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Abstract 

With the increasing use of nanomaterials (NMs) in a variety of commercial and medical 

applications, there is a parallel increase in concern related to unintentional exposure. This 

leads to a pressing need for appropriate hazard and risk assessment, and subsequent 

regulation of these new and emerging nanosubstances. Typically, in vitro models are the first 

point for assessment, and these are often then used to begin to predict and translate the 

potential effects in vivo. The area of nanotoxicology is therefore critically important, and 

requires that experimental protocols are clear, defined and standardized within adequate risk 

assessment frameworks to allow hazard identification and extrapolation to more realistic in 
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vivo situations. Often, however, results seen in vitro do not adequately represent the 

situation in vivo. There are many differences between in vitro and in vivo investigations; 

however one issue may arise from the way in which typical nanosafety studies are carried 

out. Nanotoxicity assessment requires a definition of dose and standardized modes of 

exposure in nanomaterial uptake and cytotoxicity studies to determine the hazard that is 

posed by naturally occurring and engineered (E-)NM. Current methods in nanotoxicity 

studies often report only the exposure dose, which can lead to large variations in the intrinsic 

or delivered dose due to inhomogeneous exposure and loss of treatment material depending 

on how NMs are “presented” to cells.  Protocols for Nanomaterial (NM) dispersion and 

cellular assay design therefore require Standard Operation Procedures (SOPs). Many 

experimental conditions in NM studies directly affect the NM behaviour within the cell 

culture system, in particular handling of NM dispersions as well as the order, timing and 

exposure configurations of the incubation; these can have an immediate effect on the 

resulting physical distribution of NMs on the cell surfaces.  Here we review handling, physical 

conditions and particle distribution in cell models for NM exposure to cells and tissues.  

Efforts to improve in vitro models such that they more closely mimic the in vivo conditions, 

such as exposure mechanism and dose, and potential for transport of nanomaterials across 

cells are being developed rapidly, driven partially by the strong push within the EU to reduce 

animal testing.  Examples include the use of multiple in vitro assays to calculate hazard, air-

liquid interface (ALI) exposure, microfluidic approaches and 3D co-culture models. 

 

Keywords 

Nanosafety, nanomaterials, reproducibility, dosimetry, presentation mode, 3 dimensional cell 

culture, organoids, receptor mediated endocytosis, diffusion, sedimentation 
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In vitro Sedimentation, Diffusion and Dosimetry model LM – Light Microscopy; MWCNT - 
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multi-walled carbon nanotubes; NM – nanomaterial; OECD – Organisation for Economic 

Cooperation and Development; PDE - partial differential equation; PCTS - precision cut tissue 

slices; QD - quantum dot; REACH – Registration, Evaluation and Authorisation of Chemicals; 

ROS – reactive oxygen species; SOP - standard operating procedure; spICP-MS – single 

particle Inductively coupled mass spectrometry; TEM – transmission electron microscopy; 

TfR - transferrin receptor.   

 

Introduction 

Exposure to naturally formed nanomaterials (NMs) can occur through processes such as 

weathering, erosions, and volcanic eruptions. NMs can also be an integral part of natural bio-

logical processes such as the sensing of the earth’s magnetic field by bacteria (Loehr et al., 

2016). However, the past decade has seen an unparalleled increase in the range and quantity 

of NMs produced commercially for use within a host of applications ranging from electronics, 

remediation, food additives and biomedical imaging and therapy. Therefore it is a critical pri-

ority that appropriate toxicological studies are performed to ascertain the potential short 

and long term risk posed by these emerging engineered (E-)NMs. Proper risk assessment is 

therefore necessary to ensure the safe use of these agents within the range of applications in 

order to avoid a repetition of catastrophic events in history that were seen with exposure to 

substances such as asbestos (Seaton et al., 2010). An important factor to achieving this goal 

is the ability to at least partially translate the effects seen in vitro to the potential for harm in 

vivo, as the expense of in vivo testing makes extensive testing of all potential NMs impossi-

ble. Indeed, it has been estimated that it will cost up to €600 million to register the 500 - 

2,000 NMs that are expected to be placed on the EU market at volumes of at least 1 

tonne/year under REACH and other legislations (e.g., for cosmetics), the vast majority of 

which is related to the need for 90-day inhalation and oral animal exposures (European 

Commission, 2013).  Thus, there is an urgent need for in vitro methods that are predictive of 

the in vivo outcomes observed, in order to reduce our reliance on animal testing.  This could 

comprise a battery of in vitro assays that should be performed to collectively inform on the 

(E-)NM potential for harm, or specific testing strategies incorporating 3D models or special-

ized exposure systems. It is important to note that these in vitro approaches that are dis-

cussed herein provide a means for addressing the hazard component of a risk assessment. 

Once suitable Standard Operating Procedures (SOPs) are developed for the hazard assess-
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ment of (E-)NMs, these can be incorporated into a risk assessment framework to appropri-

ately determine the potential for harm based on environmentally relevant expected expo-

sure levels.   

 

In vitro toxicity testing is therefore a fundamental part of any hazard identification strategy. 

An essential component of making these necessary toxicological studies reproducible and 

predictive of the in vivo situation is the availability of standardized assays to allow reliable 

determination of the toxic potential. A number of factors can determine the toxicity associ-

ated with a given NM; the actual uptake behaviour of NMs is one key parameter, and as such 

is a much studied area (Aillon et al., 2009; Alkilany and Murphy, 2010; Misra et al., 2012; 

Panariti, Miserocchi and Rivolta, 2012; Huk et al., 2014; Kettler et al., 2014; Shin, Song and 

Um, 2015). Therefore, the properties that determine toxicity are often determinants in the 

amount and mechanism of cellular entry of the specific NMs and their eventual effects with-

in the cell population; this is discussed more in the section ‘cellular uptake of NMs’. Many 

current in vitro toxicity assays applied to NMs are therefore based upon NM exposure studies 

followed by determination of toxicity by end-points such as induction of reactive oxygen spe-

cies (ROS), lysosomal integrity or membrane permabilisation (Farcal et al., 2015). 

 

There are a number of variables that can lead to differences or inaccuracies during these in 

vitro procedures that arise both from the experimental in vitro system used and the NM sus-

pensions themselves, which will be introduced in the subsequent sections.  For example, 

standard toxicity assays were generally designed for use with chemical compounds or mole-

cules, therefore they may well not be appropriate for assessment of NM toxicity – some NM 

have even been seen to bind to standard dyes used in these types of assays (Ong et al., 

2014). Furthermore, NMs present in suspension and/or bound at the cell surface can also 

interfere directly with the read out by altering the light absorbance or scatter due to their 

optical properties (Bahadar et al., 2016). Various interferences have been reported between 

NMs and standard toxicity assays which can confound toxicity assessment results (Kroll et al., 

2009). Minimising these types of interferences is therefore critical for successful in vitro as-

says, and often relies on the determination of appropriate control experiments to perform 

alongside (Rosslein et al., 2015).  Even when performed alongside appropriate controls, a 

single assay can often not give enough information regarding the toxic potential of some 
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NMs. There has therefore been a significant push to find assays or combinations of assays 

that can better reflect the in vivo hazard posed by NMs with some success (Wiemann et al., 

2016). The macrophage assay, whereby alveolar macrophages are treated with numerous 

different NMs, involves the subsequent measurement of multiple endpoints that can then be 

used to determine the active or passive nature of NMs; the assay prediction models proved 

easy to use, and highly efficient for predicting in vivo hazard potential of NMs (Wiemann et 

al., 2016). Similar multi-endpoint principles were applied in the high throughput screening of 

NMs using microscopical examination as part of the FP7 NanoMILE project (Hansjosten et al., 

2017).  In these examinations multiple endpoints were assessed and then NMs were scored 

based on the result severity, giving a multi-parametric approach to advise on the various 

hazards associated with cellular exposure to a variety of NMs (Hansjosten et al., 2017). In-

deed, the integration of data types from several testing strategies (old or new) toward NM 

hazard characterization is the basis of the OECD Integrated Approaches to Testing and As-

sessment (IATA), although regulatory acceptance of newly emerging approaches lags consid-

erably behind their development (Sewell et al., 2017). 

 

As the field of nanotoxicology progresses there is an increasing demand for a higher level of 

reliability and quantification of the assays currently performed. Recently, Rosslein et al. de-

scribed the use of cause and effect analysis of assay systems to determine sources of variabil-

ity within tested methods. This was aimed at establishing the necessary controls in order to 

increase the validity of in vitro results (Rosslein et al., 2015). This cause and effect method 

allows for the use of controls that can account for some of these unwanted interactions and 

effects, such as NM interference and NM binding to assay components (Ong et al., 2014; 

Guadagnini et al., 2015; Rosslein et al., 2015). Methods such as these are very important for 

developing SOPs, and can be used to greatly enhance the reliability of the data, accounting 

for the large number of variables present including cell seeding and instrument interference.  

Where experiments do not reflect similar results, increased recording of crucial metadata 

surrounding experimental conditions from plating to end-point determination will undoubt-

edly play an important role. This metadata might also indicate critical factors that determine 

reproducibility, and as such should be specified in future versions of protocols. Recording of 

these steps, along with information on NM storage conditions and age/provenance, will likely 

minimize the variability between different studies performed at separate points in time and 
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locations and thus increase the reliability of the data available (Sarathy et al., 2008; 

Kuchibhatla et al., 2012; Izak-Nau et al., 2015; Baer, Munusamy and Thrall, 2016).  Sample 

ageing during storage also plays an important role, and indeed the same NMs tested 6 

months apart for their effects on A549 (Adenocarcinomic human alveolar basal epithelial ) 

cells resulted in significantly different toxicity, even when the NM stock solutions were stored 

under “optimal” conditions – i.e., at 4 °C in darkness (Izak-Nau et al., 2015).  Thus, NM ‘aging’ 

effects can be a significant contributor to the contradictory toxicity results observed in the 

literature for identical NMs, and NM ageing should be assessed in parallel with toxicity as-

sessment as best practice. 

 

Despite the advances in terms of assay reliability and availability, often the performed in vitro 

studies give rise to conflicting information and poorly reflect the situation in vivo. It is likely 

that inappropriate NM dispersion, poor characterisation of the NMs dispersions over the ex-

posure duration, incomplete reporting and use of incorrect exposure metrics in in vitro stud-

ies play a largely ignored role in the poor in vitro-in vivo correlations to date (Hinderliter et 

al., 2010; Dawson et al., 2013).  One fundamental principle in toxicology is the “dose-

response” whereby the effect of a molecule is directly proportional to the dose at the specif-

ic target site. However, the dose-response is not always linear for NMs – higher doses can 

lead to agglomeration, via weak interacting forces between NMs, and thus less available 

dose and lower toxicity (Baalousha, 2009; Hussain et al., 2009; Mudunkotuwa and Grassian, 

2011; Bell, Ives and Jonas, 2014). It is important here to distinguish between reversible NM 

agglomeration, and the stronger irreversible formation of aggregates, as the two terms are 

often, incorrectly, used interchangeably (Sokolov et al., 2015). Another important aspect is 

the way in which the dose is quantified and reported. There is no official or standard defini-

tion of NM dose as of yet, and often it is recommended that multiple doses are reported in-

cluding mass, number and surface area concentration (Drasler et al., 2017). Often the dose is 

given as the mass of NM per area cell culture in µg/cm2. Sometimes the dose is only indirect-

ly defined by specification of the NM concentration in µg/mL administered to the cell cul-

ture. The implications of dosimetry and particokinetics on the interpretation of response was 

first highlighted by Teeguarden et al, and has since been the subject of comprehensive re-

views (Teeguarden et al., 2007a; Park et al., 2009; Drasler et al., 2017). The measure of the 

dose at a specific site will depend largely on the experimental conditions and therefore these 
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effects must be accounted for to ensure accuracy of the reported results. The cellular NM 

dose is often assumed to be estimated by, or proportional to, the concentration of NM in the 

treatment media in in vitro studies – a situation that is unlikely to be the case for numerous 

reasons, including NM agglomeration, loss to vessel walls (Figure 1), and the fact that the 

uptake of NMs is generally receptor mediated such that only a proportion of the available 

NMs can be internalised at any moment in time (Figure 2).  Work on single particle identifica-

tion and tracking of NM uptake renders the most obvious definition of NM dose as the num-

ber of NM per cell (either internalized or tightly bound) (Drasler et al., 2017). This can be re-

ferred to as the “local dose” or “cellular dose”, in contrast to the quantity of the administered 

material which can be thought of as the “Administered dose” (Richitor et al., 2016).   

 

Differences between the administered and local cellular dose can arise through a variety of 

means, including, but not limited to, alterations in size distributions due to agglomeration, 

changes in total NM number due to loss of material (e.g. for NMs that undergo dissolution), 

transport of the NM through the medium and inhomogeneous distribution. Here, the admin-

istered dose is discussed in terms of its relation to the local (cellular) dose by evaluating the 

evolution, transport and distribution of NMs during preparation and cellular exposure. With-

in this context, this review evaluates methods for performing NM uptake experiments and 

reports on the distribution of NMs over a cell population from the different approaches. 

There are a variety of modes available for NM presentation to cells (see Figure 3) and with 

correct reporting and performing of the experiments these can provide reproducible and ac-

curate comparisons between NM studies in adherent cell types in-vitro. The goal of the eval-

uation made here is therefore to formulate a recommendation for the standardized delivery 

of NMs to cultured cells and the minimum amount of information that should be reported. 

