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Abstract. In the theory of coalgebras, trace semantics can be defined in
various distinct ways, including through algebraic logics, the Kleisli cat-
egory of a monad or its Eilenberg-Moore category. This paper elaborates
two new unifying ideas: 1) coalgebraic trace semantics is naturally pre-
sented in terms of corecursive algebras, and 2) all three approaches arise
as instances of the same abstract setting. Our perspective puts the dif-
ferent approaches under a common roof, and allows to derive conditions
under which some of them coincide.

1 Introduction

Traces are used in the semantics of state-based systems as a way of recording
the consecutive behaviour of a state in terms of sequences of observable (input
and/or output) actions. Trace semantics leads to, for instance, the notion of
trace equivalence, which expresses that two states cannot be distinguished by
only looking at their iterated in/output behaviour.

For many years already, trace semantics is a central topic of interest in the
coalgebra community — and not only there, of course. One of the key features
of the area of coalgebra is that states and their coalgebras can be considered in
different universes, formalised as categories. The break-through insight is that
trace semantics for a system in universe A can often be obtained by switching
to a different universe B. More explicitly, where the (ordinary) behaviour of the
system can be described via a final coalgebra in universe A, the trace behaviour
arises by finality in the different universe B. Typically, the alternative universe B
is a category of algebraic logics, the Kleisli category, or the category of Eilenberg-
Moore algebras, of a monad on universe A.

This paper elaborates two new unifying ideas.

1. We observe that the trace map from the state space of a coalgebra to a
carrier of traces is in all three situations the unique ‘coalgebra-to-algebra’
map to a corecursive algebra [6] of traces. This differs from earlier work which
tries to describe traces as final coalgebras. For us it is quite natural to view
languages as algebras, certainly when they consist of finite words/traces.

? The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement nr. 320571.
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2. Next, these corecursive algebras, used as spaces of traces, all arise via a
uniform construction, in a setting given by an adjunction together with a
special natural transformation that we call a ‘step’. We heavily rely on a
basic result saying that in this situation, the (lifting of the) right adjoint
preserves corecursive algebras, sending them from one universe to another.
This is a known result [5], but its fundamental role in trace semantics has
not be recognized before. For an arbitrary coalgebra there is then a unique
map to the transferred corecursive algebra; this is the trace map that we are
after.

The main contribution of this paper is the unifying step-based approach to coal-
gebraic trace semantics: it is shown that three existing flavours of trace semantics
— logical, Eilenberg-Moore, Kleisli — are all instances of our approach. More-
over, comparison results are given relating two of these forms of trace semantics,
namely logic-to-Eilenberg-Moore and logic-to-Kleisli. The other combinations
involve subtleties which we do not fully grasp yet. Due to space limitations, we
don’t cover the whole field of coalgebraic trace semantics: we focus only on finite
trace semantics, and also exclude at this stage the ‘iteration’ based approaches,
e.g., in [25,22,8].

Outline. The paper is organised as follows. It starts in Section 1 with the abstract
step-and-adjunction setting, and the relevant definitions and results for corecur-
sive algebras. In the next three sections, it is explained how this setting gives
rise to trace semantics, by presenting the above-mentioned three approaches to
coalgebraic trace semantics in terms of steps and adjunctions: Eilenberg-Moore
(Section 3), logical (Section 4) and Kleisli (Section 5). In each case, the relevant
corecursive algebra is described. These sections are illustrated with several exam-
ples. The next section establishes a connection between the Eilenberg-Moore and
the logical approach, and a connection between the Kleisli and logical approach
(Section 6). In Section 7 we briefly show that our construction of corecursive
algebras strengthens to a construction of completely iterative algebras. Finally,
in Section 8 we provide some directions for future work.

Notation. In the context of an adjunction F a G, we shall use overline notation
(−) for adjoint transposition. The unit and counit of an adjunction are, as usual,
written as η and ε.

For an endofunctorH, we write Alg(H) for its algebra category and CoAlg(H)
for its coalgebra category. For a monad (T, η, µ) on C, we write EM(T ) for the
Eilenberg-Moore category and K̀ (T ) for the Kleisli category.

We recall that any functor S : Sets→ Sets has a unique strength st. We write
st : S(XA)→ S(X)A for st(t)(a) = S(eva)(t), where eva = λf.f(a) : XA → X.

2 Coalgebraic semantics from a step

This section is about the construction of corecursive algebras and their use for
semantics. The notion of corecursive algebra, studied in [9,6] as the dual of
Taylor’s notion of recursive coalgebra [10], is defined as follows.
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Definition 1. Let H be an endofunctor on a category C.

1. A coalgebra-to-algebra morphism from a coalgebra c : X → H(X) to an
algebra a : H(A)→ A is a map f : X → A such that the diagram

X
f

//

c
��

A

H(X)
H(f)

// H(A)

a

OO

commutes. Equivalently: such a morphism is a fixpoint for the endofunction
on the homset C(X,A) sending f to the composite

X
c // H(X)

H(f)
// H(A)

a // A

2. An algebra a : H(A) → A is corecursive when for every coalgebra c : H →
H(X) there is a unique coalgebra-to-algebra morphism (X, c)→ (A, a).

Here is some intuition.

– As explained in [14], the specification of a coalgebra-to-algebra morphism
f is a “divide-and-conquer” algorithm. It says: to operate on an argument,
first decompose it via the coalgebra c, then operate on each component via
H(f), then combine the results via the algebra a.

– For each final H-coalgebra ζ : A
∼=→ H(A), the inverse ζ−1 : H(A) → A is a

corecursive algebra. For most functors of interest, this final coalgebra gives
semantics up to bisimilarity, which is finer than trace equivalence. So trace
semantics requires a different corecursive algebra.

In all our examples, we use the same procedure for obtaining a corecursive
algebra, which we shall now explain. Our basic setting consists of an adjunction,
two endofunctors, and a natural transformation:

C

F
))

H
"" ⊥ D

G

ii Lbb with HG
ρ +3 GL (1)

The natural transformation ρ : HG ⇒ GL will be called a step. Here H is the
behaviour functor : we study H-coalgebras and give semantics for them in a
corecursive H-algebra. This arrangement is well-known in the area of coalgebraic
modal logic [3,27,20,7,24], but we shall see that its application is wider.

