y) + ψ(z))

‖σ ∗ σ‖L∞(R3)

6 1− δ. (5.6)

Let {fn} ⊂ L2(R2) be any extremizing sequence for inequality (1.6). Then∫
X

|fn(y)|2|fn(z)|2 dy dz → 0, as n→∞.

In particular, if X contains a subset of the form A×B, for some A,B ⊂ R2, then∫
A

|fn(y)|2 dy

∫
B

|fn(z)|2 dz → 0, as n→∞.

Proof. Let {fn} ⊂ L2(R2) be an extremizing sequence for inequality (1.6). The first
step is to verify that

lim inf
n→∞

∫
(R2)2

|fn(y)|2|fn(z)|2 (σ ∗ σ)(y + z, ψ(y) + ψ(z))

‖σ ∗ σ‖L∞
dy dz = 1. (5.7)
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With this goal in mind, estimate∫
R3

|(fnσ ∗ fnσ)(ξ, τ)|2 dξ dτ 6
∫
R3

(
|fn|2σ ∗ |fn|2σ

)
(ξ, τ)

(
σ ∗ σ

)
(ξ, τ) dξ dτ

=

∫
(R2)2

|fn(y)|2|fn(z)|2(σ ∗ σ)(y + z, ψ(y) + ψ(z)) dy dz

6 ‖σ ∗ σ‖L∞‖fn‖4
L2 .

The first and the last terms in this chain of inequalities converge to ‖σ ∗ σ‖L∞ , as
n→∞, and therefore so does the third term, and (5.7) follows. We next observe

lim inf
n→∞

∫
(R2)2

|fn(y)|2|fn(z)|2 dy dz = lim
n→∞

‖fn‖4
L2 = 1.

Writing X{ for the complement of the set X in (R2)2, we have an inequality∫
(R2)2

|fn(y)|2|fn(z)|2 (σ ∗ σ)(y + z, ψ(y) + ψ(z))

‖σ ∗ σ‖L∞
dy dz

6 (1− δ)
∫
X

|fn(y)|2|fn(z)|2 dy dz +

∫
X{

|fn(y)|2|fn(z)|2 dy dz.

Since ‖fn‖L2 → 1 as n→∞, we conclude from (5.7) that

1 6 lim inf
n→∞

((∫
R2

|fn(y)|2 dy
)2

− δ
∫
X

|fn(y)|2|fn(z)|2 dy dz
)

= 1− δ lim sup
n→∞

∫
X

|fn(y)|2|fn(z)|2 dy dz.

It follows that

lim sup
n→∞

∫
X

|fn(y)|2|fn(z)|2 dy dz = 0,

which establishes the first statement. The second statement follows at once, and the
proof is complete. �

The preceding lemma implies the following modest amount of control over extremizing
sequences that split their mass in a nontrivial way.

Lemma 5.3. Under the hypotheses of Theorem 1.2, let {fn} ⊂ L2(R2) be any ex-
tremizing sequence for inequality (1.6). Let 0 < r1 < r2 < r3 < ∞ be arbitrary.
Then ∫

Br1

|fn(y)|2 dy

∫
Br3\Br2

|fn(z)|2 dz → 0, as n→∞.

Proof. Let X = Br1 × (Br3 \ Br2). Appealing to the continuity of the convolution
σ ∗ σ on its support, to the fact that the essential supremum is only achieved on the
boundary of the support (as observed in the course of the proof of Theorem 1.3),
together with the compactness of the set X and the fact that r1 < r2, we can ensure
the existence of δ = δr1,r2,r3 > 0 such that

(σ ∗ σ)(y + z, ψ(y) + ψ(z))

‖σ ∗ σ‖L∞
6 1− δ,
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for every (y, z) ∈ X. The conclusion now follows from Lemma 5.2. �

Lemma 5.3 can be upgraded in a way that reveals that an extremizing sequence can
only split its mass in a nontrivial way if neither of the corresponding supports remains
in a bounded region. We formulate one version of this principle which will be useful
for our purposes.

Lemma 5.4. Under the hypotheses of Theorem 1.2, let {fn} ⊂ L2(R2) be any ex-
tremizing sequence for inequality (1.6). Let 0 < r1 < r2 <∞ be arbitrary. Then∫

Br1

|fn(y)|2 dy

∫
R2\Br2

|fn(z)|2 dz → 0, as n→∞. (5.8)

Remark 5.5. If conclusion (5.8) holds for one pair (r1, r2) satisfying 0 < r1 < r2 <
∞, then it holds for any pair (ρ1, ρ2) satisfying 0 < ρ1 < ρ2 <∞ and r1 > ρ1. To see
this, start by noticing that the case r1 > ρ1 and r2 6 ρ2 is clear. On the other hand,
if r1 > ρ1 and r2 > ρ2, then∫

Bρ1

|fn(y)|2 dy

∫
R2\Bρ2

|fn(z)|2 dz

6
∫
Br1

|fn(y)|2 dy

∫
R2\Br2

|fn(z)|2 dz +

∫
Bρ1

|fn(y)|2 dy

∫
Br2\Bρ2

|fn(z)|2 dz,

which tends to zero, as n → ∞, by (5.8) and Lemma 5.3. Moreover, in view of
the uniform bound with respect to y ∈ R2 from part (c) of Lemma 5.1, the proof
given below can be adapted to the case of balls centered at any point y ∈ R2, not
necessarily the origin.