Indeed, within the EU-funded QualityNano research infrastructure, a central goal was the 

development and ring-testing of a number of SOPs for NMs physico-chemical characterisa-

tion and in vitro toxicological evaluation, including NM size characterisation by Dynamic Light 

Scattering (DLS) and Differential Centrifugal Sedimentation (DCS), quantification of cellular 

uptake of NMs by flow cytometry and cytotoxicity determined by the MTS assay, which in-

cluded detailed descriptions of cell culture processes and the dispersion of the NMs in the 

appropriate cell culture medium. These protocols, and the ring-tests or interlaboratory com-

parisons undertaken on them, are described in detail in articles included in this special issue 
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(Langevin et al. 2017; Salvati et al. 2017).   

NM dispersions and agglomeration 

Prior to in vitro toxicity studies, NMs must first be dispersed in aqueous media. We have 

shown that, without detailed instructions for sample preparation and measurement, even for 

simple measurement of NM dispersions in water, high variability in size and size distribution 

can be generated (Langevin et al., 2017). For this reason there has been a large focus on ob-

taining SOPs for repeatable dispersion methods using inter and intra-lab comparisons, devel-

oped as part of EU Framework Programme (FP6 and FP7) funded projects (Farcal et al., 

2015).  Obtaining a reproducible and homogenous dispersion in the complex biological fluids 

used for in vitro testing poses further challenges that have been addressed as part of the 

NanoGenoTox project, where an SOP was developed for the dispersion of hydrophobic NM 

powders such as TiO2 and ZnO by using an ethanol pre-wetting stage, followed by dispersion 

in 0.05% BSA water and subsequent sonication and dispersion in cell culture medium (Al-

strup Jensen et al., 2011; Farcal et al., 2015). The method of NM dispersion and the physio-

chemical properties of the dispersion can greatly affect the resulting outcomes in biological 

testing. Successful NM dispersion can be thought of as uniform, reproducible each time the 

process is applied (i.e. the same material dispersed the same way gives the same size and 

polydispersity index), stable over the duration of the test or characterised at the beginning 

and end of the exposure, and preferably consisting chiefly of primary particles with minimum 

size and minimum agglomeration.  Unstable suspensions may have larger size distributions 

(more polydisperse), and altered agglomeration state (weak bonds between particles) and/or 

aggregation (harder to break bonds between particles) and tend to be less reproducible from 

one dispersion to another. This can lead to changes in the properties of the dispersion, and 

can therefore modulate processes such as cellular uptake. Larger particles are generally in-

ternalised less than smaller particles by receptor mediated processes and/or are internalised 

via different pathways (e.g. macropinocytosis rather than clathrin or caveolin mediated en-

docytosis) (Doherty and McMahon, 2009; Sahay, Alakhova and Kabanov, 2010; Zaki and 

Tirelli, 2010; Kou et al., 2013; Kafshgari, Harding and Voelcker, 2015). Thus, the size and ag-

glomeration state are important parameters when determining the potential toxicity of the 

material. NM dispersions will always show a certain level of polydispersity (typically between 

0.1 and 0.4 is considered moderately polydisperse, with values >0.4 being very polydisperse, 

although it should be noted that different synthesis routes can produce different polydisper-
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sities for the same NM), which can vary with material, solvent and synthesis method used, as 

well as with the stabilisation mechanism, e.g. sterically stabilised with polymer coatings ver-

sus electrostatically stabilised with small charged molecules such as citrate. However some 

NM preparations will show increased polydispersity due to agglomeration and inter-particle 

interactions, especially in media with high ionic strengths which can overcome electrostatic 

stabilisation.  Much effort has therefore been focussed on studying the colloidal forces gov-

erning NM deposition and aggregation (Weitz and Lin, 1986; Petosa et al., 2010).  There are 

various methods that can be employed to reduce agglomeration effects during dispersion 

protocols, including ultrasound, milling and magnetic fields (Bihari et al., 2008; Stuyven et al., 

2009; Vippola et al., 2009).  Derjaguin, Landau, Ververy and Overbeek (DLVO) theory of col-

loidal stability describes the agglomeration of aqueous dispersions and the active forces in-

volved such as van der Waals forces and repulsion. Together with the interactions considered 

in the DLVO theory, forces such as steric interactions, magnetic forces (for iron-based NMs), 

and hydration forces influence the stability of NMs in aqueous media (Petosa et al., 2010). 

Aggregation dynamics have also been found to be dependent on the amount and type of 

NMs (Weitz and Lin, 1986).   

 

Several quantitative and qualitative studies have been performed to investigate NM aggrega-

tion, in addition to studies aimed at determining the most effective dispersion methods 

(Sano and Okamura, 2001; Anderson and Barron, 2005; K. L. Chen, 2006; Bihari et al., 2008; 

Saleh, Pfefferle and Elimelech, 2008; Vippola et al., 2009; Domingos, Tufenkji and Wilkinson, 

2009; Fang et al., 2009; Jiang, Oberdörster and Biswas, 2009; Bouwmeester et al., 2011; 

Lamberty et al., 2011; Ramirez-Garcia et al., 2011; Mejia et al., 2012). Sonication followed by 

the addition of dispersion stabilizers, such as Bovine serum albumin (BSA), serum or phos-

pholipids has previously been determined as successful, and standardized methodologies 

describing this are therefore available (Bihari et al., 2008; Alstrup Jensen et al., 2011). An im-

portant factor that has been highlighted is the calibration of the Delivered Sonication Energy 

(DSE), both in terms of the energy delivered, and the material-specific critical DSE (crDSE) 

energy required to achieve stable suspensions with minimal aggregate size (DeLoid et al., 

2017). 
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Agglomeration leads to a large NM size distribution (polydispersity) and results in changes to 

the suspension, such as modification of the number of NMs present and the surface area 

that is available (DeLoid et al., 2017). Different sized particles will also diffuse through liquids 

at different rates.  Larger NMs, agglomerates and aggregates arrive at the cell surface at a 

faster rate in traditional submerged culture than smaller NMs due to the role of sedimenta-

tion (which is proportional to the square of their diameter), as discussed in the next section 

and shown in Figure 4 (Hanarp et al., 2001).  Agglomeration effects can be more pronounced 

when NMs are dispersed in protein rich cell medium at physiological pH and salt concentra-

tions, due to protein corona formation which, depending on the NMs and the surrounding 

conditions, can lead to stabilisation or destabilisation of NMs dispersions (Monopoli et al., 

2012; Lynch et al., 2013; Nasser and Lynch, 2016). Crist et al, highlighted the importance of 

performing characterizations in the appropriate media due to these changes that occur to 

the NMs properties (Crist et al., 2013). They also highlighted the problems associated with 

using a single method of size characterization. For example, when examining Transmission 

Electron Microscopy (TEM) measurements of size, pre and post dispersion in cell media, the 

measured size remains the same (since TEM only measures the core electron dense particles 

not any surface adsorbed weakly scattering biomolecules), whereas when measured by DLS 

the size is nearly doubled as a result of biomolecule adsorption and hydration, indicating the 

necessity of multiple size measurements prior to in vitro toxicity studies (Crist et al., 2013).  

Our recommendation is to combine a method to measure the core particle size (e.g. TEM), 

and a method to indicate the hydrodynamic size (in the exposure medium) such as DLS or 

DCS which provides an effective size in protein-containing medium (Domingos et al., 2009; 

Dawson et al., 2013).   NM size distribution is most often measured immediately after NM 

exposure to cell medium. However, agglomeration is a time dependent process and the size 

distribution may change over the cell incubation period, and should therefore be monitored 

throughout the exposure duration (Shapero et al., 2011; Dawson et al., 2013). The NM size 

distribution at the cell surface will also differ from the size distribution in solution due to 

concentration effects.  Overall, it is now widely recognised that NM uptake and impact stud-

ies require a detailed characterisation of the stability and properties of the NM dispersion. 

Therefore efforts are being made to define the minimum set of information and conditions 

which should be provided prior to cellular exposure experiments, which we have attempted 
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to summarise at the end of this article (Bouwmeester et al., 2011; Roebben et al., 2011; Crist 

et al., 2013; Stefaniak et al., 2013; Sharma et al., 2014; DeLoid et al., 2017). 

 

The choice of metric - NM dosimetry 

There has been significant debate in the scientific literature as to the most relevant dose 

metric for NMs, with consensus that mass based doses are not relevant for NMs, while 

surface area and particle number seem more appropriate and more predictive of 

toxicological outcomes (Oberdörster, Oberdörster and Oberdörster, 2007; Wittmaack, 2007, 

2011; Lison et al., 2008; Rushton et al., 2010; Simkó, Nosske and Kreyling, 2014; Braakhuis et 

al., 2015; Schmid and Stoeger, 2016). Indeed, the same in vitro toxicity data for silver (Ag) 

NMs plotted by mass, surface area and particle number resulted in quite different outcomes. 

Results expressed in mass unit [μg/cm2] suggested that the toxicity of Ag NMs was size-

dependent, with 50 nm particles being most toxic to Chinese Hamster Lung (V79-4) cells. 

However, re-calculation of Ag NM concentrations from mass to surface area and number of 

NMs per cm2 highlighted that 200 nm Ag NMs were the most toxic (Huk et al 2014).  

Wittmaack highlighted the necessity of reporting the cellular accumulated dose in a study of 

SiO2 NMs, whereby the toxicity observed depended on the areal density of NM mass that is 

delivered to cells (Wittmaack, 2011). The importance of the dosimetry has led to the 

emergence of attempts to document and standardize the ways in which dosing is carried out 

and quantified, in the form of published protocols (DeLoid et al., 2017). These protocols 

cover the generation of stable NM suspensions in culture medium, characterization of these 

colloids and modelling of the local dose delivered to cells over time (Hinderliter et al., 2010; 

DeLoid et al., 2017). These protocols include transport models that accommodate variable 

binding kinetics (of NMs) to the culture dishes, simulation of polydisperse suspensions and 

dissolution of NM during deposition to determine dose metrics for in vitro studies using 

MATLAB (DeLoid et al., 2017). 

 

Particle dosimetry differs significantly from that of conventional chemicals, partly due to the 

dynamic nature of particle suspensions which can be governed and modified by the NM 

physicochemical characteristics themselves and the properties of the surrounding media. 

This in turn leads to changes in the suspension itself and to the dose received by target cells 

in in vitro assays over the exposure time-course. Different NMs diffuse at different rates 
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dependent upon their characteristics such as size, density, shape, surface charge and surface 

coating/functionalization, discussed in more detail in the section ‘Diffusion’. NMs can also 

agglomerate over time and acquire different surface constituents (charge neutralisation, 

corona evolution) which can also modify interactions with the surrounding fluid and cells. 

These evolving properties also lead to changes in sedimentation rates and therefore different 

amounts of NM reaching the target site, discussed later in the section ‘Sedimentation’. The 

fluid itself leads to changes in NM interactions and motion, depending on parameters such as 

viscosity, protein content, ionic strength and pH, which are discussed more in the sections 

‘Diffusion’ and ‘Sedimentation’.  Thus transport of NMs towards the cell surface can itself 

affects the NM distribution and cause formation of aggregates in in-vitro toxicity experiments 

as a function of time. The movement of NMs through a fluid is a combination of the 

sedimentation of the NMs and the diffusion of NMs over time, both of which are highly 

related to, and dependent upon, the agglomeration state and the dissolution potential in the 

media (see Figure 1).  Mason and Weaver derived a mathematical solution to this, termed 

the laminar convection diffusion equation, in the form of a partial differential equation (PDE) 

as shown in equation 1 (Mason and Weaver, 1924). The components of this, sedimentation 

and diffusion, are described subsequently: 

 

𝜕𝑛

𝜕𝑡
= 𝐷

𝜕2𝑛

𝜕𝑥2
− 𝑉

𝜕𝑛

𝜕𝑥
 

(Equation 1) 

 

 

where n is particle concentration, t is time, x is distance and D and V are the Diffusion and 

Sedimentation velocities, respectively. 

 

Sedimentation, or gravitational settling, is the tendency of particles to settle at the bottom 

of a container due to gravitation. This sedimentation rate, for single NMs, is a function of 

density of the medium, the density of the NMs in the medium, and diameter of the NM, and 

is described mathematically by Stokes’ law (eqation. 2) which determines the gravitational 

settling velocity, V (Kajihara, 1971):   

 

𝑉 =
𝑔(𝑃𝑁𝑝 − 𝑃𝑚)𝑑

2

18ŋ
 (Equation 2) 
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where the acceleration due to gravity is g, 𝑃𝑁𝑝and 𝑃𝑚are the mass density of the NMs and 

the medium respectively, 𝑑is the NM diameter and ŋis the cell culture medium dynamic 

velocity. 

 

The process of sedimentation is shown schematically in Figure 4, along with the dependence 

of sedimentation on NM diameter and media and NM densities.  Previously, variations of 

Stokes law, such as Sterling’s modification, have been used to describe the sedimentation 

velocity of NM agglomerates, which will differ compared to that of single particles, and to 

determine the agglomerate effective density (Sterling et al., 2005; Hinderliter et al., 2010; 

Mukherjee et al., 2014; Cui et al., 2016). Agglomeration and aggregation are complex 

processes that are affected by the diffusion of individual and associated particles, in addition 

to the attractive and repulsive forces present between NMs. Sterling’s modification for 

agglomerates incorporates properties of the agglomerates including their effective density, 

packing factor and fractal dimension, as agglomerates do not exist as homogenous units 

(Mukherjee et al., 2014). These are important considerations when modelling NM transport, 

and therefore must be included in any calculations performed to determine the effective 

dose at the cell surface. However, Sterling’s modification does not take into account the 

inter-particle forces, a factor that is incorporated into the previously mentioned DLVO theory 

(Petosa et al., 2010). Sterling modification provides an estimate of the effective agglomerate 

density, rendering it potentially inaccurate (DeLoid et al., 2014). DeLoid et al determined a 

simple method to measure the effective density by means of a Volumetric Centrifugation 

Method (VCM) (DeLoid et al., 2014). This method is based upon centrifugation of a sample at 

low speed in a packed cell volume tube, and measurements were found to agree with the 

more costly Analytical Ultracentrifugation (AUC) method (Carney et al., 2011; DeLoid et al., 

2014). Agglomerates are important in terms of sedimentation (and diffusion) as the 

sedimentation speed increases proportionally to the square of the particle diameter and is 

proportional to the difference between the medium density and the particle effective 

density (Cui et al., 2016). The agglomeration rate, and therefore sedimentation rate, can be 

modulated by changing the balance of attractive or repulsive forces between NMs, which can 

be achieved through surface modification, or by altering the properties of the media (pH, 

ionic strength, ionic composition) (Keller et al., 2010). Increasing the stability of NM 
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suspensions, either by electrostatic or steric stabilization, decreases the agglomeration rate. 