A step can be formulated in several equivalent ways [18,23].

Theorem 2. In the situation (1), there are bijective correspondences between
natural transformations ρ1 : HG ⇒ GL, ρ2 : FH ⇒ LF , ρ3 : FHG ⇒ L and
ρ4 : H ⇒ GLF .

Moreover, if H and L happen to be monads, then ρ1 is an EM-law (map
HG⇒ GL compatible with the monad structures) iff ρ2 is a K̀ -law (map FH ⇒
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LF compatible with the monad structures) iff ρ4 is a monad map; and two further
equivalent characterisations are respectively a lifting of G or an extension of F :

EM(H)

��

EM(L)

��

Goo

C D
Goo

K̀ (H)
F // K̀ (L)

C
F //

OO

D

OO

�

Proof. We only mention the bijective correspondences: ρ1 and ρ3 correspond
by adjoint transposition, and similarly for ρ2 and ρ4. Further, ρ2 and ρ3 are
obtained from each other by:

ρ3 =

(
FHG

ρ2G +3 LFG
Lε +3 L

)
ρ2 =

(
FH

FHη +3 FHGF
ρ3F +3 LF

)
.

�

It is common to refer to ρ1 and ρ2 as mates; the other two maps are their
adjoint transposes. In diagrams we omit the subscript i in ρi and let the type
determine which version of ρ is meant.

Further, in the remainder of this paper we drop the usual subscript of com-
ponents of natural transformations.

Definition 3. In the setting (1), the step natural transformation ρ gives rise to
both:

– a lifting Gρ of the right adjoint G, called the step-induced algebra lifting:

Alg(H)

��

Alg(L)

��

Gρ
oo

C D
Goo

Gρ

(
L(A)

a−→ A
)

:=(
HG(A)

ρ−→ GL(A)
G(a)−−−→ G(A)

)
.

– dually, a lifting F ρ of the left adjoint F , called the step-induced coalgebra
lifting:

CoAlg(H)

��

Fρ // CoAlg(L)

��

C
F // D

F ρ
(
X

c−→ H(X)
)

:=(
F (X)

F (c)−−−→ FH(X)
ρ−→ LF (X)

)
.

Our approach relies on the following basic result.

Proposition 4 ([5]). For each corecursive L-algebra a : L(A) → A, the trans-
ferred H-algebra Gρ(A, a) : HG(A) → G(A) is also corecursive. Explicitly, for
any H-coalgebra (X, c), the unique coalgebra-to-algebra map (X, c)→ Gρ(A, a) is
the adjoint transpose of the unique coalgebra-to-algebra map F ρ(X, c)→ (A, a).

�
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Thus, by analogy with the familiar statement that “right adjoints preserves
limits”, we have “step-induced algebra liftings of right adjoints preserve corecur-
siveness”. Now we give the complete construction for semantics of a coalgebra.

Theorem 5. Suppose that L has a final coalgebra ζ : Ψ
∼=→ L(Ψ). Then for every

H-coalgebra (X, c) there is a unique coalgebra-to-algebra map c† as on the left
below:

X
c† //

c
��

G(Ψ)

H(X)
H(c†)

// HG(Ψ)

Gρ(Ψ,ζ−1)
OO

F (X)
c† //

Fρ(X,c)
��

Ψ

LF (X)
L(c†)

// L(Ψ)

ζ−1

OO

The map c† on the left can alternatively be characterized via its adjoint transpose
c† on the right, which is the unique coalgebra-to-algebra morphism. The latter
can also be seen as the unique map to the final coalgebra Ψ

∼=→ L(Ψ). �

Note that Theorem 5 generalises final coalgebra semantics: taking in (1)
F = G = IdC and H = L, the map c† in the above theorem is the unique
homomorphism to the final coalgebra. In the remainder of this paper we focus
on instances where c† captures traces, and we therefore refer to it as the trace
semantics map.

3 Traces via Eilenberg-Moore

EM(T )
B //

U
��

EM(T )

U
��

C
B

// C

(2)

We recall the approach to trace semantics devel-
oped in [17,29,4], putting it in the framework of
the previous section. The approach deals with
coalgebras for the composite functor BT , where
T is a monad that captures the ‘branching’ as-
pect. The following assumptions are required.

1. An endofunctor B : C→ C with a final coalgebra ζ : Θ
∼=→ B(Θ).

2. A monad (T, ηT , µT ), with the standard adjunction F a U between cate-
gories C � EM(T ), where U is ‘forget’ and F is for ‘free algebras’.

3. A lifting B of B, as in (2), or, equivalently, an EM-law κ : TB ⇒ BT .

Example 6. To briefly illustrate these ingredients, we consider non-deterministic
automata. These are BT -coalgebras with B : Sets → Sets, B(X) = 2 × XA

with 2 = {⊥,>} and T the finite powerset monad. The functor B has a final
coalgebra carried by the set 2A

∗
of languages. Further, EM(T ) is the category

of join semi-lattices (JSL). The lifting is defined by product in EM(T ), using
the JSL on 2 given by the usual ordering ⊥ ≤ >. By the end of this section, we
revisit this example and obtain the usual language semantics.
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These assumptions give rise to the following instance of our general setting (1):

C

F
++

BT
"" ⊥ EM(T )

U

ii B
ii

with
ρ : BTU =⇒ UB where

ρ(X,a) =
(
BTX

Ba−−→ BX
)

Actually — and equivalently, by Theorem 2 — the step ρ is most easily given
in terms of ρ4 : BT ⇒ UBF : since B lifts B, we have UBF = BUF = BT , so
that ρ4 is then defined simply as the identity.

The following result is well-known, and is (in a small variation) due to [30].

Lemma 7. There is a unique algebra structure a : T (Θ)→ Θ making ((Θ, a), ζ)
a B-coalgebra. Moreover, this coalgebra is final. �

We apply the step-induced algebra lifting Gρ : Alg(B) → Alg(BT ) to the
inverse of this final B-coalgebra, obtaining a BT -algebra:

(
BT (Θ)

`em−−→ Θ
)

:= Gρ((Θ, a), ζ−1) =
(
BT (Θ)

B(a)−−−→ B(Θ)
ζ−1

−−→ Θ
)
.