Proof of Lemma 5.4. Let r1 > 0 be given. If∫
Br1

|fn(y)|2 dy → 0, as n→∞,

then the conclusion follows at once since ‖fn‖L2 6 1. Therefore no generality is lost
in assuming, possibly after passing to a subsequence, that

δ := inf
n∈N

∫
Br1

|fn(y)|2 dy > 0. (5.9)

It suffices to show that ∫
R2\Br2

|fn(z)|2 dz → 0, as n→∞. (5.10)

Take r3 > r2. From Lemma 5.3 and inequality (5.9), we know that∫
Br3\Br2

|fn(z)|2 dz → 0, as n→∞. (5.11)

Decompose

fn = fn1Br2 + fn1R2\Br3 + fn1Br3\Br2 =: Fn +Gn +Hn,
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and note that

fnσ ∗ fnσ = Fnσ ∗ Fnσ +Gnσ ∗Gnσ + 2Fnσ ∗Gnσ +Rn,

where, in view of inequality (1.6) and estimate (5.11), the remainder term Rn satisfies

‖Rn‖L2(R3) 6 C‖Hn‖L2(R2) → 0, as n→∞.
The key step is to bound the quantity ‖Fnσ ∗ Gnσ‖2

L2 . We have the pointwise in-
equality

|(Fnσ ∗Gnσ)(ξ, τ)|2 6
(
|Fn|2σ ∗ |Gn|2σ

)
(ξ, τ)

(
1Br2

σ ∗ 1R2\Br3σ
)
(ξ, τ),

which follows from an application of the Cauchy–Schwarz inequality as before. As a
consequence,

‖Fnσ ∗Gnσ‖2
L2(R3) 6 ρ2(r2, r3)‖Fn‖2

L2(R2)‖Gn‖2
L2(R2),

where the function ρ is given by

ρ(r2, r3) := ‖1Br2σ ∗ 1R2\Br3σ‖
1
2

L∞(R3).

For large values of r3, the sets Br2 and R2 \Br3 interact weakly as discussed in §5.1.
Part (a) of Lemma 5.1 implies that, for each fixed r2 > 0,

ρ(r2, r3)→ 0, as r3 →∞.
Two applications of Plancherel’s Theorem, together with the triangle inequality, im-
ply the following bound for the inner product:

|〈Fnσ ∗ Fnσ,Gnσ ∗Gnσ〉L2| 6 ‖Fnσ ∗Gnσ‖2
L2 .

It follows that there exists an absolute constant C < ∞, which can be explicitly
computed but whose exact numerical value is unimportant for our purposes, for
which

‖fnσ ∗ fnσ‖2
L2 6 ‖Fnσ ∗ Fnσ‖2

L2 + ‖Gnσ ∗Gnσ‖2
L2 + Cρ(r2, r3) + on(1)

6
π

2
(‖Fn‖4

L2 + ‖Gn‖4
L2) + Cρ(r2, r3) + on(1)

=
π

2
‖fn‖4

L2 − π‖Fn‖2
L2‖Gn‖2

L2 + Cρ(r2, r3) + on(1),

Here, we used the sharp inequality (1.6), and orthogonality considerations. The
function on(1) may depend on r3, but satisfies on(1) → 0, as n → ∞, for each fixed
r3, and is allowed to change from line to line. Taking n → ∞ in the previous chain
of inequalities, we conclude

lim sup
n→∞

‖Fn‖2
L2‖Gn‖2

L2 6 Cρ(r2, r3).

Consequently,

lim sup
n→∞

‖Gn‖2
L2 6

C

δ
ρ(r2, r3),

where δ was defined in (5.9), and therefore,

lim sup
n→∞

(
‖Gn‖2

L2 + ‖Hn‖2
L2

)
6
C

δ
ρ(r2, r3),
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which is equivalent to

lim sup
n→∞

∫
R2\Br2

|fn(z)|2 dz 6
C

δ
ρ(r2, r3).

Since the left-hand side of this inequality is independent of r3, and the right-hand
side tends to 0 as r3 → 0, conclusion (5.10) must hold. The proof of the lemma is
now complete. �

We have collected all the ingredients necessary to the proof of Theorem 1.5.

Proof of Theorem 1.5. Let {fn} ⊂ L2(R2) be any extremizing sequence for inequality
(1.6). Take any subsequence, and slightly abuse notation by again calling it {fn}.
If this subsequence {fn} does not concentrate at infinity, then there exists a further
sub-subsequence, still denoted by {fn}, and a number r0 <∞, such that

inf
n∈N

∫
Br0

|fn(y)|2 dy > 0.

From Lemma 5.4, we conclude∫
R2\B2r0

|fn(y)|2 dy → 0, as n→∞.

It follows that ∫
B2r0

|fn(y)|2 dy → 1, as n→∞. (5.12)

As a consequence of Lemma 5.2, ‖1B2r0
σ∗1B2r0

σ‖L∞ = ‖σ∗σ‖L∞ , and the supremum

is achieved inside the ball B̄2r0 . In particular, case (i) holds, and the set

E := {y ∈ R2|H(φ)(y) = 0}
is nonempty. For ε ∈ (0, 1), let Nε(E) denote the open ε-neighborhood of E, and
consider the set

Y := {(y, z) ∈ B3r0 ×B3r0|y ∈ Nε(E), z ∈ Nε(E), |y − z| < ε}.
Let X := (B̄3r0 × B̄3r0) \ Y . We claim that there exists δ = δ(ε) > 0, such that

(σ ∗ σ)(y + z, ψ(y) + ψ(z))

‖σ ∗ σ‖L∞
6 1− δ, (5.13)

for every (y, z) ∈ X. This follows from the compactness of the set X, together
with the fact that, if (y, z) ∈ X, then the point (y + z, ψ(y) + ψ(z)) is away from
the portion of the boundary of the support where the convolution σ ∗ σ attains its
essential supremum in a quantifiable way that depends only on ε. Since inequality
(5.13) holds for every (y, z) ∈ X, Lemma 5.2 implies∫

X

|fn(y)|2|fn(z)|2 dy dz → 0, as n→∞.