An example of this is the presence of proteins within the medium (such as BSA) which can 

stabilize NM suspensions, presumably due to steric stabilization, leading to a reduction in the 

agglomeration rate and therefore changing the sedimentation rate of the NMs (Allouni et al., 

2009). 

 

Agglomeration changes the size, shape and effective particle density thereby modulating 

transport time. The effective density of agglomerates will also vary considerably compared to 

that of the primary NM density, due to the inclusion of media within the agglomerate. As an 

example of why changes to NM density are important, buoyant NMs with low density 

compared to the media, can float and rise away from cells over time, rendering dose 

response relationships difficult or even impossible to ascertain (DeLoid et al., 2014; DeLoid et 

al., 2017). This clearly has an implication for study design, i.e. use of standard (submerged), 

or inverted cell culture systems (see Figure 3). If parameters such as NM size, effective 

density, viscosity of the medium, along with agglomeration potential are known, then the 

rate of gravitational settling can be calculated, along with the time that the NMs will likely 

take to reach the bottom of the container (or reach the cells at the bottom of a petri-dish). 

The shape of the NM will also lead to changes in drag and buoyancy forces acting upon the 

NM, thereby modifying the transport time, and is suggested to lead to an increased 

sedimentation under the exposure conditions. Shape will also affect the agglomeration and 

aggregation potential of the suspension, in addition to agglomeration affecting the particle 

‘shape’ (Alkilany and Murphy, 2010). However, it has been suggested that NMs with an 

aspect ratio of less than 2 can be adequately represented as spheres, while those that have 

an aspect ratio greater than 2 require alternative models (Herzhaft and Guazzelli, 1999; 

Teeguarden et al., 2007b; Swaminathan et al., 2012). The effect of shape on sedimentation 

has been reported to be very different between static and dynamic systems under flow, 

which is an important consideration for in vivo translation since most in vitro models are 

static (Bjo et al., 2016) However, perfusion approaches are available and are typically used to 

mimic interaction of NMs with blood vessels (Tian and Finehout, 2008; Prabhakarpandian et 

al., 2011; Albanese et al., 2013; Rennert et al., 2015; Bjo et al., 2016).  As represented in the 

schematic illustrations in Figures 1, 4, 5 and 6, other parameters will also influence the rate 

of transport such as the height of the container which has an impact on the time that a NM 
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will take to settle, as does the material and shape of the container, discussed later in the 

section ‘role of media height and container’. 

Diffusion is a transport phenomenon that occurs due to the gradient of concentration and is 

represented by the first term in Equation 1. In the absence of sedimentation Equation 1 

reduces to Fick’s second law, which describes the concentration changes that occur over time 

due to diffusion.  Starting from a well-mixed solution with constant concentration we expect 

no net particle transport. However, the concentration of NMs at the boundaries will often 

change with time – such as during cellular exposure where NM’s will be removed due to 

internalization thus creating a concentration gradient. As a result there will be a diffusive 

transport of NMs towards the adsorbing surface. The typical transport length that a 

nanoparticle diffuses over time is given by the mean squared displacement 

 

⟨𝑥2⟩ = 2𝐷𝑡 (Equation 3) 

 

where D is the diffusion coefficient and t is time. 

 

Since the diffusion coefficient for spherical NMs is related to the NM size according to the 

Stokes-Einstein equation, NM diffusion rates are a function of NM size and viscosity of the 

medium (effective particle density) (equation 4).  The Stokes-Einstein equation describes the 

relationship between the rate of diffusion (D, m2/s) as a function of viscosity (ŋ and 

temperature (T, oK): 

 

𝐷 =
𝑘𝑏𝑇

6𝜋ŋ𝑑
 (Equation 4) 

 

where R is the gas constant (L kPa/K/mol), kb iis the boltzmann constany, and d the NM 

diameter. 

 

The diffusion coefficient is inversely proportional to NM size; hence smaller particles diffuse 

more rapidly than larger ones. Diffusion is therefore the dominant force governing delivery 

of small NM to cells in vitro. Larger particles (or agglomerates/aggregates) are transported 

more through sedimentation forces (Cohen 2015). Nevertheless, the motion of NMs in fluid 
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media, as well as the transport of macromolecules and colloidal particles, can be governed 

partly by diffusion forces. The Brownian motion in NM dispersions gives them high mobility, 

but also an increase in the probability for collision that can lead to surface interactions and to 

the formation of agglomerates leading to destabilisation of the suspension. These 

agglomerates, as previously mentioned, can have very different properties that modify the 

diffusion rate, such as decreased effective density and decreased surface area to mass ratio 

(as the structures are not being fully solid due to entrapped liquid between the NMs), 

increased volume, and different shapes.  Likewise, dissolution of NMs will change the size 

distribution of the suspension; smaller NMs will dissolve at an increased rate, therefore 

changing the concentration and size distribution of the suspension. Sedimentation and 

diffusion processes are both a function of medium density and viscosity, and are dependent 

on NM size, shape, charge, and/or density of the NMs. These phenomena can therefore be 

competitive or act together on NM transport, and can affect the time that NMs require to 

come into contact with cells in the dish, and thus to become active at the cell surface. 

 

Role of the exposure time 

Toxicity experiments are typically performed over 24-48 h, but the NM diameter and density 

can radically change the time a particle requires to reach the cell surface. Indeed it is 

reported that the time taken for 90% of a NM dose to be deposited can vary between <10 

hours to >200 hours depending on the NM in question, which clearly has big implications for 

the delivered local dose (Cohen, Teeguarden and Demokritou, 2014). This can alter the 

number of NMs truly interacting with the cells during the exposure time.  Figure 4 shows 

how particles cross dissimilar distances at a particular time of exposure. For example, while 

PS NMs less than 3 nm in diameter might be able to travel 5 mm in 24 h, 100 nm PS NMs 

would require much longer to travel the same distance. If only a few NMs are able to reach 

the target cell in this time, uptake may be reduced and consequently the true “internalised 

dose” will also be reduced.  An example that can illustrate these problems is that of a NM 

that agglomerates or aggregates rapidly to form larger structures. These structures will then 

sediment and deposit more quickly onto the cell surface, and therefore may be internalized 

at a faster rate than initially predicted based on the primary NM size, due to increased 

contact.  An alternative scenario is that agglomerates and aggregates may be too large to 

enter cells, leading to a reduction in internalization rate (Hussain et al., 2009). 
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A small toxic NM may sediment slowly, and therefore over the same administered dose, and 

the same experimental time course, the contact dose and internalized dose could be 

substantially lower than in the case of a larger but less inherently toxic NM (DeLoid et al., 

2017). As a result, the larger NM suspension may lead to an apparent increase in cellular 

toxicity due to the higher received dose, and be reported as more toxic than the smaller NM, 

as the delivered dose was higher (DeLoid et al., 2017). It is worth noting that dose is 

inevitably not the only cause for increases or decreases in toxicity.  Parameters such as 

shape, surface coating, protein corona, shape and core will all influence toxicity. However, in 

situations where the delivered dose of NMs differs over the same experimental time course, 

toxicity assessments can be confounded and comparisons between the NMs cannot be 

accurately made unless these dose effects are properly measured and accounted for. 

Experimentally, it was shown that the delivered dose of NMs might be low for particles 

smaller than 100 nm when diffusion plays a predominant role (L.K. et al., 2005; Teeguarden 

et al., 2007a; Lison and Huaux, 2011). However, this also depends on the density of the 

material and for instance we have determined that with polymeric NMs like PS of 50 nm 

diameter, the transport in the extracellular medium for NM to reach the plasma membrane 

is not rate-limiting (Salvati et al., 2011). Besides the physicochemical properties of NM and 

medium, other aspects of the exposure or experimental procedure can influence the time of 

NM transport, including the container volume, the medium height, stirring, and interactions 

with biomolecules, as discussed below. 

 

Role of container and medium height 

The medium height describes the distance that NMs in suspension must travel in order to 

come into contact with the floor of the vessel (or the cells plated at the bottom of the 

vessel). Medium height can affect both the sedimentation and diffusion of NMs. As stated 

previously, diffusion time increases with the square of diffusion distance, thus a linear 

increase of medium height, regardless of the increase in administered dose, results in a 

distance squared increase in the diffusion transport time. In particular, this highlights the 

importance of maintaining consistent media height in and across experiments, as altering 

this could confound comparisons between different NMs. Likewise, decreasing the volume 

and subsequently the media height might conversely lead to an increase in the number of 
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NMs in contact with cells. This could have implications for comparisons between different 

approaches, for example, toxicity studies performed in 96 well plates versus NM uptake 

studies imaged by confocal microscopy where the coverslips are cultured in 6 well plates. 

However, with the correct reporting this can be compensated for by recalculating cellular 

dose, accounting for well size and volume. In several cases it has been noted that 

extracellular NM concentration is in large excess compared to uptake levels, thus the 

extracellular NM reservoir can be considered substantially fixed during the full length of the 

experiment, provided the exposure time is not on the order of days (Kim et al., 2012). Media 

height could be a problem particularly in toxicity assessments that take place over long 

durations, whereby the medium volume will evaporate over time, altering the transport in a 

time dependant manner. It is therefore critically important to record changes in the medium 

height over time or to replenish media using continual flow to maintain media height (Bjo et 

al., 2016). Moreover, in the case of decreased extracellular volume and low concentration of 

NMs, additional complications due to NM depletion, NM dissolution and subsequent 

concentration changes following uptake may arise. This implies that it is important to include 

consideration of extracellular volume in the description of the experiments performed. 

Likewise, in chronic, continual or repeated exposure scenarios where medium is constantly 

replenished with new treatment media, more complex methods for monitoring and 

evaluation of medium height, NM transport and dosing over the period would be necessary. 

In these types of experiments, sophisticated systems for delivering specifically determined 

doses or measuring delivered doses would be required to enable accurate calculations of 

cellular dose over the entire time period, such as those used in a 14 week chronic dosing of 

AgNPs to skin cells (Comfort et al., 2014). This highlights the critical nature of NM 

characterization under the correct experimental conditions and time courses – NM 

dissolution, and NM concentration and/or medium height changes over time should all be 

properly characterized, along with physicochemical characterizations prior to in vitro testing. 

The size and shape of the container is an important aspect of the settling velocity of NM 

suspensions, as shown in Figure 5 based on experimentally determined settling dynamics of 

fibres (Herzhaft and Guazzelli, 1999). Open containers often exhibit meniscus effects and 

hence the inhomogeneous NM surface distributions. The use of closed containers, such as 

channels, leads to homogeneous NM distributions. 
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Surface effects: meniscus and well 

The type of chamber (open versus channel chambers), the size of the chamber, and the 

material of the chamber have an additional impact on surface properties, such as roughness 

and polarity. These surface effects (e.g., surface tension) may change local medium 

composition or concentration of NMs, thereby influencing the transport processes and time, 

as mentioned above.  In channel chambers or culture wear, NMs may be adsorbed onto the 

surfaces (heteroagglomeration), changing the number of NMs available to be taken up or 

interact with the cells; again if some NMs are removed from the system through absorption, 

particularly if this is size specific as suggested, the transport of the remaining NMs will differ 

from that of the initial suspension. Moreover, a local increase in concentration in a specific 

part of the chamber could destabilize the suspension, increasing the likelihood of 

interactions such as agglomeration, again modulating the transport of the resultant NMs. 

Experiments could be performed to calculate the recovery from chambers and wells to 

determine the amount of NM binding in different containers of different materials to account 

for this in experiments. For metallic NMs, this test of NM binding can be performed by 

conducting the experiment within the culture vessels to be used but without the presence of 

cells, and for example NM (and ionic) concentrations could be tested (e.g. by single particle 

Inductively-coupled plasma mass spectrometry (spICP-MS)) prior to, and after incubation 

with culturewear to determine the NMs remaining in the media at certain time intervals and 

the amount lost; this would also provide valuable information regarding the dissolution 

during the experimental time course (Aznar et al., 2017).  For non-metallic NMs, intrinsic 

fluorescence, Raman or other detection approaches could be applied, but often have lower 

sensitivities. 