By Theorem 5, this algebra is corecursive, giving us trace semantics of BT -
coalgebras. More explicitly, given a coalgebra c : X → BT (X), the trace seman-
tics is the unique map, written as emc, making the following square commute.

X
emc //

c
��

Θ

BT (X)
BT (emc)

// BT (Θ)

`em

OO

(3)

The unique map emc in (3) appears in the literature as a ‘coiteration up-to’ or
‘unique solution’ theorem [1]. Examples follow later in this section (Theorem 8,
Example 9).

In [17,29], the above trace semantics of BT -coalgebras arises through ‘de-
terminisation’, which we explain next. Given a coalgebra c : X → BT (X), one
takes its adjoint transpose:

c : X → BT (X) = BUF(X) = UBF(X)

c : F(X)→ BF(X)

T (X)
emc //

c
��

Θ

BT (X)
B(emc)

// B(Θ)

ζ−1

OO

(4)

It follows from Theorem 2 and our definition
of ρ that this transpose coincides with the ap-
plication of the step-induced coalgebra lifting
Fρ : CoAlg(BT ) → CoAlg(B) from the pre-
vious section, i.e., Fρ(X, c) = (F(X), c). The
functor Fρ thus plays the role of determinisa-
tion, see [17]. By Theorem 5, the trace semantics emc can equivalently be char-
acterised in terms of Fρ, as the unique map emc making (4) commute. This
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is how the trace semantics via Eilenberg-Moore is presented in [17,29]: as the
transpose emc = emc ◦ ηTX .

We conclude this section by recalling a canonical construction of a distribu-
tive law [15] for a class of ‘automata-like’ examples.

Theorem 8. Let Ω be a set, T a monad on Sets and t : T (Ω) → Ω an EM-
algebra. Let B : Sets→ Sets, B(X) = Ω ×XA, and κ : TB ⇒ BT given by

κX :=
(
T (Ω ×XA)

〈T (π1),T (π2)〉
// T (Ω)× T (XA)

t×st
// Ω × T (X)A

)
.

Then κ is an EM-law. Moreover, the final B-coalgebra (ΩA
∗
, ζ) together with

the algebra structure T (ΩA
∗
)

st // T (Ω)A
∗ tA

∗
// ΩA

∗
is a final B-coalgebra. �

Example 9. By Theorem 8, we obtain an explicit description of the trace seman-
tics arising from the corecursive algebra (3): for any 〈o, f〉 : X → Ω × T (X)A,
the trace semantics is the unique map em in

X
em //

〈o,f〉
��

ΩA
∗

BT (X)
BT (em)

// BT (ΩA
∗
)

st
// B(T (Ω)A

∗
)
B(tA

∗
)

// BT (ΩA
∗
)

ζ−1
OO

We instantiate the trace semantics em for various choices of Ω, T and t. Given
a coalgebra 〈o, f〉 : X → Ω × T (X)A, we have em(x)(ε) = o(x) independently
of these choices. The table below lists the inductive case em(x)(aw) respectively
for non-deterministic automata (NDA) where branching is interpreted as usual
(NDA-∃), NDA where branching is interpreted conjunctively (NDA-∀) and (re-
active) probabilistic automata (PA). Here Pf is the finite powerset functor, and
Dfin the finitely supported distribution functor.

T Ω t : T (Ω)→ Ω em(x)(aw)

NDA-∃ Pf 2 = {⊥,>} S 7→
∨
S

∨
y∈f(x)(a) em(y)(w)

NDA-∀ Pf 2 = {⊥,>} S 7→
∧
S

∧
y∈f(x)(a) em(y)(w)

PA Dfin [0, 1] ϕ 7→
∑
p∈[0,1] p · ϕ(p)

∑
y∈X em(y)(w) · f(x)(a)(y)

For other examples, and a concrete presentation of the associated determinisa-
tion constructions, see [17,29].

4 Traces via Logic

This section illustrates how the ‘logical’ approach to trace semantics of [21],
started in [27], fits in our general framework. In essence, traces are built up from
logical formulas, also called tests, which are evaluated for states. These tests
are obtained via an initial algebra of a functor L. The approach works both for
TB and BT -coalgebras (and could, in principle, be extended to more general
combinations). We start by listing our assumptions in this section.
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1. An adjunction F a G between categories C � Dop.
2. A functor T on C with a step τ : TG⇒ G.
3. A functor B : C→ C and a functor L : D→ D with a step δ : BG⇒ GL.
4. An initial algebra α : L(Φ)

∼=→ Φ.

We deviate from the convention of writing ρ for ‘step’, since the above map τ
gives rise to multiple steps δτ and δτ in (6) below, in the sense of Definition 2;
here we use ‘delta’ instead of ‘rho’ notation since it is common in modal logic.

Example 10. We take C = D = Sets, and F,G both the contravariant powerset
functor 2−. Non-deterministic automata are obtained either as BT -coalgebras
with B(X) = 2 × XA and T the finite powerset functor; or as TB-coalgebras,
with B(X) = A × X + 1 and T again the finite powerset functor. In both
cases, L is given by L(X) = A × X + 1. The map τ : T2− ⇒ 2− is defined
by τX(S)(x) =

∨
ϕ∈S ϕ(x), and intuitively models the existential choice in the

semantics of non-deterministic automata. The map ρ and the language semantics
are defined later in this section.

The assumptions are close to the general step-and-adjunction setting (1). Here,
we have an opposite category on the right, and instantiate H to TB or BT :

C

F
**

H
"" ⊥ Dop

G

ii Lee where H = BT or H = TB (5)

Notice that our assumptions already include a step δ (involving B,L) and a step
τ , which we can compose to obtain steps for the TB respectively BT case:

δτ :=
(
TBG

Tδ +3 TGL
τL +3 GL

)
CoAlg(L)

Gδτ // Alg(TB)

δτ :=
(
BTG

Bτ +3 BG
δ +3 GL

)
CoAlg(L)

Gδτ // Alg(BT )
(6)

Both δτ and δτ are steps, and hence give rise to step-induced algebra liftings Gδτ
and Gδτ of G (Section 2). By Theorem 5, we obtain two corecursive algebras by
applying these liftings to the inverse of the initial algebra, i.e., the (inverse of
the) final coalgebra in Dop:

`log :=
(
TBG(Φ)

δτ // GL(Φ)
G(α−1)

∼=
// G(Φ)

)
,

`log :=
(
BTG(Φ)

δτ // GL(Φ)
G(α−1)

∼=
// G(Φ)

)
.