In light of (5.12), it then follows that∫
Y

|fn(y)|2|fn(z)|2 dy dz → 1, as n→∞. (5.14)
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The remaining of the proof coincides with the second part of the proof of [26, Propo-
sition 6.3], with minor modifications only. We include it for the convenience of the
reader. We seek to locate a sequence {yn} ⊂ R2 along which concentration occurs.
Fubini’s Theorem, and the fact that ‖fn‖L2 6 1, together imply∫
Y

|fn(y)|2|fn(z)|2 dy dz =

∫
B3r0∩Nε(E)

|fn(y)|2
(∫

B3r0∩Nε(E)∩Bε(y)

|fn(z)|2 dz
)

dy

6 ‖fn1B3r0∩Nε(E)‖2
L2 sup

y∈B3r0∩Nε(E)

∫
B3r0∩Nε(E)∩Bε(y)

|fn(z)|2 dz 6 1.

From (5.14), it then follows that

lim
n→∞

sup
y∈B3r0∩Nε(E)

∫
B3r0∩Nε(E)∩Bε(y)

|fn(z)|2 dz = 1.

This implies the existence of a function N : (0, 1)→ N, such that

sup
y∈B3r0∩Nε(E)

∫
{|z−y|6ε}

|fn(z)|2 dz > 1− ε

2
, for every n > N(ε).

Hence, there exists a sequence {yεn}n>N(ε) ⊂ B̄3r0 ∩ E, such that∫
{|z−yεn|62ε}

|fn(z)|2 dz > 1− ε, for every n > N(ε).

Here, we exchanged the neighborhood Nε(E) for the set E, at the expense of an
extra ε in the domain of integration. We proceed to construct the sequence {yn} via
a diagonal process. Take εk = 1

k+2
. We obtain a strictly increasing sequence

Nk := max{N(εj)| 1 6 j 6 k}+ k,

and sequences {ykn}n>Nk , satisfying∫
{|z−ykn|6 2

k
}
|fn(z)|2 dz > 1− 1

k
,

for every k > 1 and n > Nk. For each n > N1, let `n := sup{k ∈ N|Nk 6 n}. This
is a finite number since the sequence {Nk} is strictly increasing. Further note that
n > N`n . Define

yn :=

{
y`nn , if n > N1,

y0, if n < N1,

where y0 ∈ E is arbitrary, but fixed. It is then clear that∫
{|z−yn|6 2

`n
}
|fn(z)|2 dz > 1− 1

`n
,

for every n > N1, which implies that {fn} concentrates along the sequence {yn}
since `n → ∞, as n → ∞. The statement about subsequences of {fn} follows by
compactness of the set E ∩ B̄3r0 , since every subsequence of {yn} has a further sub-
subsequence that converges to a point in E ∩ B̄3r0 . �
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5.3. Some consequences. The methods of the proof of Theorem 1.5 specialize to
at least two distinct situations of interest. The first one is a direct consequence of
the statement of Theorem 1.5.

Corollary 5.6. Let φ : R2 → R be a nonnegative, twice continuously differentiable,
strictly convex function, such that

(i) H(φ)(y) 6= 0, for every y ∈ R2, and
(ii) There exists a sequence {yn} ⊂ R2 with |yn| → ∞, such that H(φ)(yn) → 0,

as n→∞.

Then any extremizing sequence for inequality (1.6) concentrates at infinity.

An example of a function that satisfies the hypotheses of the preceding corollary is
φ(y1, y2) = ey1 + ey2 , (y1, y2) ∈ R2. The next result shows that extremizing sequences
will not concentrate at spatial infinity if a suitable nondegeneracy condition is placed
on the function φ.

Corollary 5.7. Let φ : R2 → R be a nonnegative, twice continuously differen-
tiable, strictly convex function, such that the set E := {y ∈ R2|H(φ)(y) = 0} is
nonempty. Suppose that there exist r0 > 0 and a function Θ : R2 → [0,∞) satisfying
inf{|y|>r}Θ(y) > 0, for every r > r0, and such that the matrix

H(φ)(y)−Θ(y)I (5.15)

is positive semidefinite, for every y ∈ R2. Then every extremizing sequence {fn} ⊂
L2(R2) for inequality (1.6) concentrates along a sequence of points in E. Moreover,
given any subsequence of {fn}, there exist a point y0 ∈ E∩B̄r0 and a sub-subsequence
which concentrates at y0.

Condition (5.15) implies the existence of a constant δ > 0, for which

(σ ∗ σ)(y + z, ψ(y) + ψ(z)) 6 (1− δ)‖σ ∗ σ‖L∞ ,
for every (y, z) ∈ (R2)2 \ (B3r0 ×B3r0) such that 〈y, z〉 > 0, and Lemma 5.2 can then
be invoked to preclude concentration at infinity. Further note that (5.15) is fulfilled
by the functions φ = | · |p, for each p > 2. In this case, we can take r0 = 0, and so
concentration can only occur at the origin.