 

Exposure including convection and stirring 

The presences of agglomerates and aggregates complicate the modelling and analysis of 

dose-metrics and toxicology data. Both agglomerates and aggregates tend to settle and 

amass, leaving a portion of the cells with a very low delivered dose. To bypass this problem 

the delivery of NMs can be made under agitation. Mixing and heating affect the variability of 

the fluid composition, the Brownian motion, the transport towards the cell surface, and 

ultimately, the delivered dose. In the presence of convection forces all the NMs, regardless 

their size and density, might be able to reach the bottom of the container and therefore be 
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active on the cell surface (Lison and Huaux, 2011). However, stirring or heating of a NM 

solution can increase the number of collisions, thus increasing the likelihood and frequency 

of agglomeration. In dispersions where agglomeration occurs, competition between diffusion 

and sedimentation phenomena are more difficult to predict, however using the equations 

mentioned earlier, and accounting for these different agglomeration rates, models have been 

constructed that can mimic this effect when calculating the delivered dose (Hinderliter et al., 

2010; DeLoid et al., 2017). Agglomeration and aggregation change NM size and surface area 

and increase the gravitational settling, in other words the presence of agglomerates and 

aggregates transforms a dispersion of NMs. Characterization of the stability of a NM 

suspension, particularly in the relevant media for exposure, is therefore necessary in a 

nanotoxicity study because, ultimately, the stability (or lack thereof) modifies transport in 

cell culture medium and affects the time a NM dwells in that environment, and hence also 

their bioavailability.  Stability should therefore be assessed under the exposure conditions 

for, at a minimum, the experimental time course at appropriate conditions, i.e. 37 °C in the 

same vessel in which they would be applied to cells. Stability assessments generally include 

measuring the zeta potential to determine electrostatic or steric stabilization of the NMs, DLS 

to measure particle agglomeration and stability of the size distribution, and NM solubility in 

control and test medium, all of which will affect the transport and behaviour of the NM 

suspension (De Campos et al., 2004; Moore et al., 2015; Nur, Lead and Baalousha, 2015; 

OECD, 2016; Rossi et al., 2016; Avramescu et al., 2017; Gao and Lowry, 2018). 

 

NM-protein corona effects: cell media and exposure route 

NM size, shape and surface charge have been described as important determinants of uptake 

(into cells and tissue) and toxicity (Wilhelm et al., 2003; Alkilany and Murphy, 2010; Huang et 

al., 2010; Fröhlich, 2012; Huk et al., 2014; Kettler et al., 2014; Bjo et al., 2016). It has also be-

come increasingly apparent that the layer of proteins that adsorb at the NM surface and 

form the dynamic ‘protein corona’ play a key role in modulating the interactions between 

NMs and living cells, in particular regarding targeting and uptake behaviour (Nel et al., 2009; 

Monopoli et al., 2011, 2012; Lesniak et al., 2012; Salvati et al., 2012). The high reactivity of 

NM surfaces makes the adsorption of proteins, ions and other molecules in solution easier.  

As a consequence, as soon as NMs are dispersed in a biological fluid, proteins or other bio-

molecules immediately adsorb to their surface, changing their physico-chemical characteris-
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tics (i.e., size, charge and biological activity). Cell media usually contains serum or other 

charged biomolecules, which modify the NM surface, forming the so-called NM-protein co-

rona (Cedervall et al., 2007; Klein, 2007; Nel et al., 2009; Monopoli et al., 2011, 2012; Pino et 

al., 2014; Yallapu et al., 2015). This leads to a new 'biological identity' of the NMs, with dif-

ferent size, charge, and surface properties. These size changes can disturb the Brownian mo-

tion and the transport phenomena as previously described, and changes in the NM surface 

charge can alter the affinity for the cell surface or the interaction with petri dishes and ions 

in solution, and therefore ultimately the bioavailability. Therefore, corona formation can alter 

the stability of the NM dispersion and modify the interaction with cells (Lynch, Salvati and 

Dawson, 2009; Tenzer et al., 2011, 2013; Lesniak et al., 2012; Bertoli et al., 2016). Indeed, in 

the absence of biomolecules in the cell culture media the high surface reactivity of NMs re-

sults in significant cellular damage and the acquisition of a corona from biomolecules pulled 

out from the cell through membrane damage (Lesniak et al., 2012).  A complete understand-

ing of how the properties of NMs and their surroundings modulate the corona formation will 

aid advancements for NM targeting immensely and will be crucial in understanding and pre-

dicting the biological effect and fate of NMs, both from direct exposure (e.g. nanomedicine) 

and indirect exposure (e.g. via the environment (Lynch et al., 2013, 2014)). 

 

The NM corona constitutes the primary point of interaction between the NMs and biological 

components and is known as the ‘nano-bio interface’ (Nel et al., 2009). Due to the formation 

of this protein corona, the presence or absence of serum proteins in cell culture studies has a 

major impact on subsequent effects (Lesniak et al., 2012; Cheng et al., 2015; Fleischer and 

Payne, 2015; Ritz et al., 2015; Shannahan, Podila and Brown, 2015). The presence of the 

protein corona can modulate cellular internalization patterns, and lead to increases or 

decreases in NM uptake a cell specific manner.  In several cases it has been reported that 

uptake of NMs in the absence of proteins (serum free conditions) is much higher than the 

uptake observed in the presence of serum (such as FBS), likely due to a reduction in non-

specific binding of the NM at the cell surface in comparison to that observed in the absence 

of proteins (Lesniak et al., 2012; Smith et al., 2012b). This is supported by the observed 

increase in the binding of NM to the cell surface in the absence of proteins, indicating that 

interactions between the membrane and the bare NM lead to adhesion at the cell surface 

and increased likelihood for internalization (Smith et al., 2012b; Lesniak et al., 2013). Lesniak 
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et al also demonstrated that SiO2 NMs exposed under serum free conditions had acquired a 

protein corona within 1 hour of exposure, by pulling proteins from the cell membrane 

(Lesniak et al., 2012).  It is suggested that the NM protein corona, in a static environment, 

can reach steady state in minutes to hours (Albanese et al., 2014). Albanese et al, reported 

the evolution of the corona following the release of proteins and nutrients from the cells (in 

a process they term conditioning) (Albanese et al., 2014). Some of these secreted proteins 

may have a higher affinity for the NM surface than the previously bound proteins, leading to 

exchange and evolution of the corona during the entire exposure time (Albanese et al., 

2014). Albanese et al determined an optimum NM incubation time of 4 hrs in the 

conditioned media prior to protein corona characterization, but postulate that time-

dependant changes in vivo are likely to be far less remarkable than the changes that occur 

due to translocation through blood and tissues (Albanese et al., 2014). Based on their 

findings, corona characterization should be performed in both unconditioned and cell 

conditioned media to give the best indication of the biocorona evolution. 

 

Based on the above discussion, it becomes evident that experiments that are performed in 

the absence of proteins or other biomolecules are not biologically relevant as bare, uncoated 

NMs will not be present in biological fluids in vivo, as protein and biomolecule adsorption 

occurs almost instantaneously, and indeed even under serum free conditions the NMs 

rapidly pull proteins from the cells to form a corona (Lesniak et al., 2012). In this context, the 

use of different concentrations of FBS may also need to be investigated in terms of corona 

composition and evolution. It is known in fact that the corona formed on the same NM 

changes when different protein concentrations are used, for instance to resemble more 

closely the protein concentration present in vivo in human serum, as opposed to the more 

diluted serum concentrations typically used in in vitro studies (Monopoli et al., 2011). The 

concentration of proteins of the media not only changes the composition of the corona but 

also affects the overall uptake levels into cells, thus the effective dose delivered (Kim et al., 

2014). Another important factor is the source of the serum proteins. Individual batches can 

vary in composition and quantity of bioactive compounds, therefore centralized batches of 

serum are favoured for large scale NM studies and new emerging serum free alternatives are 

an area of interest (Baker, 2016). Indeed centralized batches of serum are commonly used in 

large interlaboratory comparisons such as those organised within QualityNano and other 
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similar efforts (see Salvati et al, in this special edition). Thus, the exposure conditions should 

be fully specified in terms of composition of the extracellular medium, and the composition 

of the corona itself as thoroughly as possible. 

 

Uptake of nanoparticles into cells 

Different cell types are designed to carry out very different specific functions in vivo; this 

leads to varied cell surface protein / receptor expression, internalization mechanisms and 

detoxification processes (Kuhn et al., 2014a). The extent and fate of cellular accumulation 

can depend largely upon the internalization mechanism utilized and the properties of not 

only the NMs, but also the cells themselves (Kettler et al., 2014). It has recently emerged 

that the proteins bound at the surface of the NMs (such as those present in the corona) can 

be recognized by cell surface receptors, leading to NM internalization and trafficking via the 

endo-lysosomal system (Bertoli et al., 2016; Lara et al., 2017). Coating with serum proteins 

thus confers specificity to NM internalization pathways upon binding to a membrane recep-

tor, an example is that of the transferrin receptor (TfR), whereby transferrin presence in the 

protein corona leads to the subsequent internalization through TfR interaction and clathrin 

mediated endocytosis (Figure 2) (Mazzolini et al., 2016). In some cases however binding and 

recognition of a certain corona protein may activate internalization via pathways that differ 

from that usually triggered by that protein (Mahon et al., 2012). Protein coated NMs could 

therefore be internalized preferentially by different uptake machinery, dependent upon the 

proteins present in the NM corona, and pathways active within a cell or cell population, and 

can therefore greatly influence cell uptake, fate, localization and toxicity (Aggarwal et al., 

2009; Lesniak et al., 2010, 2012; Oberdörster, 2010; Mortensen et al., 2013; Treuel et al., 

2014; Wolfram et al., 2014; Grafe et al., 2015; Bertoli et al., 2016; Mazzolini et al., 2016). It 

has been suggested that the presence of apolipoproteins, such as Apo E or Apo H, in the co-

rona of NMs could lead to higher uptake efficiency, and indeed Apo E and ApoB-100 are also 

known to support the transport of NMs across the Blood Brain Barrier (BBB) (Kreuter et al., 

2002; Wagner et al., 2012; Wolfram et al., 2014; Ritz et al., 2015; Neves et al., 2017). More 

recently it was demonstrated that overexpression of specific cell receptors, such as the trans-

ferrin receptor, low density lipoprotein receptor and Fc-gamma receptor 1, can lead to in-

creases in NM accumulation (Mazzolini et al., 2016; Lara et al., 2017). The interactions be-

tween NMs and proteins is therefore crucial to study, both in terms of determining NM up-
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take patterns, but also to investigate any conformational changes that occur to proteins due 

to the NM binding, which can affect their receptor-binding efficiency.  Approaches to achieve 

this are beyond the scope of this review, but a short discussion on this is included in the Sup-

plementary Information. 

 

This receptor mediated internalization can lead to subsequent degradation and release of 

NM metabolism products within the cell, such as free ions and components of the NM coat-

ings, leading to toxic responses such as generation of ROS and DNA damage (Arbab et al., 

2005; Lara et al., 2017).  NMs have been found to utilize a variety of mechanisms to enter 

different cell types, including membrane permeabilization and dynamin dependant path-

ways, clathrin mediated and caveolae mediated endocytosis or clathrin-independent endocy-

tosis (Rejman et al., 2004; Yang et al., 2007; Dausend et al., 2008; Smith et al., 2012a; Zhu et 

al., 2013; Mazzolini et al., 2016).  However, there is still no clear factor that determines which 

route is preferentially employed and the detailed mechanisms NMs use to enter cells still 

remain unclear (Iversen, Skotland and Sandvig, 2011). A variety of methods are available to 

investigate this specific uptake including drug and siRNA inhibition studies, fluorescence con-

focal colocalization studies and reflectance imaging (Daldrup-Link et al., 2003; Matuszewski 

et al., 2005; Stefaan J. H. Soenen et al., 2010; dos Santos et al., 2011; Sandin et al., 2012; 

Kuhn et al., 2014b; Guggenheim et al., 2016). These different approaches have various ad-

vantages and limitations: for instance fluorescence studies require fluorescently detectable 

NMs, reflectance methods require optically dense NMs, colocalization studies are limited by 

the resolution of the imaging system and the quantification methods employed, and drug 

inhibition of cellular pathways can lead to cell-wide cytotoxicity (Bolte and Cordelieres, 2006; 

Stefaan J H Soenen et al., 2010; Iversen, Skotland and Sandvig, 2011; Pike et al., 2017). New 

emerging combinations of techniques can circumvent some of these problems, such as the 

use of correlative reflectance and Transmission Electron Microscopy (TEM) investigations. In 

these investigations, light microscopy (LM, confocal or superresolution) can be employed to 

measure the effects of specifically inhibited pathways alongside the visualization of labelled 

compartments and cellular features in fixed or living cells.  Ultra-high resolution can also be 

maintained using Electron Microscopy to visualise individual NMs and the cellular ultrastruc-

ture (Guggenheim et al., 2016). This permits identification of subcellular localization and na-

ture of signal, colocalization of NMs with labelled components and the visualization of the 
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cellular ultrastructure. Correlating these methods also allows the visualization of dynamic 

events using LM, followed by high resolution investigation at a fixed point within the dynamic 

process providing valuable information that may otherwise have been missed (Karreman et 

al., 2016). 

 

Despite the idea that cellular dose, and subsequent NM internalization, is largely responsible 

for cell cytotoxicity, it is not the only potential source of deleterious effects. NMs have been 

suggested to elicit cell signalling responses that can lead to subsequent cellular stress via 

paracrine methods, such as inducing the release of proteins such as cytokines (Raghnaill et 

al., 2014). In this way, NMs can affect other cells without the need for actual physical interac-

tion. Cobalt chromium NM exposures on one side of a multi-layered barrier, for example, 

have been found to lead to cytotoxic effects such as DNA damage and chromosome aberra-

tion to unexposed cells on the other side of this barrier without actually crossing (Sood et al., 

2011). Another study indicated that the interaction of carboxylate modified polystyrene (PS-

COOH) NMs with the BBB, for example, led to changes in the levels of pro-inflammatory and 

pro-survival cytokines, such as RANTES, TNFR1 and EGF, released in the presence of glial cells 

with which they were not in physical contact (Raghnaill et al., 2014). These subtle effects of 

NMs would largely be missed by the traditional acute toxicity testing strategies, and an im-

portant consideration when making toxicological assessments of NM is their accumulation 

potential, subsequent cellular stress and the potential for effects on paracrine signalling be-

tween cell types. 

 

Modes of NM exposure in cell culture 

This section discusses the existing approaches to present NMs to cells and how they translate 

 into requirements SOPs. 