(7)

These corecursive algebras define trace semantics for any TB-coalgebra (X, c)
and BT -coalgebra (Y, d):

X
logc //

c
��

G(Φ)

TB(X)
TB(logc)// TBG(Φ)

`log

OO
Y

logd //

d
��

G(Φ)

BT (Y )
BT (logd)

// BTG(Φ)

`log

OO

(8)
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It is instructive to characterise this trace semantics in terms of the transpose
and the step-induced coalgebra liftings F δτ and F δ

τ

, showing how they arise as
unique maps from an initial algebra:

F (X) Φ

α−1

��

logcoo

LF (X)

F δτ (X,c)

OO

L(Φ)
L(logc)oo

F (Y ) Φ

α−1

��

logdoo

LF (Y )

F δ
τ

(Y,d)

OO

L(Φ)
L(logd)
oo

(9)

In the remainder of this section, we show two classes of examples of the
logical trace semantics. With these descriptions we retrieve most of the examples
from [21] in a smooth manner.

Proposition 11. Let Ω be a set, T : Sets→ Sets a functor and t : T (Ω)→ Ω a
map. Then the set of languages ΩA

∗
carries a corecursive algebra for the functor

Ω × T (−)A. Given a coalgebra 〈o, f〉 : X → Ω × T (X)A, the unique coalgebra-
to-algebra morphism log : X → ΩA

∗
satisfies

log(x)(ε) = o(x) log(x)(aw) = t
(
T (evw ◦ log)(f(x)(a))

)
for all x ∈ X, a ∈ A and w ∈ A∗.

Proof. We instantiate the assumptions in the beginning of this section by C =
D = Sets, F = G = Ω−, B(X) = Ω×XA, L(X) = A×X+1 and T the functor
from the statement. The initial L-algebra is α : A × A∗ + 1

∼=→ A∗. The map t
extends to a modality τ : TG⇒ G, given on components by

τX :=
(
T (ΩX)

st // T (Ω)X
tX // ΩX

)
.

The logic δ : BG ⇒ GL is given by the isomorphism Ω × (Ω−)A ∼= Ω(A×−)+1.
Instantiating (7) we obtain the corecursive BT -algebra

Ω × T (ΩA
∗
)A

id×(st)A
// Ω × (T (Ω)A

∗
)A

id×(tA
∗

)A
// Ω × (ΩA

∗
)A

Ωα
−1
◦δ // ΩA

∗
.

The concrete description of log follows by spelling out the coalgebra-to-algebra
diagram that characterises it. �

Example 12. We instantiate the trace semantics log from Proposition 11 for
various choices of Ω, T and t. Similar to the instances in Example 9, we consider
a coalgebra 〈o, f〉 : X → Ω × T (X)A, and we always have log(x)(ε) = o(x).
The cases of non-deterministic automata (NDA-∃, NDA-∀) and probabilistic
automata (PA) are the same as in Example 9. However, in constrast to the
Eilenberg-Moore approach and other approaches to trace semantics, a monad
structure on T is not required here. This is convenient as it also allows to treat
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alternating automata (AA), where T = PfPf; it is unclear whether T carries a
suitable monad structure in that case.

T Ω t : T (Ω)→ Ω log(x)(aw)

NDA-∃ Pf 2 = {⊥,>} S 7→
∨
S

∨
y∈f(x)(a) log(y)(w)

NDA-∀ Pf 2 = {⊥,>} S 7→
∧
S

∧
y∈f(x)(a) log(y)(w)

PA Dfin [0, 1] ϕ 7→
∑
p∈[0,1] p · ϕ(p)

∑
y∈X log(y)(w) · f(x)(a)(y)

AA PfPf 2 = {⊥,>} S 7→
∨
T∈S

∧
b∈T b

∨
T∈f(x)(a)

∧
y∈T log(y)(w)

We also describe a logic for polynomial functors constructed from a signature.
Here, we model a signature by a functor Σ : N→ Sets, where N is the discrete
category of natural numbers. This gives rise to a functor HΣ : Sets → Sets as
usual by HΣ(X) =

∐
n∈NΣ(n)×Xn. We abuse notation and write σ(x1, . . . , xn)

instead of (σ, x1, . . . xn). The initial algebra of HΣ consists of closed terms (or
finite node-labelled trees) over the signature.

Proposition 13. Let Ω be a meet semi-lattice with top element > as well as
a bottom element ⊥, let T : Sets → Sets be a functor, and t : T (Ω) → Ω a
map. Let Φ be the initial HΣ-algebra. The set ΩΦ of ‘tree’ languages carries a
corecursive algebra for the functor THΣ. Given a coalgebra c : X → THΣ(X),
the unique coalgebra-to-algebra map log : X → ΩΦ is given by

log(x)(σ(t1, . . . , tn)) = t(T (m) ◦ c(x)) ,where

m =

(
t 7→

{∧
i log(xi)(ti) if ∃x1 . . . xn. t = σ(x1, . . . , xn)

⊥ otherwise

)
: HΣ(X)→ Ω

for all x ∈ X and σ(t1, . . . , tn) ∈ Φ.

Proof. We use C = D = Sets, F = G = Ω−, B = L = HΣ . The map t
extends to a modality τ : TG ⇒ G as in the proof of Proposition 11. The logic
δ : HΣΩ

− ⇒ ΩHΣ(−) is:

δX(σ(φ1, . . . , φn))(t) =

{∧
i φi(xi) if ∃x1 . . . xn. t = σ(x1, . . . , xn)

⊥ otherwise

The corecursive algebra `log is then given by:

THΣ(ΩΦ)
T (δ)
// T (ΩHΣ(Φ))

st // T (Ω)HΣ(Φ) tHΣ(Φ)
// ΩHΣ(Φ)

∼= // ΩΦ .