In the case of extremizing sequences concentrating at infinity, we can further refine
the analysis as follows. Let {fn} ⊂ L2(R2) be a sequence such that ‖fn‖L2 → 1,
as n → ∞. We say that the sequence {fn} satisfies the splitting condition if the
following holds. There exists α ∈ (0, 1) such that, for every ε > 0, there exist r > 0,
n0 > 1, and sequences {yn} ⊂ R2, {rn} ⊂ R, with rn → ∞, as n → ∞, such that
the functions gn,1 := fn1Br(yn) and gn,2 := fn1R2\Brn (yn) satisfy

‖fn − (gn,1 + gn,2)‖2
L2 6 ε, |‖gn,1‖2

L2 − α| 6 ε, |‖gn,2‖2
L2 − (1− α)| 6 ε, (5.16)

for every n > n0. The following result holds.

Proposition 5.8. Under the hypotheses of Theorem 1.2, let {fn} ⊂ L2(R2) be any
extremizing sequence for inequality (1.6). Then {fn} does not satisfy the splitting
condition.
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Sketch of proof. Aiming at a contradiction, suppose that the extremizing sequence
{fn} satisfies the splitting condition for a given α ∈ (0, 1). Let ε > 0, and suppose
that there exist r > 0, {yn} ⊂ R2, and {rn} ⊂ R, for which condition (5.16) holds.
Decompose fn = gn,1 + gn,2 + hn, where ‖hn‖2

L2 6 ε. Part (c) of Lemma 5.1 implies
the uniform estimate

‖gn,1σ ∗ gn,2σ‖2
L2 6 ρ(r, rn)2‖gn,1‖2

L2‖gn,2‖2
L2 ,

where the function

ρ(r, rn) := sup
y∈R2

‖1Br(y)σ ∗ 1R2\Brn (y)σ‖
1
2
L∞

satisfies ρ(r, rn)→ 0, as n→∞. By an argument similar to the one following (5.11)
in the proof of Lemma 5.4, we obtain

lim sup
n→∞

‖gn,1‖2
L2‖gn,2‖2

L2 6 C lim sup
n→∞

ρ(r, rn) + Cε
1
2 ,

for a universal constant C <∞. We conclude that

(1− α− ε)(α− ε) 6 Cε
1
2 ,

which yields the desired contradiction if ε is chosen small enough, depending on α.
�

We finish this chapter by reformulating some of our conclusions in the language of the
original concentration-compactness principle of Lions, according to which three sce-
narios may occur: (I) compactness, (II) vanishing, or (III) dichotomy. See [22, Lemma
I.1] for the precise definitions. Up to extraction of subsequences, an extremizing se-
quence for inequality (1.6) which satisfies condition (I) with respect to a bounded
sequence will concentrate at a point. An extremizing sequence which satisfies condi-
tion (II), or condition (I) with respect to an unbounded sequence, will concentrate
at infinity. Condition (III) is only possible if neither of the supports of the split
sequence remains in a bounded region, in which case the extremizing sequence again
concentrates at infinity. Furthermore, if condition (III) occurs, then condition (II)
must also occur. In this case, no fixed positive fraction of the L2 mass of an extrem-
izing sequence {fn} can remain on any ball of fixed radius, in the limit as n → ∞.
To see this, note that the proof of [22, Lemma I.1] implies that condition (III) could
otherwise be upgraded to the splitting condition considered above, which in light of
Proposition 5.8 does not hold for any extremizing sequence of inequality (1.6).

6. Sharp Strichartz inequalities

In this chapter, we consider a number of sharp instances of the Strichartz in-
equalities (1.12). All cases will follow a common pattern which we now illustrate by
focusing on a particular example. With this purpose in mind, let µ = 1 and consider
a function φ as in the statement of Theorem 1.2. In this case, inequality (1.12) can
be restated as

‖F(f(1 + | · |2)
1
4σφ)‖L4(R3) . ‖f‖L2(R2), (6.1)
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where the projection measure σ = σφ is defined in (1.2), and the subscript emphasizes
that we are no longer taking φ = | · |4 as in (1.16). Inequality (6.1) can be rewritten
in sharp convolution form as

‖f
√
wσφ ∗ f

√
wσφ‖L2(R3) 6 S2

φ‖f‖2
L2(R2),

with weight w = (1 + | · |2)
1
2 and optimal constant Sφ. The usual Cauchy–Schwarz

argument implies

‖f
√
wσφ ∗ f

√
wσφ‖2

L2(R3) 6 ‖wσφ ∗ wσφ‖L∞(R3)‖f‖4
L2(R2), (6.2)

whence the upper bound
S4
φ 6 ‖wσφ ∗ wσφ‖L∞(R3). (6.3)

On the other hand, recall formulae (2.4) and (5.1), the boundary values of the con-
volution measure wσφ ∗ wσφ are given by(

wσφ ∗ wσφ
)
(ξ, 2ψ(ξ/2)) =

πw2(ξ/2)√
det(H(ψ)(ξ/2))

, (6.4)

where we set ψ = | · |2 + φ as usual. A slight modification of Lemma 4.2 then yields
the lower bound

S4
φ > sup

ξ∈R2

πw2(ξ)√
det(H(ψ)(ξ))

. (6.5)

Inequalities (6.3) and (6.5) provide upper and lower bounds for the value of the
optimal constant Sφ. If these bounds happen to coincide, then this determines the
value of Sφ. In this case, if the supremum in (6.3) is achieved only at the boundary
of the support of the convolution measure, then extremizers are seen not to exist as
before. In other cases, the following result will be useful in revealing some instances
in which inequality (6.5) may be strict.

Lemma 6.1. Given a strictly convex function Ψ : R2 → R, consider the measure
ν(y, t) = δ

(
t−Ψ(y)

)
dy dt. Let E denote the support of the convolution measure ν∗ν.