 

Upright exposure of NMs to adherent cells 

The most common mode of NM exposure for standard submerged adherent cell cultures is 

the addition of NMs in the extracellular medium as depicted in Figure 1. Still, even in this 

standard configuration, the ways NM dispersions are prepared and added can be multiple 

and this can lead to different results. To illustrate this, experimental data provided in five 

different articles which studied TiO2 NM interactions with adherent cells in an upright 
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configuration, were assessed. The data are summarised in Table 1.  In each case it was stated 

that the NM dispersion was diluted into cell culture medium following sonication. The 

duration of the sonication step varies extremely between publications, as shown in Table 1. 

The DSE was not calculated or optimized in any case, which has previously shown to be of 

importance, however in three of the cases the sonication energy was provided (DeLoid et al., 

2017).  Furthermore, the inclusion of FBS differed between the studies, 3 included FBS, 1 was 

omitted FBS and 1 did not state whether FBS was present or not. The effect of the inclusion 

or omission of FBS in cell studies has been studies in depth, as previously discussed. After 

addition to cell medium, the NM suspensions were characterized in all cases by at least one 

technique. However, it is important to use at least two size characterization methods, due to 

the necessity to measure core and hydrodynamic size following immersion in different fluids; 

different techniques measure different size end-points. In one case only the DLS size was 

reported, giving no information regarding the result quantified from the TEM measurements 

nor the nominal size of the NM. Different multi-well plates were used in all studies, which as 

discussed, would lead to changes in the delivery and quantity of the NM dose, but if correct 

parameters were recorded, could be accounted for and allow comparison across the studies. 

In each case the size of the well was recorded, however variations exist between 

manufacturers, which will lead to small changes in the total surface area and therefore the 

manufacturer should also be reported to enable accurate calculations. The incubation time 

was reported as 24 hrs, independent of the height of the media and the size of the NMs, 

therefore the dose delivered to the cells would have been different in each case – and was 

not calculated, rendering comparisons impossible. Additionally, the total volume of NM 

suspension added per well was given in only one of the five publications assessed (see Table 

1). Consequently, parameters such as the height of the liquid column (which will affect the 

diffusion and sedimentation of the NM) or the total amount of NMs added to the cell culture 

remains unknown in the cases where the media height is not given, therefore the cellular 

dose cannot accurately be calculated. There are currently no standard units for the recording 

of NM concentration in solution, which is often given in µg/mL (4/5 cases) or µg/cm2 (2/5 

cases) – in one case it was given in both. The cell seeding density, cell density at exposure 

and cell size should also be recorded, to allow accurate calculations of NM dose per cell 

(where all other parameters are recorded). Inclusion within SOPs of automated techniques 

that calculate the number of cells in a microscopical field of view, or by means or alternative 
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cell counting methods, to extrapolate to estimates of cell number within the dish would be 

of benefit here, a technique validated previously (Jaccard et al., 2014). If appropriate 

measurements of these aforementioned experimental metadata are recorded, then cellular 

dose can be calculated (following experimental determination of the effective densities and 

ENM dissolution) using models such as the ISSD or the more recent Distorted Grid model 

(Hinderliter et al 2010; DeLoid, 2017). Ideally, the delivered cellular dose in vitro (and in vivo) 

would be measured directly, using techniques such as spICP-MS, however the cost and/or 

availability of such techniques in biology labs is often limited.  

 

Within the QualityNano research infrastructure, extensive work was performed to develop 

standardized protocols for different assays in nanosafety testing, such as to quantify 

nanoparticle uptake by flow cytometry and to measure nanoparticle-induced cytotoxicity 

(Salvati et al., 2017). In order to minimize interlaboratory variability that could generate from 

all of the aspects discussed above, the developed SOPs also included details on how to 

perform cell seeding, NM dispersion preparation in cell culture medium and exposure to 

cells.  Prior to further testing on cells, participating laboratories were asked to demonstrate 

their proficiency in cell culture, following the SOPs for cell culturing and for assessment of 

cell growth (thee SOPs are included in Nelissen et al. 2017). For these tests, lung cancer 

epithelial A549 cells were selected as a common model cell line easy to maintain and often 

used in nanosafety testing. In order to limit the variability arising from differences in cell 

handling and storage procedures, frozen cells amplified from the same initial cell stock at the 

same passage number were provided to all laboratories. Similarly, FBS from a common stock 

was distributed. Different serum batches are known to have different protein composition 

and concentration as mentioned previously: this can affect cell growth and proliferation rate. 

Additionally, when serum is used to prepare NM dispersions, it can lead to differences in NM 

stability and the corona composition, thus ultimately leading to different behaviour in cells. 

NM dispersions in water were prepared from a common stock and aliquots shipped to all 

laboratories. Reporting forms were developed to record all details and timing of cell culture 

medium preparation, aliquotting of the received FBS stock, cell defrosting and sub-culturing. 

Further details of the quality control procedures and process are provided in the 

Supplementary Information. The NM uptake SOP and NM-induced cytotoxicity SOPs 

contained details on how to prepare the cell dilution for cell seeding and the volumes of the 
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diluted cells to be added to each well for the different multi-well plates used. Additional 

precautions were taken to limit clumping of the cells to the periphery of the wells due to 

edge effects and obtain a more uniform cell density throughout the well (see Nelissen et al. 

for details). NMs known to form uniform and stable dispersions in cell culture media 

containing FBS, such as PS-COOH NMs and amino-modified PS (PS-NH2) were specifically 

selected for these interlaboratory comparisons. For these PS NMs, simple vortexing ensures 

preparation of good dispersions (as mentioned above other particles are known to require 

much more complex dispersion protocols). Even though the procedure is relatively simple, 

the SOPs contained details on the volumes added, order of mixing, pipetting strategy 

(forward pipetting etc.) speed and time of vortexing and timing between preparation and 

addition to cells, all factors that could affect the final outcome. Additionally, variability due to 

NM preparation was estimated by preparing 3 separate NM dispersions, each representing a 

separate technical replicate. A separate dosing plate was used to prepare serial dilutions 

from 3 freshly-made NM dispersions in cell culture media at the highest concentration 

tested. Finally, cells were exposed to the NM dispersions by replacement of the extracellular 

media with specified volumes of the freshly-made NM dispersions from the dosing plate.  

Addition of small volumes of NMs at higher concentration directly into the wells containing 

cell culture medium can be more difficult to control and can lead to strong differences in 

exposure for the different cells within the well. Overall, by taking into account all of these 

details, the cell growth proficiency test, NM uptake studies by flow cytometry and NM-

induced cytotoxicity assays, all gave highly reproducible results in independent laboratories 

(see Nelissen et al and Salvati et al for details). It is clear that this kind of SOP captures many 

more details and instructions compared to what is typically reported in the experimental 

sections of published articles (e.g. 8 page protocols, as indicated in Nelissen et al and Salvati 

et al). 

 

 

Other modes of NM exposure to cells 

As discussed previously, NM consisting of various materials and with different sizes and 

shapes show different sedimentation and diffusion rates, leading to different cellular doses 

of NM over time. NMs are heterogeneously distributed to the cells particularly in the 

standard upright configuration whereby NM dispersions are placed over cells (Figure 3).  
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Other techniques exist for cellular exposure of NMs, including surface based, whereby NM 

are decorated onto a solid surface, inverted culture and air-liquid interface (ALI).  Figure 3 

presented an overview of the different modes of presentation available, and here these are 

described in more detail, and related to the parameters required as part of the SOP to ensure 

comparability with other studies and the classical submerged culture approach (see Table 2 

and section ‘Recommended Reporting’ and appendix ‘Protocol’). 

 

Surface based presentation of NMs to cells 

In the surface based presentation of NMs to cells, NMs are immobilized onto the surface pri-

or to cell exposure and cells seeded on top of the NM layer, as shown schematically in Figure 

3 (Alberola and Rädler, 2009). This circumvents some of the problems associated with up-

right culture treatment, as the NM are static, and thus do not undergo agglomeration. A de-

fined number of attached NMs on the surface can be obtained by tuning the NM absorption 

time and the NM concentration in solution. Figure 6 shows an example of homogeneous 

Quantum Dot (QD) distributions achieved by varying the NM concentrations in solution (Al-

berola and Rädler, 2009). This prevents fluctuations in the number density throughout the 

surface which is important in minimizing the cell to cell dose variability when evaluating cell 

response in toxicity assays (Snijder and Pelkmans, 2011). Moreover, it enables the precise 

definition of the NM dose to which the cells are exposed. 

 

This type of set-up confers some advantages; the exact number of NMs/µm2 is known and 

pre-defined and the problems associated with NM agglomeration / aggregation and inhomo-

geneous distribution over time are circumvented (Alberola and Rädler, 2009).  The monitor-

ing of the NM uptake process is also simplified because the NMs, which are initially absorbed 

on the two dimensional reference surfaces (µg/cm2), are lifted above the reference plane 

when they are taken up by the cells.  Uptake can therefore be assessed by evaluating the po-

sition of the NMs in a stack of z-scans from confocal microscopy. 

In the surface based NM presentation, the interactions between the NMs and the substrate 

play an important role which should not be neglected. This interaction must be sufficiently 

strong for the NMs to stay in place after rinsing and the addition of cell medium. However, 

strong interactions of NMs with the surface can shield the NM-cell interaction and thus likely 

modulate the internalization efficiency of these systems. For example, when carboxyl func-
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tionalized QDs where bound to a poly-L-lysine surface, the cellular uptake was drastically re-

duced in comparison with an uncoated substrate (Alberola and Rädler, 2009).  These systems 

indicate active uptake processes must be involved due to the uptake against gravitation and 

surface attraction forces (Alberola and Rädler, 2009). However, the effect that the surface 

binding of NM to the substrate prior to cellular uptake has on the internalization mechanism 

should also be carefully considered and evaluated. This configuration also provides a means 

to investigate the gain and loss of NM over time via endo and exocytosis, as a set number of 

NMs are present within the system. Surface based presentation-type configurations could be 

useful for mimicking particular in vivo conditions, whereby NMs are static within dynamic 

conditions (such as QCM measurements for NM/receptor binding). NM could also be em-

bedded within or exposed to an extracellular matrix and presented to cells via or following 

ECM-interactions. NMs are known to interact with many ECM components, and NM diffusion 

through ECM has been studied previously (Sykes et al., 2016; Engin et al., 2017). These NM-

ECM interactions are undoubtedly going to have an effect on the cellular uptake (and the 

properties of the surrounding ECM itself) which may be important for the translation of po-

tential cancer therapeutic or diagnostic agents for in vivo success as delivery vehicles (Sykes 

et al., 2016; Millard et al., 2017). 

   

Inverted cell culture systems 

Inverted cell culture systems have been suggested as particularly well-suited for buoyant NM 

exposure conditions (Figure 3) (Spyrogianni et al., 2016). In an inverted system, the cells are 

attached at a coverslip and suspended into the media from above. The use of inverted 

systems can be preferential when the NMs have a low effective density compared to the 

medium, these systems have therefore been compared to the use of standard upright 

exposure conditions (Watson et al., 2016). Polypropylene (buoyant) NMs led to cellular 

toxicity only in the inverted configuration, and not in the upright configuration, indicating 

limitations of current systems that rely solely on the upright configuration (Watson et al., 

2016). One study compared the effects of soluble and insoluble NMs in both configurations, 

whereby it was observed that dissolvable NMs showed no difference in the toxicity using 

either technique, when it was the ion itself known to cause the toxicity (Spyrogianni et al., 

2016). However insoluble particles exhibited different sedimentation rates and therefore 

deposited doses, leading to observable differences in cytotoxicity (Spyrogianni et al., 2016). 
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In upright configurations NM will come into contact with cells through both diffusion and 

sedimentation, where in inverted configurations NM exposure to cells will be through 

diffusion only, and sedimentation will lead to loss of material and lower available NM 

number. One study compared this effect using different size and composition NMs, all of 

those larger than 15 nm but smaller than 118 nm showed greater uptake in the upright 

configuration, but differences were more prominent in the larger particles (Lison and Huaux, 

2011). Smaller particles, less than 15 nm showed similar uptake in both arrangements, 

presumably due to their predominant diffusional movement, those larger than 118 nm had 

larger sedimentation forces and showed much greater uptake in the upright configuration 

(Lison and Huaux, 2011). This work highlights how culture conditions can modify the 

delivered dose in a significant way and has important implications for toxicity studies. 

 

Another approach to control NM exposure to cells could be to first let the NMs adhere on 

the cell surface in conditions in which uptake is inhibited (for instance by energy depletion at 

lowered temperature – 4 ºC) and then let the adhered NM enter cells after the extracellular 

NMs are removed. Such an approach, although far from real biological conditions, has been 

applied in order to determine the role of the initial adhesion to the cell membrane in the 

overall uptake level and to explain the observed differences in NM uptake in the presence or 

absence of a corona on the NM surface (Lesniak et al., 2013). The comparison of the uptake 

achieved after increasing the incubation temperature of the NMs that had previously had 

lower temperature, with the uptake measured after continuous exposure in physiological 

conditions (at 37 ºC) determined that the initial adhesion to the cell membrane is a very fast 

and crucial step in NM internalisation and that it is strongly affected by the presence or 

absence of proteins on the NMs. 