The explicit characterisation of log is a straightforward computation. �

Example 14. Given a signature Σ, a coalgebra f : X → PfHΣ(X) is a (top-
down) tree automaton. With Ω = {⊥,>} and t(S) =

∨
S, Proposition 13 gives:

log(x)(σ(t1, . . . , tn)) = > iff ∃x1 . . . xn.σ(x1, . . . , xn) ∈ f(x) ∧
∧

1≤i≤n

log(xi)(ti)

for every state x ∈ X and tree σ(t1, . . . , tn). This is the standard semantics of
tree automata. It is easily adapted to weighted tree automata, see [21].
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In both Example 14 and Example 12, the step-induced coalgebra lifting Fδτ

(respectively Fδτ ) of the underlying logic corresponds to reverse determinisation,
see [21,28] for details. In particular, in Example 14 it maps a top-down tree
automaton to the corresponding bottom-up tree automaton.

5 Traces via Kleisli

K̀ (T )
B // K̀ (T )

C
B

//

J
OO

C

J
OO

(10)

In this section we briefly recall the ‘Kleisli ap-
proach’ to trace semantics [12], and cast it in
our abstract framework. It applies to coalgebras
for a composite functor TB, where T is a monad
modelling the type of branching. For example,
a coalgebra X → P(A × X + S) has an associated map X → P(A∗ × S) that
sends a state x ∈ X to the set of its complete traces. (Taking S = 1, this is the
usual language semantics of a nondeterministic automaton.) To fit this to our
framework, the monad T is P and the functor B is (A×−) + S. In general, the
following assumptions are required.

1. An endofunctor B : C→ C with an initial algebra β : B(Ψ)
∼=→ Ψ .

2. A monad (T, ηT , µT ), with the standard adjunction J a U between categories
C � K̀ (T ), where J(X) = X and U(Y ) = T (Y ).

3. An extension B of B, as in (10), or, equivalently, a K̀ -law λ : BT ⇒ TB.
4. (Ψ, J(β−1)) is a final B-coalgebra.

In the case that B is the functor (A × −) + S, its initial algebra is carried by
A∗ × S, and the canonical K̀ -law is given at X by

[T inl ◦ stA,X , T inr ◦ ηTS ] : A× TX + S → T (A×X + S)

A central observation for the Kleisli approach to traces is that the fourth as-
sumption holds under certain order enrichment requirements on K̀ (T ), see [12].
In particular, these hold when T is the powerset monad, the (discrete) sub-
distribution monad or the lift monad.

The above assumptions give rise to the following instance of our setting (1):

C

J
++

TB
"" ⊥ K̀ (T )

U

hh Bgg
with

ρ : TBU =⇒ UB where ρX =(
TBTX

T (λ)−−−→ T 2BX
µT−−→ TBX

)
Similar to the EM-case in Section 3, the map of adjunctions is most easily given
in terms of ρ4 : TB ⇒ UBJ as the identity, using that B extends B.

We apply the step-induced algebra lift Gρ : Alg(B)→ Alg(TB) to the inverse
of the final B-coalgebra, and call it `kl:(

TBT (Ψ)
`kl−−→ T (Ψ)

)
:= Gρ(Ψ, J(β−1)−1)

= Gρ(Ψ, J(β))

=
(
TBT (Ψ)

T (λ)−−−→ T 2B(Ψ)
µT−−→ TB(Ψ)

T (β)−−−→ T (ψ)
)
.
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By Theorem 5, this algebra is corecursive, i.e., for every coalgebra c : X →
TB(X), there is a unique map klc as below:

X

c
��

klc //

��

T (Ψ)

TB(X)
TB(klc)

// TBT (Ψ)

`kl

OO

The trace semantics is exactly as in [12], to which we refer for examples.

6 Comparison

The presentation of trace semantics in terms of corecursive algebras allows us
compare the different approaches by constructing algebra morphisms between
them. In this section, we compare the Eilenberg-Moore against the logical ap-
proach, and the Kleisli against the logical approach as well. For a comparison
between Kleisli and Eilenberg-Moore we refer to [17]. The latter is not in terms
of corecursive algebras; we leave such a reformulation for future work. In [21],
logical traces are also compared to determinisation constructions. But the tech-
nique is different, with the primary difference that no corecursive algebras are
used there.

6.1 Eilenberg-Moore and Logic

To compare the Eilenberg-Moore approach to the logical approach, we combine
their assumptions. This amounts to an adjunction F a G, endofunctors B,L
and a monad T as follows:

Dop

G

55L
%%

⊥ C

F
tt

F
++

BT

��

⊥ EM(T )

U

jj B
ii

together with:

1. A final B-coalgebra ζ : Θ
∼=→ B(Θ).

2. An EM-law κ : TB ⇒ BT , or equivalently, a lifting B of B.
3. An initial algebra α : L(Φ)

∼=→ Φ.
4. A step δ : BG⇒ GL.
5. A step τ : TG⇒ G, whose components are EM-algebras (a monad action).

The map τ is an assumption of the logical approach, but the compatibility with
the monad structure was not assumed before (in the logical approach, T is not
assumed to be a monad). We note that τ being a monad action is the same
thing as τ being an EM-law (involving the monad T on the left and the identity
monad on the right). Therefore, by Theorem 2:
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Lemma 15. The following are equivalent:

1. a monad action τ1 : TG⇒ G;
2. a map τ2 : F ⇒ FT , satisfying the obvious dual equations;
3. a monad morphism τ4 : T ⇒ GF ;
4. an extension F̂ : K̀ (T )→ Dop ( = K̀ (Id)) of F .

5. a lifting Ĝ : Dop → EM(T ) of G.

Such monad actions and the corresponding liftings are used, e.g., in [13,16,11]

where F̂ is called Pred. We turn back to the comparison between the Eilenberg-
Moore and logical approach. First, observe that since δ : BG ⇒ GL is a step,

it induces a corecursive B-algebra BG(Φ)
δ−→ GL(Φ)

G(α−1)−−−−−→ G(Φ). Hence, we
obtain a unique map e as in the following diagram:

Θ
ζ ��

e // G(Φ)

B(Θ)
B(e)
// BG(Φ)

δ // GL(Φ)
G(α−1)
OO

(11)

This is a map from the carrier of the corecursive algebra `em (from the Eilenberg-
Moore approach) to the carrier of the corecursive algebra `log (from the logical
approach). Note that, by the above diagram, it is a B-algebra morphism, whereas
`em and `log are BT -algebras. The following is a sufficient condition under which
the map e is a BT -algebra morphism from `em to `log, which implies that the log-
ical trace semantics factors through the Eilenberg-Moore trace semantics (The-
orem 17).