Given s > 0 and a nonnegative function w on R2, let fs(y) = e−sΨ(y)
√
w(y). Then the

following inequality holds, for every fs ∈ L2(R2) for which fs
√
wν ∗fs

√
wν ∈ L2(R3):

‖fs
√
wν ∗ fs

√
wν‖2

L2(R3)

‖fs‖4
L2(R2)

>
‖fs‖4

L2(R2)∫
E
e−2sτ dξ dτ

. (6.6)

In particular,

sup
06=f∈L2(R2)

‖f
√
wν ∗ f

√
wν‖2

L2(R3)

‖f‖4
L2(R2)

> sup
s>0

‖fs‖4
L2(R2)∫

E
e−2sτ dξ dτ

.

Proof. For simplicity set s = 1, the general case being similar. Note that the function
f(y) = e−Ψ(y)

√
w(y) coincides with e−t

√
w(y) on the support of the measure ν.

Therefore, the following identities hold:

(f
√
wν ∗ f

√
wν)(ξ, τ) = e−τ (wν ∗ wν)(ξ, τ),

(f 2ν ∗ f 2ν)(ξ, τ) = e−τ (f
√
wν ∗ f

√
wν)(ξ, τ).
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Together with ∫
R3

(f 2ν ∗ f 2ν)(ξ, τ) dξ dτ = ‖f‖4
L2 ,

the preceding identities and the Cauchy–Schwarz inequality then imply

‖f‖4
L2 =

∫
R3

e−τ (f
√
wν ∗ f

√
wν)(ξ, τ) dξ dτ

6
(∫

E

e−2τ dξ dτ
) 1

2‖f
√
wν ∗ f

√
wν‖L2 ,

from which (6.6) easily follows. This completes the proof of the lemma. �

6.1. Quartic perturbations. We consider a slight generalization of inequality (1.16),
given for a > 0 by

‖F(f(1 + a| · |2)
1
4σ)‖L4(R3) . ‖f‖L2(R2),

where the measure σ is again given by σ(y, t) = δ
(
t− |y|2 − |y|4

)
dy dt. This in-

equality can be equivalently rewritten in sharp form as

‖f
√
waσ ∗ f

√
waσ‖L2(R3) 6 S2

a‖f‖2
L2(R2), (6.7)

with weight wa = (1+a| · |2)
1
2 and optimal constant Sa. With the notation just intro-

duced, we have the following result, which specialized to a = 1 yields Theorem 1.7.

Theorem 6.2. If 0 6 a 6 2, then the value of the optimal constant for inequality
(6.7) is given by S4

a = π
2
. Moreover, extremizers for inequality (6.7) do not exist, and

extremizing sequences concentrate at the origin. If a > 2, then the following estimates
hold:

max
{π

2
,
a
√

2π

8
Γ
(3

4

)2}
6 S4

a 6
aπ

4
. (6.8)

Proof. For every a > 0, the trivial estimate

‖fσ ∗ fσ‖L2 6 ‖|f |
√
waσ ∗ |f |

√
waσ‖L2

and Theorem 1.2 together imply that S4
a >

π
2
. This lower bound coincides with the

value of the right-hand side of (6.5) in the special case when φ = | · |4. It follows that

π

2
6 S4

a 6 ‖waσ ∗ waσ‖L∞ , (6.9)

for every a > 0. We are thus reduced to studying the convolution measure waσ∗waσ.
Formulae (2.11) and (5.1) imply

(waσ ∗ waσ)(ξ, τ) =

∫
S1

wa(ξ/2 + αω)wa(ξ/2− αω)〈
ω, ∇ψ(ξ/2+αω)−∇ψ(ξ/2−αω)

α

〉 dµω, (6.10)

where ψ = | · |2 + | · |4, and the function α = α(ξ, τ, ω) is given by (2.3). A straight-
forward computation shows that the numerator of the integrand in (6.10) equals

wa(ξ/2 + αω)wa(ξ/2− αω) =
(
(1 + a(|ξ/2|2 + α2))2 − a2α2〈ξ, ω〉2

) 1
2 , (6.11)
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while the denominator equals〈
ω,
∇ψ(ξ/2 + αω)−∇ψ(ξ/2− αω)

α

〉
= 4
(
1 + 2(|ξ/2|2 + α2) + 〈ξ, ω〉2

)
. (6.12)

We split the analysis in two cases.
Case 1: 0 6 a 6 2. To compare (6.11) and (6.12), note that the inequality(

1 + a
(
|ξ/2|2 + α2

))2

− a2α2〈ξ, ω〉2 6
(

1 + 2
(
|ξ/2|2 + α2

)
+ 〈ξ, ω〉2

)2

(6.13)

holds for every a ∈ [0, 2], ξ ∈ R2, ω ∈ S1 and α > 0. Moreover, necessary and
sufficient conditions for equality in (6.13) to hold for every ω ∈ S1 are ξ = 0 when
a = 2, and ξ = 0 and α = 0 when a < 2. It follows that 1

4
is an upper bound for the

integrand in (6.10). Therefore, for every (ξ, τ) ∈ R2+1,

(waσ ∗ waσ)(ξ, τ) 6
π

2
. (6.14)

Moreover, this inequality turns into an equality if and only if (ξ, τ) = (0, 0) when
a < 2, and if and only if ξ = 0 when a = 2. To justify this, note that

(waσ ∗ waσ)(0, τ) =

∫
R2

δ
(
τ − 2(|y|2 + |y|4)

)
w2
a(y) dy =

π

2

(a
2

+
1− a

2√
2τ + 1

)
1{τ>0}(τ),

which specializes to

(w2σ ∗ w2σ)(0, τ) =
π

2
1{τ>0}(τ).