 

Air-liquid interface in vitro 

Despite the existence of the aforementioned exposure methods, including upright, inverted 

and substrate attached NM configurations; these can still not accurately represent some 

physiological exposure conditions.  Adverse effects that can occur due to inhalation of NMs 

are an important consideration, and traditional in vivo inhalation studies have several 

associated drawbacks in regards to the use of animals, need for facilities, cost and poor 

translation of effects (Clippinger et al., 2016). Therefore considerable effort has been 
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undertaken to mimic relevant exposure conditions in the lung in a method termed air liquid 

interface exposure (ALI) whereby an automated station can expose cell cultures directly to 

airborne or aerosolized substances such as NMs and fibres (Hedwig M Braakhuis et al., 2015; 

Clippinger et al., 2016; Latvala et al., 2016; Mülhopt et al., 2016; Polk et al., 2016; Geiser et 

al., 2017).  In the ALI exposure, cells are plated in trans-well formation, with the media 

below, and the exposed cell surface available for interaction with the applied aerosols (Figure 

3) (Polk et al., 2016). This type of culture system has several advantages, particularly for the 

assessment of airborne pollutants and aerosolized NMs.  The exposure conditions mimic lung 

inhalation studies, and the delivery of the gas phase NMs circumvents a variety of problems 

associated with standard cell culture techniques. The NM delivery is dynamic and controlled 

through an inlet at the top of the chamber, and these NM can be tested directly without 

changing the properties (e.g. by dispersion in serum containing medium), in addition to 

bypassing agglomeration effects and the effects of NM delivery within a bolus form, such as 

that used in standard culture systems. As such, there is now a range of commercially 

available ALI devices, including ALICE, NACIVT, MINUCELL, VITROCELL and CULTREX systems 

(Bakand, 2016). ALI devices have been demonstrated to represent a valid model for the 

toxicological assessment of poorly soluble NMs, including MWCNTs (Chortarea et al., 2015; 

Clippinger et al., 2016; Loret et al., 2016; Polk et al., 2016). MWCNTs often have high aspect 

ratios and their low solubility have raised concerns that long term exposure could lead to 

lung pathologies seen previously with other fibrous particles (Oberdörster, 2010). Therefore 

efforts are being made to investigate the effects of such NMs using ALI methods (Endes et 

al., 2014; Chortarea et al., 2015; Polk et al., 2016; Beyeler et al., 2017). A study using one 

such ALI method was combined with a 3D in vitro model of the epithelial airway barrier, 

combining both sophisticated delivery and a multicellular 3D physiological cellular 

environment to investigate these high aspect ratio CNTs (Endes et al., 2014; Chortarea et al., 

2015). Clearly the combination of physiologically relevant exposure and physiologically 

relevant cellular environments can provide new insight into the potential toxicity of NMs. 

The effect of chronic to acute exposure to CNTs were assessed and compared using this 

methodology indicating changes in the levels of the antioxidant glutathione (Endes et al., 

2014; Chortarea et al., 2015). 
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These ALI devices have been used in the evaluation of early cytotoxicity to cells following 

exposure to airborne NMs, and pollutants resulting from diesel and gasoline engines (Herzog 

et al., 2013; Lenz et al., 2013; Mülhopt et al., 2016; Kooter et al., 2017). In the cases of 

pollutants, the toxicity of the gas phase NM, compared to the removed NM which were 

subsequently re-suspended in upright culture was markedly increased, indicating the value 

of this technique in such studies, and the necessity to use the right cell exposure 

configuration (Mülhopt et al., 2016). ALI systems have also showed significant value in the 

assessment of aerosols generated by engineered NMs that were previously unattainable 

using standard culture configurations, such as in the case for zinc oxides, copper oxide and 

nickel oxides where levels of cellular toxicity were observed at much lower doses in ALI 

systems compared to standard culture (Holder et al., 2008; Lenz et al., 2013; Kooter et al., 

2017). ALI exposure of 3D epithelial co-culture models to AgNPs also provided insight into 

the lack of toxicity of these NPs at realistic exposure concentrations (Herzog et al., 2013). In 

these systems the number of NMs deposited at the ALI corresponds closely to the modelled 

number concentration expected to be observed in tracheal-bronchial regions of the lung; 

however smaller particles are not deposited as efficiently as larger particles so optimization 

is sometimes necessary (Holder et al., 2008). 

  

Clearly there are a vast amount of considerations in terms of the different ways in which to 

dose cells with NMs. In vitro toxicity assays should be designed such that they can ultimately 

predict toxicity in vivo and thus replace, at least in part, in vivo assays in-line with the 3R 

framework (Fischer and Chan, 2007; Stone, Johnston and Schins, 2009; Burden et al., 2017). 

In terms of deciding upon the culture configuration to use, the question that naturally arises 

is which conditions are more representative of the in vivo exposure being assessed. Naturally, 

this depends on the system, exposure route and process to be modelled. If the purpose is to 

study NM cellular uptake after inhalation, none of the upright, surface nor inverted approach 

is adequate, since the epithelial cells in the lung are polarized and the NMs would be 

exposed to them from the basal side instead of the apical side, as happens in natural 

conditions. Therefore, the only appropriate method is using ALI whereby the apical side is 

exposed to aerosol as it would be in vivo. For studies within cells that do not show 

polarization, such as fibroblasts, the location of the NMs may be less crucial. If the aim is to 

study how NMs are eliminated from the body, travelling from the blood stream towards the 
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lumen of an organ, the surface based presentation would allow observed uptake from the 

basal membrane of epithelial cells. For example, it has been shown that the uptake rate of 

fluid-phase markers over the basal side was six times higher than for the apical side due to 

the bigger area of basolateral surface domains (von Bonsdorff, Fuller and Simons, 1985). In a 

more physiologically accurate method, microfluidic devices allow for the introduction of 

cellular perfusion in single or multicellular 2D and 3D structures, these are discussed more 

later in the section ‘NM uptake and transport under more physiological conditions’ (Tian and 

Finehout, 2008; Prabhakarpandian et al., 2011; Rennert et al., 2015). 

 

Nevertheless, regardless of which configuration is used there is a minimum requirement for 

information and standardization of these procedures, of which there has been considerable 

debate. Several of these have been discussed or introduced in the previous sections. 

Recordable attributes include experimental parameters such as the cell type and exposure 

configuration used, cell seeding density, the density of cells at time of exposure, exposure 

duration, exposure media volume and culturewear used (with justifications for 

aforementioned chosen parameters where appropriate). Additionally, during suspension 

preparation (if applicable), determination of the DSE, optimization of the sonication step 

(both time and crDSE), and adequate characterization of the suspension properties should 

also be performed. The recoded dose should be standardized, but the important aspects 

include the concentration in terms of NM number and mass per surface area (NM/cm2), and 

any conditions that may modify the locally received dose. Modelling of the agglomeration 

and transport where possible would also be advantageous. Development of Graphical User 

Interfaces (GUIs) that can aid in determination of the local dose would be ideal, whereby 

experimental parameters are input, and a local dose estimated based upon these parameters 

and the suspension properties, for which a few different models already exist (Cohen et al., 

2008; Hinderliter et al., 2010; DeLoid et al., 2017). 

 

 

Other factors that can affect NM dose and toxicity 

Role of cell cycle and cell division on NM uptake 

Typical in vitro experiments are performed in cell populations in which individual cells 

progress independently through different phases of the cell cycle. In such conditions, 
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continuous exposure to NM leads first to linear uptake into cells, then at later stages the 

internalised NM load plateaus as an apparent saturation occurs (Salvati et al., 2011; Shapero 

et al., 2011; Kim et al., 2012).This saturation effect could be attributed to the NM depletion 

in the extracellular medium, saturation of cell / cell surface receptors, or competition 

between uptake and export or degradation of the internalised NMs, in addition to the effect 

of the cell division. When the cells divide the internalised NM burden is split among daughter 

cells, (Summers et al., 2011, 2013; Kim et al., 2012).  It is therefore important in this context 

to develop methods that are able to discriminate between these possibilities and to 

distinguish eventual NM export or degradation from simple dilution by cell division. As a 

consequence of cell division, after hours of uptake, individual cells within the same 

population may have varied amounts of internalised NMs (Kim et al., 2012; Summers et al., 

2013). Therefore, the internal dose is different and consequently different effects may be 

observed at single cell level in comparison to the average behaviour of the full population.   

 

Due to this heterogeneity, it has been suggested that the measurement of mean population 

response is somewhat inadequate for assessment of subtle cellular changes following 

treatment, such as NM internalisation (Manshian et al., 2015). Neighbouring cells have been 

seen to undergo different responses to NMs and cell averaging may mask subtle changes that 

occur in minority populations, an effect that is applicable across most fields of biology.  

Manshian et al showed the value of binning data to determine significant toxicity values in 

subsets of the population, rather than simply averaging cell values when estimating the safe 

concentrations of NMs (Manshian et al., 2015). They showed that sub-populations of cells 

undergo different effects following NM treatments, including a portion that undergo cyto-

protective effects and some that undergo cytotoxic effects.  This was masked by a net-zero 

overall change in the cell population measured as a whole. 

 

This all suggests that for quantitative uptake and toxicity studies the initial cell density and 

the effect of cell cycle should also be taken into account, as different starting conditions will 

lead to different distributions of the population among the individual phases of the cell cycle 

and this will lead ultimately to different uptake levels. On another level, it may be important 

in future to develop methods to distinguish and determine single cell uptake and NM impact 

in respect to full population behaviours.  Other approaches that have been developed are 
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the use of short pulses of exposure (10 minutes to 1-4 hrs), followed by longer observation 

times, in order to track movement of NMs inside cells, and to correlate localisation with 

observed effects (Wang, Bexiga, et al., 2013; Wang, Yu, et al., 2013; Guggenheim et al., 

2016).  While an analysis of methods for quantification of internalised NMs was beyond the 

scope, a summary of approaches is provided in the Supplementary Information. 

 

The bystander effect in toxicity studies 

Another factor to take into consideration is that of indirect effects due to the presence of 

NMs.  Many efforts so far have been focused in controlling NM uptake and defining the dose 

delivered intracellularly in order to obtain quantitative and reproducible accumulation and 

correlate the internalised dose with the eventual impacts observed. However, several studies 

report that NMs can also induce indirect effects by activation of signalling pathways which 

can propagate to neighbouring cells, even if these cells are not directly in contact with the 

NMs or indeed regardless of NM internalisation. NMs have been observed to confer the 

capacity to activate signalling pathways by the interaction of corona proteins with specific 

receptors at the cell surface or as a consequence of opsonisation and immune system 

activation (Fadeel and Garcia-Bennett, 2010; Marano et al., 2011; Boraschi, Costantino and 

Italiani, 2012; Ilinskaya and Dobrovolskaia, 2016; Pallardy, Turbica and Biola-Vidamment, 

2017). Such an effect has been reported, for instance, upon adsorption of fibrinogen to 5nm 

acetic acid capped gold NMs which led to the unfolding of fibrinogen and caused exposure of 

a cryptic epitope which interacts with MAC-1 receptor on macrophages, leading to activation 

of NFkB pathway (Deng et al., 2012; Marucco et al., 2014; Corbo et al., 2016).  Another 

example is the changes in conformation of the cytoskeletal protein tubulin in the presence of 

TiO2 NMs; tubulin carries out a host of different functions within cells and its conformational 

loss could therefore lead to wide scale disruption of cellular function (Gheshlaghi et al., 

2008). 

 

The signalling properties of NMs are also relevant to signalling across cell barriers. For 

instance, regardless of the capacity of a NM to physically cross cell barriers such as the BBB 

or the placenta, it has been observed that NMs can induce impact across these barriers in a 

paracrine fashion (Sood et al., 2011; Raghnaill et al., 2014) (Raghnaill et al., 2014). For 

example, paracrine signalling has been observed in the case of in vitro human blood brain 
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barrier (BBB) models exposed to NMs in the presence of astrocytes in the basal chamber 

(Raghnaill et al., 2014).  BBB endothelial cells exposed to PS NMs produced relatively low 

levels of cytokines; however, when astrocytes were added, anti-inflammatory signals were 

amplified. This also suggests that overall the impact observed in single cell culture systems 

may be different to that observed in co-culture models or in the presence of multiple cell 

types, where signalling across the different cell types can amplify and modulate the response 

due to exposure to NMs, leading to different outcomes.  All of these effects should be taken 

into consideration when assessing NM impact on cell functions. 

 

NM uptake under more physiological conditions 

Efforts to improve the physiological relevance of 2D culture, such as the ALI approach 

described above, can be further enhanced through, for example, direct measurement of the 

ALI delivered cellular dose which is possible by the addition of a Quartz Crystal Microbalance 

(QCM) within the system, underneath the exposed culture in mass deposited per area ng-

µg/cm2. This circumvents problems of modelling NM dose (such as in other exposure 

configurations), as the actual deposited dose is measured. This therefore provides 

experimental detail of delivered dose, which as discussed, is a necessity for meaningful 

comparison of toxicological study data which is important in all exposure scenarios.  Models 

of other exposure scenarios (i.e. through ingestion) such as gastrointestinal (GI) tract exist, 

that aim to either mimic the dynamic changing environment along the entire GI tract, or aim 

to model the translocation and uptake behaviour in intestinal epithelium models (Hedwig M 

Braakhuis et al., 2015; Lefebvre et al., 2015). These models consist of simple 2D models (such 

as the Caco-2 cell line) or more complex multicellular models that contain intestine microfold 

cells, however these intestinal models lack the mucus layer that is present in vivo and ex vivo 

or GIanimal models (Hedwig M Braakhuis et al., 2015; Lefebvre et al., 2015).  Although these 

types of 2D cell cultures clearly offer an invaluable tool for hazard characterization, it is 

generally recognized that they do not adequately represent the multicellular physiological 

environment in vivo (Smalley, Lioni and Herlyn, 2006; Braakhuis et al., 2015; Evans et al., 

2017). Multicellular functions and cellular interactions are lost when using simplified 2D 

culture systems which can lead to inaccuracies when assessing potential toxicities and 

ultimately lead to suboptimal translation to the situation in vivo (Smalley, Lioni and Herlyn, 

2006; Braakhuis et al., 2015; Henriksen-Lacey, Carregal-Romero and Liz-Marzán, 2016). With 
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the advent of new approaches (such as those used in IATAs) and multi-parametric and multi-

test scoring approaches of NM toxicity, some of the problems can be alleviated (Wiemann et 

al., 2016; Hansjosten et al., 2017). However, there is an interest in combining the 

aforementioned in vitro exposure models with 3D culture and co-culture models and the use 

of reconstructed tissues that can incorporate a wide range of physiological conditions more 

closely mimicking that of native tissue (Evans et al., 2017). 