Lemma 16. The distributive law κ commutes with the logics in (6), as in:

TBG
κG //

δτ ''

BTG

δτww
GL

(12)

iff there is a natural transformation % : BĜ⇒ ĜL such that U(%) = δ — where

the functor Ĝ : Dop → EM(T ) is the lifting corresponding to τ (Lemma 15).

Proof. The existence of such a % amounts to the property that each component
δX : BG(X) → GL(X) is a T -algebra homomorphism from BĜ(X) to ĜL(X),
i.e., the following diagram commutes:

TBGX
Tδ //

κG
��

TGLX

τL

��

BTGX

Bτ
��

BGX
δ // GLX

This corresponds exactly to (12). �
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Theorem 17. If the equivalent conditions in Lemma 16 hold, then the map e
defined in (11) is an algebra morphism from `em to `log, as on the left below.

BT (Θ)

`em
��

BT (e)
// BTG(Φ)

`log

��

Θ
e

// G(Φ)

X
emc

||

logc

$$

Θ
e

// G(Φ)

In that case, for any coalgebra X
c→ BT (X) the triangle on the right commutes.

Proof. We use that `em = ζ−1 ◦B(a) : BT (Θ)→ Θ, where ((Θ, a), ζ) is the final
B-coalgebra, see Section 3. We need to prove that the outside of the following
diagram commutes.

BT (Θ)

`em

��B(a)
//

BT (e)
��

B(Θ)

B(e)
��

ζ−1

∼=
// Θ

e
��

BTG(Φ)
B(τ1)

//

`log

OO
BG(Φ)

δ
// GL(Φ)

G(α−1)

∼= // G(Φ)

The rectangle on the right commutes by definition of e. For the square on the
left, it suffices to show e ◦ a = τ1 ◦ T (e); this is equivalent to F (a) ◦ e = τ2 ◦ e in:

Φ
e=F (e)◦ε

// F (Θ)
F (a)

//

τ2
// FT (Θ)

Indeed, by transposing we have on the one hand:

e ◦ a = F (a ◦ e) ◦ εΦ = F (a) ◦ F (e) ◦ εΦ = F (a) ◦ e

And on the other hand, using that τ2 = F (τ1 ◦ T (η)) ◦ ε,

τ2 ◦ e = F (τ1 ◦ T (η)) ◦ ε ◦ F (e) ◦ ε
= F (τ1 ◦ T (η)) ◦ FG(F (e) ◦ ε) ◦ ε
= F

(
G(F (e) ◦ ε) ◦ τ1 ◦ T (η)

)
◦ ε

= F
(
τ1 ◦ TG(F (e) ◦ ε) ◦ T (η)

)
◦ ε

= F
(
τ1 ◦ T (G(ε) ◦ GF (e) ◦ η)

)
◦ ε = F (τ1 ◦ T (e)) ◦ ε = τ1 ◦ T (e).

By transposing the maps in (11), it follows that e : Φ → F (Θ) is the unique
morphism from the initial L-algebra to F (ζ) ◦ δ2 : LF (Θ) → F (Θ). Hence, for
the desired equality F (a) ◦ e = τ2 ◦ e, it suffices to prove that F (a) and τ2 are
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both algebra homomorphisms from F (ζ)◦δ2 to a common algebra, which in turn
follows from commutativity of the following diagram.

LF (Θ)
L(τ2)

//

δ2

��

LFT (Θ)

δ2T��

LF (Θ)

δ2��

LF (a)
oo

FBT (Θ)

Fκ
��

FB(Θ)

F (ζ)

��

FB(a)
oo

FB(Θ)

F (ζ)
��

τ2B // FTB(Θ)

FT (ζ)
��

F (Θ)
τ2
// FT (Θ) F (Θ)

F (a)
oo

Using the translation (−)1 ↔ (−)2 (of Theorem 2), one shows that the upper-
left rectangle is equivalent to the assumption (12). To see this, we use that
(δτ )2 = (δ1 ◦Bτ1)2 = δ2T ◦ Lτ2 and (δτ )2 = (τ1L ◦ Tδ1)2 = τ2B ◦ δ2 (as stated,
e.g., in [21]); moreover, it is easy to check that (δ1◦Bτ1◦κG)2 = Fκ◦(δ1◦Bτ1)2.
The lower-right rectangle commutes since ((Θ, a), ζ) is a B-coalgebra. The other
two squares commute by naturality.

For the second part of the theorem, let c : X → BT (X) be a coalgebra. Since
e is an algebra morphism, the equation e ◦ emc = logc follows by uniqueness of
morphisms from c to the corecursive algebra on G(Φ). �

The equality e ◦ emc = logc means that equivalence wrt Eilenberg-Moore
trace semantics implies equivalence wrt the logical trace semantics. The converse
is, of course, true if e is monic. For that, it is sufficient if δ : BG ⇒ GL is
expressive. Here expressiveness is the property that for any B-coalgebra, the
unique coalgebra-to-algebra morphism to the corecursive algebra on G(Φ) factors
as a B-coalgebra homomorphism followed by a mono. This holds in particular if
the components δA : BG(A)→ GL(A) are all monic (in C) [20].

Lemma 18. If δ : BG ⇒ GL is expressive, then e is monic. Moreover, if δ is
an isomorphism, then e is an iso as well.

Proof. Expressivity of δ means that we have e = m ◦ h for some coalgebra
homomorphism h and mono m. By finality of ζ there is a B-coalgebra morphism
h′ such that h′ ◦ h = id. It follows that h is monic (in C), so that m ◦ h =
e is monic too. For the second claim, if δ is an isomorphism, then G(α−1) ◦
δ : BG(Φ) → G(Φ) is an invertible corecursive B-algebra, which implies it is a
final coalgebra (see [5, Proposition 7], which states the dual). It then follows
from (11) that e is a coalgebra morphism from one final B-coalgebra to another,
which means it is an isomorphism. �

Previously, we have seen both a class of examples of the Eilenberg-Moore
approach (Theorem 8), and the logical approach (Proposition 11). Both arise
from the same data: a monad T (just a functor in the logical approach) and an
EM-algebra t. We thus obtain, for these automata-like examples, both a logical
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trace semantics and a matching ‘Eilenberg-Moore’ semantics, where the latter
essentially amounts to a determinisation procedure. The underlying distributive
laws satisfy (12) by construction, so that the two approaches coincide (as already
seen in the concrete examples).