As a consequence of estimates (6.9) and (6.14), we conclude that S4
a = π

2
, for every

0 6 a 6 2. Nonexistence of extremizers is a consequence of inequality (6.14) being
strict at almost every point, as in the proof of Theorem 1.2. Concentration at the
origin can likewise be established in an analogous manner. We point out that the
normalized sequence {fn/‖fn‖L2}, where fn(y) = exp(−n(|y|2 + |y|4)), is extremizing
for inequality (6.7).

Case 2: a > 2. Start by noting that the inequality(
1 + a

(
|ξ/2|2 + α2

))2

− a2α2〈ξ, ω〉2 6 a2

4

(
1 + 2

(
|ξ/2|2 + α2

)
+ 〈ξ, ω〉2

)2

holds for every a > 2, ξ ∈ R2, ω ∈ S1 and α > 0. It follows that

(waσ ∗ waσ)(ξ, τ) 6
aπ

4
,

yielding the upper bound S4
a 6

aπ
4

. On the other hand, along the boundary of the
support of waσ ∗ waσ, we have that

(waσ ∗ waσ)(ξ, 2ψ(ξ/2)) =
πw2

a(ξ/2)√
det(H(ψ)(ξ/2))

=
π(1 + a|ξ/2|2)

2
√

(1 + 2|ξ/2|2)(1 + 6|ξ/2|2)
,

and therefore

S4
a > sup

r>0

π(1 + ar)

2
√

(1 + 2r)(1 + 6r)
> max

{π
2
,
aπ

4
√

3

}
.
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This yields the preliminary bounds

max
{π

2
,
aπ

4
√

3

}
6 S4

a 6
aπ

4
. (6.15)

The lower bound can be sharpened by invoking Lemma 6.1. With this purpose in
mind, let fs(y) = e−sψ(y)

√
wa(y). Its L2 norm is given by

‖fs‖2
L2 =

∫
R2

e−2s(|y|2+|y|4)(1 + a|y|2)
1
2 dy = π

∫ ∞
0

e−2s(r+r2)(1 + ar)
1
2 dr.

On the other hand, letting E denote the support of the measure σ ∗ σ,∫
E

e−2sτ dξ dτ =

∫
R2

(∫ ∞
2(| ξ

2
|2+| ξ

2
|4)

e−2sτ dτ
)

dξ =
2π

s

∫ ∞
0

e−4s(r+r2) dr.

It follows that

S4
a > sup

s>0

πs

2

(∫∞
0
e−2s(r+r2)(1 + ar)

1
2 dr

)2∫∞
0
e−4s(r+r2) dr

.

The limit as s→ 0+ of the expression inside this supremum is easily calculated via a
change of variables u =

√
sr, yielding

S4
a >

aπ

2

(∫∞
0
e−2u2u

1
2 du

)2∫∞
0
e−4u2 du

=
a
√

2π

8
Γ
(3

4

)2

.

Since
√

2π
8

Γ
(

3
4

)2
> π

4
√

3
, this indeed sharpens the lower bound in (6.15), and the proof

is complete. �

Remark 6.3. We can consider more general perturbations Ψ = |·|2+|·|4+φ, with φ as
in the statement of Theorem 1.2, satisfying H(φ)(0) = 0. These correspond to pertur-
bations of the cases considered in Theorem 6.2. Letting σΨ(y, t) = δ

(
t−Ψ(y)

)
dy dt,

a similar analysis reveals that, for every a ∈ [0, 2], the sharp inequality

‖f
√
waσΨ ∗ f

√
waσΨ‖2

L2(R3) 6
π

2
‖f‖4

L2(R2) (6.16)

holds, extremizers do not exist, and extremizing sequences concentrate at the origin.

6.2. Convolutions of pure powers. In this section, we study the convolution of
the projection measure

νp(y, t) = δ
(
t− |y|p

)
dy dt, (6.17)

where p > 2 and (y, t) ∈ R2+1. A scaling argument shows that there exists a unique
possible Strichartz estimate in L4(R3), namely

‖F(f | · |
p−2
4 νp)‖L4(R3) . ‖f‖L2(R2). (6.18)

As before, the analysis of the sharp form of inequality (6.18) leads to the study of

the convolution measure wνp ∗ wνp, with weight w = | · | p−2
2 . We record its main

properties in the following result, which should be compared to Proposition 2.1.

Proposition 6.4. Given p > 2, let w = | · | p−2
2 . Let νp be the measure defined by

(6.17). Then the following assertions hold for the convolution measure wνp ∗ wνp:
(a) It is absolutely continuous with respect to Lebesgue measure on R3.
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(b) Its support, denoted Ep, is given by

Ep = {(ξ, τ) ∈ R2+1 : τ > 21−p|ξ|p}.
(c) Its Radon–Nikodym derivative, also denoted by wνp ∗ wνp, defines a bounded

continuous function in the interior of the set Ep.
(d) It is radial in ξ, and homogeneous of degree zero in the sense that

(wνp ∗ wνp)(λξ, λpτ) = (wνp ∗ wνp)(ξ, τ), for every λ > 0.

(e) It extends continuously to the boundary of Ep, except at the point (ξ, τ) =
(0, 0), with values given by

(wνp ∗ wνp)(ξ, 21−p|ξ|p) =
π

p
√
p− 1

, if ξ 6= 0.

(f) If p > 2, then the maximum value of wνp ∗ wνp is only attained along the
vertical axis {(0, τ) : τ > 0}, where it equals π

p
.