 

3D cell culture models overcome some of the limitations of traditional 2D cell cultures by the 

introduction of cell-cell interactions, oxygen and nutrient gradients, and, importantly for 

nano-research, non-uniform NM dose through the 3D structure (Yoshii et al., 2011; Cui, 

Hartanto and Zhang, 2017; Evans et al., 2017). Spheroid culture models can be combined 

with an endothelial cell coating, such as that used by Ho et al to mimic the endothelium of 

blood vessels surrounding the tumour, which can be used to model extravasasion and 

penetration of NMs (Ho et al., 2012). A relatively new concept within is the development of 

even more complex co-culture spheroids, called ‘organoids’ which resemble miniature organs 

such as the kidney, liver and pancreas (Kermanizadeh et al., 2014; Broutier et al., 2016; 

Fatehullah, Tan and Barker, 2016; Henriksen-Lacey, Carregal-Romero and Liz-Marzán, 2016; 

Skardal, Shupe and Atala, 2016; Takasato et al., 2016). Reconstructed tissues can exhibit 

characteristics that are very similar to native tissue in terms of morphology (e.g. fully 

stratified tissue), differentiation markers (e.g. ciliated cells, presence of tight junctions) and 

functional activities (e.g. mucus secretion, specialized cell for trans-epithelial transport, cilia 

beating, cell communications). These features are important in cellular uptake of NMs and 

cell behaviour in response to NM exposure. Reconstructed tissue models can therefore be 

used in conjunction with the aforementioned exposure configurations to inform on the 

transport of NM through biological barriers, such as the skin, placenta, intestine and lungs 

(des Rieux et al., 2007; Vankoningsloo et al., 2010; Hedwig M Braakhuis et al., 2015; Lefebvre 

et al., 2015; Kooter et al., 2017; Vinardell et al., 2017). Reconstructed skin models have 

received the most attention currently in the field of NM safety assessment, due to the 

widespread use of NMs in sunscreans and cosmetics, leading to the availability of a variety of 

3D- reconstructed skin models, including but not limited to EpiSKIN and EpiDerm (Mathes, 

Ruffner and Graf-Hausner, 2014; Hayden et al., 2015; Kim et al., 2016; Wills et al., 2016; 

Evans et al., 2017; Hao et al., 2017; Vinardell et al., 2017). These models have been used in 
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conjunction with exposure to NMs such as MWCNTs and zinc oxides (ZnO) to determine the 

toxicity in these cell systems as opposed to dosing in standard 2D culture (Vankoningsloo et 

al., 2010; Vinardell et al., 2017). 

 

Co-culture, organoid and reconstructed tissue approaches can be employed in microfluidic 

devices, such as the tissue and organ/organoid-on-chip approaches, and these 3D in vitro 

methods have already proven useful for measuring the penetration and translocation of NMs 

(Huang et al., 2012; Albanese et al., 2013; Bryce et al., 2013; Bhatia and Ingber, 2014; Endes 

et al., 2014; Kang et al., 2016; Zervantonakis and Arvanitis, 2016). Future improvements to 

these microfluidic devices to include other dynamic processes such as perfusion and blood 

filtration, such as in the liver and kidneys, could improve further on the translation between 

these devices and the in vivo behaviour of NMs following exposure (Rennert et al., 2015; 

Wilmer et al., 2016). Another advantage of using reconstructed tissues is the possibility to 

mimic more realistic exposure scenarios in terms of NM presentation and dosimetry; 

although it is likely that the modelling of these NM transport processes will be more difficult 

than in static cultures. Indeed, some reconstructed human tissue (e.g. respiratory tract or 

epidermis) are cultivated in the ALI cell culture systems previously mentioned, allowing 

direct aerosol exposure systems for respiratory studies for both dispersed and dry nano-

powders, or commercial formulations for cutaneous studies, thereby avoiding physical and 

chemical interactions that can occur in culture media (Fierz et al., 2011; Mülhopt et al., 2016; 

Kooter et al., 2017). The dose is usually expressed as mass deposition per culture surface 

(µg/cm2) but there are no standard protocols so far for the NM concentration range to test. 

For chemical regulatory toxicity testing, the OECD guidelines for cutaneous irritation 

assessment (OECD TG 439) recommend to uniformly cover the reconstructed epidermis 

surface with the test chemical and controls with a minimum dose of 25 μL/cm2 or 25 

mg/cm2.  Therefore, the physico-chemical parameters that affect NM deposition and cellular 

uptake and transport may have to been reconsidered in ALI tissue cultures. 

 

Another interesting in vitro model that could be exploited for nanosafety studies is the use of 

precision cut tissue slices (PCTS). PCTS have already been established for drug toxicity 

testing: they allow reduced use of animals while testing compounds but maintain the cell 

complexity and architecture of a real tissue (Graaf, Groothuis and Olinga, 2007; de Graaf et 
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al., 2010). The use of PCTS for nanosafety studies has not been fully exploited yet: while 

PCTS could bring several advantages because of the use of real tissue, particular care should 

be taken to develop methods to add the NMs to the PCTS resembling the way they would 

reach that particular organ in vivo (Hirn et al., 2014; Merz et al., 2017), including any 

evolution of adsorbed biomolecules that would be associated. 

 

Conclusions 

This review summarised the modes of exposure reported in NM toxicity studies, and the 

need for standardization and complete reporting of exposure conditions and experimental 

metadata to allow cross-comparability between studies.  In particular the critical definition of 

dose in cell culture assay and tissue culture has been discussed and emphasized. 

Experimental conditions were highlighted that affect the local dose received by cultured cells 

in terms of number of NMs per cell, highlighting important considerations when conducting 

NM studies and indicating the minimal information to be included within studies to enable 

correlation of cellular received dose with observed toxicological response. The current state 

of the art in experimental settings and reporting in published nanotoxicity studies is often 

insufficient to derive the local dose and hence leaves room for discrepancies in the 

interpretation of dose-response relations. Standardized protocols for defined exposure are 

desirable, such that a higher level of comparability is achieved. 

 

Therefore, to summarise there is a host of different options in terms of exposure 

configurations for NM investigations. The choice of which presentation method to use will 

depend on some key parameters namely: the type and form of NM that is to be investigated, 

the type of system to be modelled (i.e., ALI for toxicity testing of inhaled particles), and the 

parameters that need to be controlled for, such as NM agglomeration or pre-defined (or 

directly measured) NM dose. Each exposure setup offers different advantages and 

disadvantages summarised in Figure 3 and each allow precise control over different 

outcomes, or encompass simplified or more complex exposure methods. Regardless of the 

choice of exposure model, the information between different exposures must be reliable and 

reported in such a way that allows comparisons between different experimental designs. 

Therefore, we suggest the minimal required information for each exposure configuration as 
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presented below and summarised in Table 2. Our overall recommendations, regardless of the 

exposure configuration are as follows (see also SI for the brief protocol): 

1. Dispersion information 

a. Calibration of sonicator and reporting of the critical DSE (optimized for the 

material to achieve suspension of the smallest possible aggregates) 

b. Concentration of the original dispersion 

c. Characterizations (minimum of TEM and DLS or DCS pre and post incubation 

in culture medium) 

d. Potential agglomeration over time and the effective density of agglomerates 

e. Dissolution in media over experimental time-course 

f. Corona characterization of NM in both conditioned and unconditioned 

media. We recommend the protocol described in (Albanese et al., 2014) 

2. Cell information 

a. Seeding density 

b. Density at exposure 

c. Cell size (area) 

3. Vessel information 

a. Well plate format (6, 12, 24, 96 etc) and exact area of plate 

b. Shape of container bottom (round, flat etc) 

c. Volume and height of media used per well 

d. Material of container and binding potential 

4. NM exposure dose 

a. Time length of incubation 
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b. Number and frequency of doses (single or multiple) 

c. Total administered dose 

d. Calculated local dose (particle number per area) and surface area of NM, 

based upon existing models that incorporate estimations of diffusion, 

sedimentation, dissolution and agglomeration if applicable (upright and 

submerged cultures). 

These recommendations are based on the previously discussed issues surrounding 

difficulties in obtaining accurate comparisons between performed studies. By documenting 

all of the available and appropriate metadata, even if the local dose reported between 

papers is in a slightly different form, the availability of all the other exposure parameters 

allows readers to recalculate various aspects of the experimental set up and dynamics, in 

addition to improving consistency between experiments and therefore increasing result 

quality and comparability. The work performed within the QualityNano infrastructure has 

allowed development of robust SOPs capturing these factors: coupled with appropriate 

training of the researcher performing the tests, the developed SOPs allowed generation of 

highly reproducible data on NM uptake and cytotoxicity in independent laboratories. The 

SOPs (characterisation by DLS and DCS, quantification of cellular uptake of NMs by flow 

cytometry and cytotoxicity determined by the MTS assay, and the interlaboratory 

comparisons undertaken on them) are described in detail in articles included in this special 

issue (Langevin et al. 2017; Salvati et al. 2017). 

 

Acknowledgements 

The work presented here has been supported by the EU FP7 Capacities project QualityNano 

(grant no. INFRA-2010-262163). 

 

References 

Aggarwal, P. et al. (2009) ‘Nanoparticle interaction with plasma proteins as it relates to 
particle biodistribution, biocompatibility and therapeutic efficacy’, Advanced Drug Delivery 
Reviews, pp. 428–437. doi: 10.1016/j.addr.2009.03.009. 



43 

 

Aillon, K. L. et al. (2009) ‘Effects of nanomaterial physicochemical properties on in vivo 
toxicity’, Advanced Drug Delivery Reviews, pp. 457–466. doi: 10.1016/j.addr.2009.03.010. 

Albanese, A. et al. (2013) ‘Tumour-on-a-chip provides an optical window into nanoparticle 
tissue transport.’, Nature communications, 4, p. 2718. doi: 10.1038/ncomms3718. 

Albanese, A. et al. (2014) ‘Secreted biomolecules alter the biological identity and cellular 
interactions of nanoparticles’, ACS Nano. American Chemical Society, 8(6), pp. 5515–5526. 
doi: 10.1021/nn4061012. 

Alberola, A. P. and Rädler, J. O. (2009) ‘The defined presentation of nanoparticles to cells and 
their surface controlled uptake’, Biomaterials, 30(22), pp. 3766–3770. doi: 
10.1016/j.biomaterials.2009.03.031. 

Alkilany, A. M. and Murphy, C. J. (2010) ‘Toxicity and cellular uptake of gold nanoparticles: 
What we have learned so far?’, Journal of Nanoparticle Research, 12(7), pp. 2313–2333. doi: 
10.1007/s11051-010-9911-8. 

Allouni, Z. E. et al. (2009) ‘Agglomeration and sedimentation of TiO2 nanoparticles in cell 
culture medium’, Colloids and Surfaces B: Biointerfaces. Elsevier, 68(1), pp. 83–87. doi: 
10.1016/j.colsurfb.2008.09.014. 

Alstrup Jensen, K. et al. (2011) ‘Final protocol for producing suitable manufactured 
nanomaterial exposure media’, Nanogenotox. Available at: 
https://www.anses.fr/en/system/files/nanogenotox_deliverable_5.pdf (Accessed: 27 July 
2017). 

Anderson, R. and Barron, A. R. (2005) ‘Reaction of hydroxyfullerene with metal salts: A route 
to remediation and immobilization’, Journal of the American Chemical Society. American 
Chemical Society, 127(30), pp. 10458–10459. doi: 10.1021/ja051659d. 

Arbab, A. S. et al. (2005) ‘A model of lysosomal metabolism of dextran coated 
superparamagnetic iron oxide ( SPIO ) nanoparticles : implications for cellular magnetic 
resonance imaging’, (July), pp. 383–389. doi: 10.1002/nbm.970. 

Avramescu, M. L. et al. (2017) ‘Influence of pH, particle size and crystal form on dissolution 
behaviour of engineered nanomaterials’, Environmental Science and Pollution Research. 
Environmental Science and Pollution Research, 24(2), pp. 1553–1564. doi: 10.1007/s11356-
016-7932-2. 

Aznar, R. et al. (2017) ‘Quantification and size characterisation of silver nanoparticles in 
environmental aqueous samples and consumer products by single particle-ICPMS’, Talanta. 
Elsevier, 175, pp. 200–208. doi: 10.1016/j.talanta.2017.07.048. 

Baalousha, M. (2009) ‘Aggregation and disaggregation of iron oxide nanoparticles: Influence 
of particle concentration, pH and natural organic matter’, Science of the Total Environment, 
407(6), pp. 2093–2101. doi: 10.1016/j.scitotenv.2008.11.022. 

Baer, D. R., Munusamy, P. and Thrall, B. D. (2016) ‘Provenance information as a tool for 
addressing engineered nanoparticle reproducibility challenges’, Biointerphases. American 
Vacuum Society, 11(4), p. 04B401-9. doi: 10.1116/1.4964867. 

Bahadar, H. et al. (2016) ‘Toxicity of nanoparticles and an overview of current experimental 
models’, Iranian Biomedical Journal. Pasteur Institute of Iran, pp. 1–11. doi: 
10.7508/ibj.2016.01.001. 



44 

 

Bakand, S. (2016) ‘Cell culture techniques essential for toxicity testing of inhaled materials 
and nanomaterials in vitro’, Journal of Tissue Science & Engineering. OMICS International, 
7(3), pp. 1–5. doi: 10.4172/2157-7552.1000181. 

Baker, M. (2016) ‘Reproducibility: Respect your cells!’, Nature, 537(7620), pp. 433–435. doi: 
10.1038/537433a. 