Theorem 19. Let Ω be a set, T : Sets→ Sets a monad and t : T (Ω)→ Ω an
EM-algebra. The EM-law κ of Theorem 8, together with δ, τ as defined in the
proof of Proposition 11, satisfies (12). For any coalgebra c : X → Ω × T (X)A,
the map logc coincides (up to isomorphism) with the map emc.

Proof. To prove (12), i.e., δτ ◦ κ = δτ , we first compute, following (6),

(δτ )X = δX ◦ (id × τAX) = δX ◦ (id × (tX ◦ st)A) : Ω × (T (ΩX))A → ΩA×X+1

(δτ )X = τA×X+1 ◦ T (δX) = tA×X+1 ◦ st ◦ T (δX) : T (Ω × (ΩX)A)→ ΩA×X+1

Hence, we need to show that

δX ◦ (id × (tX ◦ st)A) ◦ (t× st) ◦ 〈T (π1), T (π2)〉 = tA×X+1 ◦ st ◦ T (δX) (13)

for every set X. To this end, let S ∈ T (Ω × (ΩX)A) and t ∈ (A ×X + 1). We
first spell out the right-hand side:

(tA×X+1 ◦ st ◦ T (δX)(S))(t)

= t((st ◦ T (δX)(S))(t))

= t(T (evt ◦ δX)(S))

=

{
t(T (π1)(S)) if t = ∗ ∈ 1

t(T (evx ◦ eva ◦ π2)(S)) if t = (a, x) ∈ A×X

In the last step, we used the definition of δ:

ev∗ ◦ δX(ω, f) = δX(ω, f)(∗) = ω = π1(ω, f) ,

ev(a,x) ◦ δX(ω, f) = δX(ω, f)(a, x) = f(a)(x) = evx ◦ eva ◦ π2(ω, f) .

For the left-hand side of (13), distinguish cases ∗ ∈ 1 and (a, x) ∈ A×X.

(δX ◦ (id × (tX ◦ st)A) ◦ (t× st) ◦ 〈T (π1), T (π2)〉(S))(∗)
= π1(id × (tX ◦ st)A) ◦ (t× st) ◦ 〈T (π1), T (π2)〉(S))

= t(T (π1)(S))
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which matches the right-hand side of (13). For (a, x) ∈ A×X, we have:

(δX ◦ (id × (tX ◦ st)A) ◦ (t× st) ◦ 〈T (π1), T (π2)〉(S))(a, x)

= (((tX ◦ st)A ◦ st)(T (π2)(S)))(a)(x)

= (((tX)A ◦ stA ◦ st)(T (π2)(S)))(a)(x)

= (tX ◦ st(st(T (π2)(S))(a)))(x)

= (tX ◦ st(T (eva)(T (π2)(S)))(x)

= (tX ◦ st(T (eva ◦ π2)(S)))(x)

= t(st(T (eva ◦ π2)(S))(x))

= t(T (evx) ◦ T (eva ◦ π2)(S))

= t(T (evx ◦ eva ◦ π2)(S))

which also matches the right-hand side, hence we obtain (13) as desired.
Since (12) is satisfied, it follows from Theorem 17 that e ◦ emc = logc. Since

δ is an iso, e is an iso as well by Lemma 18. �

6.2 Kleisli and Logic

To compare the Kleisli approach to the logical approach, we combine their as-
sumptions. This amounts to an adjunction F a G, endofunctors B,L and a
monad T as follows:

Dop

G

55L
%%

⊥ C

F
tt

J
++

TB

��

⊥ K̀ (T )

U

jj Bgg

together with:

1. An initial algebra β : B(Ψ)
∼=→ Ψ .

2. A K̀ -law λ : BT ⇒ TB, or equivalently, an extension B of B.
3. (Ψ, J(β−1)) is a final B-coalgebra.
4. An initial algebra α : L(Φ)

∼=→ Φ.
5. A step δ : BG⇒ GL.
6. A step τ : TG⇒ G, whose components are EM-algebras (a monad action).

Again, we assume τ to be compatible with the monad, satisfying the equiva-
lent conditions in Lemma 15. Since δ is a step, we obtain the following unique
coalgebra-to-algebra morphism k from the initial B-algebra:

Ψ
β−1
��

k // G(Φ)

B(Ψ)
B(k)
// BG(Φ)

δ // GL(Φ)
G(α−1)
OO

(14)

Since τ is a monad action, for every X, G(X) carries an Eilenberg-Moore algebra
τX . Thus we can take the adjoint transpose k = τΦ ◦ T (k) : T (Ψ) → G(Φ). We
have the following analogue of Theorem 17.
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Lemma 20. The distributive law λ commutes with the logics in (6), as in:

BTG
λG //

δτ ''

TBG

δτww
GL

(15)

iff there is a natural transformation % : LF̂ ⇒ F̂B given by %J = δ — where the
functor F̂ : K̀ (T )→ Dop is the extension corresponding to τ (Lemma 15).

Proof. The condition %J = δ simply means that %X = δX for every object X
in C. Naturality of % amounts to commutativity of the outside of the diagram
below, for every map f : X → T (Y ).

LF (Y )
δ //

Lτ ��

FB(Y )
τB // FTB(Y )

Fλ��

LFT (Y )
δT

//

LF (f)
��

FBT (Y )

FB(f)
��

LF (X)
δ

// FB(X)

The lower rectangle commutes by naturality, the upper is equivalent to (15).
Hence, (15) implies naturality. Conversely, if % is natural, then the upper rect-
angle commutes for each Y by taking f = idTY (the identity map in C). �

Theorem 21. If the equivalent conditions in Lemma 20 hold, then the map
k = τΦ ◦ T (k) : T (Ψ)→ G(Φ) is an algebra morphism from `kl to `log, as on the
left below.

TBT (Ψ)

`kl
��

TB(k)
// TBG(Φ)

`log
��

T (Ψ)
k // G(Φ)

X
klc

zz

logc

$$

T (Ψ)
k // G(Φ)

In that case, for any coalgebra c : X → TB(X) there is a commuting triangle as
on the right above.