Proof. Properties (a) and (b) follow as in the proof of Proposition 2.1. Property (d)
is also straightforward to check. We then start by showing that wνp ∗ wνp defines a
continuous function inside its support. Reasoning as in (2.5), we have that

(wνp ∗ wνp)(ξ, τ) =

∫
R2

δ
(
τ − | ξ

2
+ y|p − | ξ

2
− y|p

)
| ξ
2

+ y|
p−2
2 | ξ

2
− y|

p−2
2 dy.

Write τ = λ|ξ|p with ξ = 2e1, where e1 denotes the first canonical vector. Changing
to polar coordinates with polar axis parallel to e1, we obtain

(wνp ∗wνp)(ξ, λ|ξ|p) =

∫ 2π

0

∫ ∞
0

δ
(
2pλ− 2− ϕθ(r)

)
((r2 + 1)2 − 4r2 cos2 θ)

p−2
4 r dr dθ,

where the function

ϕθ(r) := (r2 + 1 + 2r cos θ)
p
2 + (r2 + 1− 2r cos θ)

p
2 − 2 (6.19)

is convex in the variable r for each fixed θ, with unique global minimum at r = 0 as
a result of Lemma 3.1. A change of variables s = ϕθ(r) yields

(wνp ∗ wνp)(ξ, λ|ξ|p) =

∫ 2π

0

∫ ∞
0

δ
(
2pλ− 2− s

)((r2 + 1)2 − 4r2 cos2 θ)
p−2
4 r

ϕ′θ(r)
ds dθ

= 1{λ>21−p}(λ)

∫ 2π

0

((r2 + 1)2 − 4r2 cos2 θ)
p−2
4

( r

ϕ′θ(r)

)
dθ,

(6.20)

where r = ϕ−1
θ (2pλ−2), and ϕ′θ denotes the derivative of the function ϕθ with respect

to r. A calculation shows that

ϕ′θ(r) = pr
(
(r2 + 1 + 2r cos θ)

p−2
2 + (r2 + 1− 2r cos θ)

p−2
2

)
+ p cos θ

(
(r2 + 1 + 2r cos θ)

p−2
2 − (r2 + 1− 2r cos θ)

p−2
2

)
, (6.21)

which only vanishes at r = 0. Using part (d), we see that (wνp ∗ wνp)(ξ, τ) =
(wνp ∗ wνp)(e1, |ξ|−pτ), for every ξ 6= 0. Therefore continuity of the convolution
measure at a point (ξ, τ) in the interior of the set Ep, for ξ 6= 0, follows from that of
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(wνp ∗ wνp)(e1, λ), for λ > 21−p. The latter is seen to hold via the Implicit Function
Theorem, given that r is a differentiable function of λ and θ. As for continuity along
the positive τ -axis, note that, given τ > 0 and a sequence (ξn, τn)→ (0, τ), as n→∞,
with ξn 6= 0, for every n, we have

(wνp ∗ wνp)(ξn, τn) = (wνp ∗ wνp)(e1,
τn
|ξn|p )→

∫ 2π

0

dθ

2p
=
π

p
, as n→∞. (6.22)

Here we used that λn := τn
|ξn|p → ∞, and that r = r(λn, θ) → ∞ for each fixed θ, as

n→∞. Boundedness is a consequence of the inequality

2pr(r2 + 1 + 2r cos θ)
p−2
4 (r2 + 1− 2r cos θ)

p−2
4 6 ϕ′θ(r), (6.23)

which holds for every r > 0, θ ∈ [0, 2π] and p > 2. To verify (6.23), recall expression
(6.21) for ϕ′θ, and note that, as long as p > 2,

p cos θ
(
(r2 + 1 + 2r cos θ)

p−2
2 − (r2 + 1− 2r cos θ)

p−2
2

)
> 0,

for every r > 0 and θ ∈ [0, 2π]. This concludes the verification of (c). We can
continuously extend the value of the function (wνp ∗ wνp)(ξ, λ|ξ|p) to λ = 21−p by
noting that r → 0+ as λ→ (21−p)+. This yields the following value for the extension:

(wνp ∗ wνp)(ξ, 21−p|ξ|p) =

∫ 2π

0

dθ

ϕ′′θ(0)
=

∫ 2π

0

dθ

2p(1 + (p− 2) cos2 θ)
=

π

p
√
p− 1

.

Note that this coincides with the value predicted by the analogous of formula (6.4).
Property (e) is now proved. Finally, if p > 2, then a discussion of the cases of equality
in (6.23) reveals that the strict inequality

(wνp ∗ wνp)(ξ, τ) <
π

p
1{τ>21−p|ξ|p}(ξ, τ) (6.24)

holds for every (ξ, τ) with ξ 6= 0. Moreover, the value along the τ -axis was already
calculated in (6.22), is alternatively given by

(wνp ∗ wνp)(0, τ) =

∫
R2

δ
(
τ − 2|y|p

)
|y|p−2 dy =

π

p
1{τ>0}(τ),

and therefore equals the maximum value. This concludes the verification of (f) and
the proof of the proposition. �

Remark 6.5. The boundedness of wνp ∗wνp given by part (c) of Proposition 6.4 im-
plies the validity of the Strichartz estimate (6.18). Moreover, parts (e) and (f) imply
that the optimal constant Qp for the corresponding sharp inequality in convolution
form,

‖f
√
wνp ∗ f

√
wνp‖L2(R3) 6 Q2

p‖f‖2
L2(R2), (6.25)

satisfies
π

p
√
p− 1

6 Q4
p 6

π

p
. (6.26)

Contrary to the case of the quartic perturbation studied in §6.1, this does not deter-
mine Qp since the upper and lower bounds do not coincide for p > 2.
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In order to sharpen the lower bound in (6.26), we will use the following straightfor-
ward consequence of Lemma 6.1.