Proof. Consider the following diagram.

TBT (Ψ)

Tλ
��

TBT (k)
//

`kl

//

TBTG(Φ)
TBτ //

TλG
��

TBG(Φ)

Tδ
��

`log

oo

TTB(Ψ)

µB
��

TTB(k)
// TTBG(Φ)

TTδ //

µBG
��

TTGL(Φ)
TτL //

µGL
��

TGL(Φ)

τL
��

TB(Ψ)
TB(k)

//

T (β)
��

TBG(Φ)
Tδ // TGL(Φ)

τL //

TG(α−1)
��

GL(Φ)

G(α−1)
��

T (Ψ)
T (k)

// TG(Φ)
τ

// G(Φ)
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Everything commutes: the upper right rectangle by assumption (15), the right-
most square in the middle row since τ is an action, the outer shapes by definition
of `kl and `log, the lower left rectangle by (14) and the rest by naturality. �

The above result gives a sufficient condition under which ‘Kleisli’ trace equiv-
alence implies logical trace equivalence. However, contrary to the case of traces
in Eilenberg-Moore, in Lemma 18, we currently do not have a converse. If δ has
monic components, then it is easy to use corecursiveness to define a map from
`log to `kl, but this surprisingly is not sufficient to show k to be monic, as con-
firmed by Example 22 below. In the comparison between Eilenberg-Moore and
Kleisli traces [17], a similar difficulty arises: it is unclear under what conditions
the map from the final coalgebra in Kleisli to the final coalgebra in Eilenberg-
Moore obtained there is mono (and hence, if Eilenberg-Moore trace equivalence
implies Kleisli trace equivalence).

Example 22. We give an example where δ : BG ⇒ GL is monic and (15) com-
mutes, but where nevertheless logical equivalence is stronger than ‘Kleisli’ trace
equivalence. Let C = D = Sets, F = G = 2−, B = L = (A × −) + 1, T = P,
τ : P2− ⇒ 2− given by union as before, and define the step δ by δX(a, ϕ)(t) = >
iff ∃x.t = (a, x) ∧ ϕ(x), and δX(∗)(t) = > (the latter differs from the step in
Proposition 13). Notice that δ indeed has monic components.

Let λ : BT ⇒ TB be the distributive law from [12], given by λX(a, S) =
{(a, x) | x ∈ S} and λ(∗) = {∗}. Then (15) is satisfied:

A× P(2X) + 1
λ //

id×τ+1 ��

P(A× 2X + 1)
P(δ)��

A× 2X + 1
δ // 2A×X+1 P(2A×X+1)

τoo

It is straightforward to check that this commutes. However, given a coalgebra
f : X → TB(X), the induced logical semantics log : X → 2A

∗
is: log(x)(w) = >

iff ∗ ∈ f(x) or ∃a ∈ A, v ∈ A∗, y ∈ X.w = av ∧ (a, y) ∈ f(x) ∧ log(y)(v) = >. In
particular, this means that if ∗ ∈ f(x) and ∗ ∈ f(y) for some states x, y, then
they are trace equivalent. This differs from the Kleisli semantics, which amounts
to the usual language semantics of non-deterministic automata [12].

Ĉırstea [8] compares logical traces to a ‘path-based semantics’, which resem-
bles the Kleisli approach (as well as [22]) but does not require a final B-coalgebra.
In particular, given a commutative monad T on Sets and a signature Σ, she
considers a canonical distributive law λ : HΣT ⇒ THΣ , which coincides with
the one in [12]. Ĉırstea shows that, with Ω = T (1), t = µ1 : TT (1) → T (1) and
δ from the proof of Proposition 13 (assuming T1 to have enough structure to
define that logic), the triangle (15) commutes (see [8, Lemma 5.12]).

7 Completely Iterative Algebras

In this paper, we constructed several corecursive algebras. We briefly show that
they all satisfy the following stronger property [26].
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Definition 23. For an endofunctor H on C, an H-algebra a : HA → A is
completely iterative when [id, a] is a corecursive A + H-coalgebra. Explicitly:
when for every c : X → A + HX there is a unique f : X → A such that the
following diagram commutes.

X
f

//

c
��

A
[id,a]
��

A+HX
A+Hf

// A+HA

Following [14,26], we have two ways of constructing such algebras.

Proposition 24.

1. If ζ : A→ HA is a final H-coalgebra, then (A, ζ−1) is completely iterative.
2. Given a step as in Section 2, the functor Gρ preserves complete iterativity.

We may thus say: “step-induced algebra liftings of right adjoints preserve com-
plete iterativity”. Consequently, by analogy with Theorem 5, if L has a final
coalgebra (Ψ, ζ) then Gρ(A, ζ

−1) is completely iterative. For our examples, this
may be seen as a trace semantics for a coalgebra c that may sometimes stop
following the behaviour functor and instead provide semantics directly.

8 Future work

The main contribution of this paper is a general treatment of trace semantics
via corecursive algebras, constructed through an adjunction and a step, cover-
ing the ‘Eilenberg-Moore’, ‘Kleisli’ and ‘logic’ approaches to trace semantics.
It is expected that our framework also works for other examples, such as the
‘quasi-liftings’ in [2], but this is left for future work. In [19], several examples of
adjunctions are discussed in the context of automata theory, some of them the
same as the adjunctions here, but with the aim of lifting them to categories of
coalgebras, under the condition that what we call the step is an iso. In our case,
it usually is not an iso, since the behaviour functor is a composite TB or BT ;
however, it remains interesting to study cases in which such adjunction liftings
appear, as used for instance in the aforementioned paper and [28,21]. Further,
our treatment in Section 3 (Eilenberg-Moore) assumes a monad to construct the
corecursive algebra, but it was shown by Bartels [1] that this algebra is also core-
cursive when the underlying category has countable coproducts (and dropping
the monad assumption). We currently do not know whether this fits our abstract
approach. Finally, the Eilenberg-Moore/logic and Kleisli/logic comparisons (Sec-
tion 6) seem to share certain aspects (the conditions look very similar), but so
far we have been unable to derive a general perspective on such comparisons that
covers both, and possibly also the Eilenberg-Moore/Kleisli comparison of [17].
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