Corollary 6.6. Given p > 2, let νp(y, t) = δ
(
t− |y|p

)
dy dt, and w = | · | p−2

2 . Then

the following estimate holds for the function f(y) = exp(−|y|p)|y| p−2
4 :

‖f
√
wνp ∗ f

√
wνp‖2

L2(R3)

‖f‖4
L2(R2)

>
π

p21− 2
p

Γ
(

1
2

+ 1
p

)2

Γ
(

2
p

) . (6.27)

6.3. The pure quartic. In this section, we consider the case p = 4 of (6.25). Let
ν = ν4 be given by (6.17). The next result records the additional simplifications
which appear in the integral formula (6.20) for the convolution | · |ν ∗ | · |ν.

Corollary 6.7. Let ν(y, t) = δ
(
t− |y|4

)
dy dt. Then the following integral formula

holds, for every ξ 6= 0 and λ > 1
8
:

(| · |ν ∗ | · |ν)(ξ, λ|ξ|4)

=
1

4
√

2

∫ 2π

0

(
λ+ cos2 θ + 2 cos4 θ − 2(2λ+ cos2 θ + cos4 θ)

1
2 cos2 θ

2λ+ cos2 θ + cos4 θ

) 1
2

dθ. (6.28)

Additionally,

(| · |ν ∗ | · |ν)(0, τ) =
π

4
1{τ>0}(τ), and (| · |ν ∗ | · |ν)(ξ, |ξ|

4

8
) =

π

4
√

3
, if ξ 6= 0.

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. In view of [19, Theorem 4.1], the existence of extremizers for
inequality (1.14) follows from the strict inequality Q4 > π

4
√

3
. In order to establish it,

consider the function f(y) = exp(−|y|4)|y| 12 . Invoking Corollary 6.6, we have that

Q4 >
‖f | · | 12ν ∗ f | · | 12ν‖2

L2

‖f‖4
L2

>
π

4
√

2

Γ
(

3
4

)2

Γ
(

1
2

) =

√
2π

8
Γ
(3

4

)2

>
π

4
√

3
, (6.29)

as desired. The upper bound Q4 6 π
4

holds in view of part (f) of Proposition 6.4 for
p = 4. That this upper bound is strict follows from the existence of extremizers, and
the fact that the pointwise inequality | · |ν ∗ | · |ν < π

4
is strict almost everywhere, as

quantified by (6.24). �

Remark 6.8. A direct calculation shows that the function f(y) = exp(−|y|4)|y| 12
satisfies

‖f | · | 12ν ∗ f | · | 12ν‖2
L2(R3)

‖f‖4
L2(R2)

=
2√

πΓ(3
4
)2

∫ 2
√

2

0

(| · |ν ∗ | · |ν)2(e1, t
−2) dt. (6.30)

Invoking formula (6.28) for the convolution | · |ν ∗ | · |ν, the integral on the right-hand
side of (6.30) can be evaluated numerically. With precision 5× 10−6, one checks that

‖f | · | 12ν ∗ f | · | 12ν‖2
L2(R3)

‖f‖4
L2(R2)

≈ 0.489333. (6.31)
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Note that the lower bound
√

2π
8

Γ(3
4
)2 ≈ 0.470508 obtained in (6.29) already amounts

to about 96% of the value in (6.31). This indicates that the Cauchy–Schwarz argu-
ment from Lemma 6.1 is quite sharp for p = 4. We expect the same argument to
work for other values of p as well, and remark on that in the next section.

6.4. Other pure powers. In this section, we briefly comment on how to approach
the problem of existence of extremizers for inequality (6.25) in the case of pure
powers other than the quartic. Given p > 2, let Qp be the optimal constant in
inequality (6.25). The following result provides a partial replacement for Theorem
1.6 when p 6= 4.

Proposition 6.9. There exists p0 > 5 such that, for every p ∈ (2, p0),
π

p
√
p− 1

< Q4
p 6

π

p
.

Sketch of proof. The upper bound holds in view of part (f) of Proposition 6.4. Invok-
ing Corollary 6.6 as before, we obtain the lower bound (6.27). We are thus reduced
to showing that

π

p21− 2
p

Γ
(

1
2

+ 1
p

)2

Γ
(

2
p

) >
π

p
√
p− 1

,

or equivalently

Γ
(1

2
+

1

p

)2

>
21− 2

p

√
p− 1

Γ
(2

p

)
. (6.32)

Figure 1 below illustrates the validity of this inequality inside the claimed range. �

4 6 8 10
Value of p

0.85

0.90

0.95

1.00

1.05

Figure 1. Plot of the ratio LHS
RHS

of inequality (6.32), for 2 < p < 10.
The p-coordinate of the intersection (red) point has been numerically
determined and equals 5.061147 (6 d.p.).

Let p0 be the exponent promised by Proposition 6.9. For every p ∈ (2, p0), extremizing
sequences for inequality (6.25) are seen not to concentrate at a point of the boundary,
except possibly at the origin. Then, arguments similar to the ones from [7, 19] can
presumably establish the existence of extremizers, provided that a “cap bound” holds,
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together with a principle quantifying the weak interaction between distant caps, in
the spirit of Lemma 5.1. As a final remark, we record the following generalization of
formula (6.30) for generic values of p > 2,

‖f
√
wνp ∗ f

√
wνp‖2

L2(R3)

‖f‖4
L2(R2)

=
p

2π

Γ
(

2
p

)
Γ
(

1
2

+ 1
p

)2

∫ 2
2− 2

p

0

(wνp ∗ wνp)2(e1, t
− p

2 ) dt,

which could be of interest for further numerical explorations.
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