Banerjee, A., Berzhkovskii, A. and Nossal, R. (2014) ‘Efficiency of cellular uptake of 
nanoparticles via receptor-mediated endocytosis’, Physical Biology. IOP Publishing, 13(1), pp. 
1–21. doi: 10.1088/1478-3975/13/1/016005. 

Bell, I. R., Ives, J. A. and Jonas, W. B. (2014) ‘Nonlinear effects of nanoparticles: Biological 
variability from hormetic doses, small particle sizes, and dynamic adaptive interactions’, 
Dose-Response. SAGE Publications, 12(2), pp. 202–232. doi: 10.2203/dose-response.13-
025.Bell. 

Bertoli, F. et al. (2016) ‘The Intracellular Destiny of the Protein Corona: A Study on its Cellular 
Internalization and Evolution’, ACS Nano, 10(11), pp. 10471–10479. doi: 
10.1021/acsnano.6b06411. 

Beyeler, S. M. et al. (2017) ‘P207 Multi-walled carbon nanotubes exposure in healthy and 
chronic obstructive pulmonary disease’, Chest. Elsevier, 151(5), p. A106. doi: 
10.1016/J.CHEST.2017.04.112. 

Bhatia, S. N. and Ingber, D. E. (2014) ‘Microfluidic organs-on-chips’, Nature Biotechnology. 
Nature Publishing Group, 32(8), pp. 760–772. doi: 10.1038/nbt.2989. 

Bihari, P. et al. (2008) ‘Optimized dispersion of nanoparticles for biological in vitro and in vivo 
studies.’, Particle and fibre toxicology, 5, p. 14. doi: 10.1186/1743-8977-5-14. 

Bjo, M. et al. (2016) ‘Dynamic Flow Impacts Cell-Particle Interactions: Sedimentation and 
Particle Shape Effects’, Langmuir, 32(42), pp. 10995–11001. doi: 
10.1021/acs.langmuir.6b03216. 

Bolte, S. and Cordelieres, F. P. (2006) ‘A guided tour into subcellular colocalisation analysis in 
light microscopy’, Journal of Microscopy, 224(3), pp. 13–232. doi: 10.1111/j.1365-
2818.2006.01706.x. 

von Bonsdorff, C. H., Fuller, S. D. and Simons, K. (1985) ‘Apical and basolateral endocytosis in 
Madin-Darby canine kidney (MDCK) cells grown on nitrocellulose filters.’, The EMBO journal. 
European Molecular Biology Organization, 4(11), pp. 2781–2792. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/4065093 (Accessed: 27 July 2017). 

Boraschi, D., Costantino, L. and Italiani, P. (2012) ‘Interaction of nanoparticles with 
immunocompetent cells: nanosafety considerations’, Nanomedicine (London, England), 7(1), 
pp. 121–131. doi: 10.2217/nnm.11.169. 

Bouwmeester, H. et al. (2011) ‘Minimal analytical characterization of engineered 
nanomaterials needed for hazard assessment in biological matrices.’, Nanotoxicology, 5(1), 
pp. 1–11. doi: 10.3109/17435391003775266. 

Braakhuis, H. M. et al. (2015) ‘Identification of the appropriate dose metric for pulmonary 
inflammation of silver nanoparticles in an inhalation toxicity study’, Nanotoxicology, 5390(1), 
pp. 1–11. doi: 10.3109/17435390.2015.1012184. 

Braakhuis, H. M. et al. (2015) ‘Progress and future of in vitro models to study translocation of 



45 

 

nanoparticles’, Archives of Toxicology, pp. 1469–1495. doi: 10.1007/s00204-015-1518-5. 

Broutier, L. et al. (2016) ‘Culture and establishment of self-renewing human and mouse adult 
liver and pancreas 3D organoids and their genetic manipulation.’, Nature protocols, 11(9), pp. 
1724–43. doi: 10.1038/nprot.2016.097. 

Bryce, N. S. et al. (2013) ‘The composition and end-group functionality of sterically stabilized 
nanoparticles enhances the effectiveness of co-administered cytotoxins’, Biomater. Sci. Royal 
Society of Chemistry, 1(12), pp. 1260–1272. doi: 10.1039/C3BM60120J. 

Burden, N. et al. (2017) ‘Aligning nanotoxicology with the 3Rs: What is needed to realise the 
short, medium and long-term opportunities?’, Regulatory Toxicology and Pharmacology. 
Academic Press. doi: 10.1016/j.yrtph.2017.10.021. 

De Campos, A. M. et al. (2004) ‘Chitosan nanoparticles as new ocular drug delivery systems: 
In vitro stability, in vivo fate, and cellular toxicity’, Pharmaceutical Research. Kluwer 
Academic Publishers-Plenum Publishers, 21(5), pp. 803–810. doi: 
10.1023/B:PHAM.0000026432.75781.cb. 

Carney, R. P. et al. (2011) ‘Determination of nanoparticle size distribution together with 
density or molecular weight by 2D analytical ultracentrifugation’, Nature communications. 
Nature Publishing Group, 2, p. 335. doi: 10.1038/ncomms1338. 

Cedervall, T. et al. (2007) ‘Understanding the nanoparticle-protein corona using methods to 
quantify exchange rates and affinities of proteins for nanoparticles’, Proceedings of the 
National Academy of Sciences, 104(7), pp. 2050–2055. doi: 10.1073/pnas.0608582104. 

Cheng, X. et al. (2015) ‘Protein corona influences cellular uptake of gold nanoparticles by 
phagocytic and nonphagocytic cells in a size-dependent manner’. Available at: 
https://pubs.acs.org/doi/full/10.1021/acsami.5b04290 (Accessed: 21 July 2017). 

Chortarea, S. et al. (2015) ‘Repeated exposure to carbon nanotube-based aerosols does not 
affect the functional properties of a 3D human epithelial airway model.’, Nanotoxicology, 
5390(February 2016), pp. 1–11. doi: 10.3109/17435390.2014.993344. 

Clippinger, A. J. et al. (2016) ‘Expert consensus on an in vitro approach to assess pulmonary 
fibrogenic potential of aerosolized nanomaterials’, Archives of Toxicology. Springer, 90(7), pp. 
1769–1783. doi: 10.1007/s00204-016-1717-8. 

Cohen, A. A. et al. (2008) ‘Dynamic proteomics of individual cancer cells in response to a 
drug.’, Science (New York, NY), 322(5907), pp. 1511–1516. doi: 10.1126/science.1160165. 

Cohen, J. M., Teeguarden, J. G. and Demokritou, P. (2014) ‘An integrated approach for the in 
vitro dosimetry of engineered nanomaterials’, Particle and Fibre Toxicology. BioMed Central, 
11(1), p. 20. doi: 10.1186/1743-8977-11-20. 

Comfort, K. K. et al. (2014) ‘Less is more: Long-term in vitro exposure to low levels of silver 
nanoparticles provides new insights for nanomaterial evaluation’, ACS Nano, 8(4), pp. 3260–
3271. doi: 10.1021/nn5009116. 

Corbo, C. et al. (2016) ‘The impact of nanoparticle protein corona on cytotoxicity, 
immunotoxicity and target drug delivery’, Nanomedicine. Future Medicine Ltd London, UK, 
11(1), pp. 81–100. doi: 10.2217/nnm.15.188. 

Crist, R. M. et al. (2013) ‘Common pitfalls in nanotechnology: lessons learned from NCI’s 
Nanotechnology Characterization Laboratory.’, Integrative biology : quantitative biosciences 



46 

 

from nano to macro. NIH Public Access, 5(1), pp. 66–73. doi: 10.1039/c2ib20117h. 

Cui, J. et al. (2016) ‘A Framework to Account for Sedimentation and Diffusion in Particle-Cell 
Interactions’, Langmuir, 32(47), pp. 12394–12402. doi: 10.1021/acs.langmuir.6b01634. 

Cui, X., Hartanto, Y. and Zhang, H. (2017) ‘Advances in multicellular spheroids formation’, 
Journal of The Royal Society Interface. The Royal Society, 14(127), p. 20160877. doi: 
10.1098/rsif.2016.0877. 

Daldrup-Link, H. E. et al. (2003) ‘Targeting of hematopoietic progenitor cells with MR contrast 
agents’, Radiology, 228(3), pp. 760–767. doi: 10.1148/radiol.2283020322. 

Dausend, J. et al. (2008) ‘Uptake mechanism of oppositely charged fluorescent nanoparticles 
in Hela cells’, Macromolecular Bioscience. WILEY-VCH Verlag, 8(12), pp. 1135–1143. doi: 
10.1002/mabi.200800123. 

Dawson, K. A. ; et al. (2013) ‘Title The need for in situ characterisation in nanosafety 
assessment : funded transnational access via the QNano research infrastructure The need for 
in situ characterisation in nanosafety assessment: Funded Transnational Access via the 
QNano research inf’, Publication information Nanotoxicology. Taylor & Francis, 7(3), pp. 346–
349. doi: 10.3109/17435390.2012.658096. 

DeLoid, G. et al. (2014) ‘Estimating the effective density of engineered nanomaterials for in 
vitro dosimetry.’, Nature communications. NIH Public Access, 5, p. 3514. doi: 
10.1038/ncomms4514. 

DeLoid, G. M. et al. (2017) ‘Preparation, characterization, and in vitro dosimetry of dispersed, 
engineered nanomaterials’, Nature Protocols, 12(2), pp. 355–371. doi: 
10.1038/nprot.2016.172. 

Deng, Z. J. et al. (2012) ‘Molecular interaction of poly(acrylic acid) gold nanoparticles with 
human fibrinogen’, ACS Nano, 6(10), pp. 8962–8969. doi: 10.1021/nn3029953. 

Doherty, G. J. and McMahon, H. T. (2009) ‘Mechanisms of endocytosis.’, Annual review of 
biochemistry, 78, pp. 857–902. doi: 10.1146/annurev.biochem.78.081307.110540. 

Domingos, R. F. et al. (2009) ‘Characterizing manufactured nanoparticles in the environment: 
Multimethod determination of particle sizes’, Environmental Science and Technology. 
American Chemical Society, 43(19), pp. 7277–7284. doi: 10.1021/es900249m. 

Domingos, R. F., Tufenkji, N. and Wilkinson, K. J. (2009) ‘Aggregation of titanium dioxide 
nanoparticles: Role of a fulvic acid’, Environmental Science and Technology. American 
Chemical Society, 43(5), pp. 1282–1286. doi: 10.1021/es8023594. 

Drasler, B. et al. (2017) ‘In vitro approaches to assess the hazard of nanomaterials’, 
NanoImpact. Elsevier, 8, pp. 99–116. doi: 10.1016/j.impact.2017.08.002. 

Endes, C. et al. (2014) ‘An in vitro testing strategy towards mimicking the inhalation of high 
aspect ratio nanoparticles’, Particle and Fibre Toxicology, 11(1), p. 40. doi: 10.1186/s12989-
014-0040-x. 

Engin, A. B. et al. (2017) ‘Mechanistic understanding of nanoparticles’ interactions with 
extracellular matrix: The cell and immune system’, Particle and Fibre Toxicology. BioMed 
Central, p. 22. doi: 10.1186/s12989-017-0199-z. 

European Commission (2013) ‘Examination and assessment of consequences for industry, 
consumers, human health and the environment of possible options for changing the REACH 



47 

 

requirements for nanomaterials’. 

Evans, S. J. et al. (2017) ‘Critical review of the current and future challenges associated with 
advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity’, 
Mutagenesis, 32(1), pp. 233–241. doi: 10.1093/mutage/gew054. 

Fadeel, B. and Garcia-Bennett, A. E. (2010) ‘Better safe than sorry: Understanding the 
toxicological properties of inorganic nanoparticles manufactured for biomedical applications’, 
Advanced Drug Delivery Reviews, pp. 362–374. doi: 10.1016/j.addr.2009.11.008. 

Fang, J. et al. (2009) ‘Stability of titania nanoparticles in soil suspensions and transport in 
saturated homogeneous soil columns’, Environmental Pollution, 157(4), pp. 1101–1109. doi: 
10.1016/j.envpol.2008.11.006. 

Farcal, L. et al. (2015) ‘Comprehensive in vitro toxicity testing of a panel of representative 
oxide nanomaterials: First steps towards an intelligent testing strategy’, PLoS ONE. Edited by 
D. Zhu. Public Library of Science, 10(5), p. e0127174. doi: 10.1371/journal.pone.0127174. 

Fatehullah, A., Tan, S. H. and Barker, N. (2016) ‘Organoids as an in vitro model of human 
development and disease.’, Nature cell biology, 18(3), pp. 246–54. doi: 10.1038/ncb3312. 

Fierz, M. et al. (2011) ‘Design, Calibration, and Field Performance of a Miniature Diffusion 
Size Classifier’, Aerosol Science and Technology. BioMed Central, 45(1), pp. 1–10. doi: 
10.1080/02786826.2010.516283. 

Fischer, H. C. and Chan, W. C. (2007) ‘Nanotoxicity: the growing need for in vivo study’, 
Current Opinion in Biotechnology, pp. 565–571. doi: 10.1016/j.copbio.2007.11.008. 

Fleischer, C. C. and Payne, C. K. (2015) ‘Nanoparticle − cell interactions: Molecular structure 
of the protein corona and cellular outcomes’, Acc. Chem. Res., 47, pp. 2651–2659. doi: 
10.1021/ar500190q. 

Fröhlich, E. (2012) ‘The role of surface charge in cellular uptake and cytotoxicity of medical 
nanoparticles’, International Journal of Nanomedicine. Dove Press, pp. 5577–5591. doi: 
10.2147/IJN.S36111. 

Gao, X. and Lowry, G. V. (2018) ‘Progress towards standardized and validated 
characterizations for measuring physicochemical properties of manufactured nanomaterials 
relevant to nano health and safety risks’, NanoImpact. Elsevier, 9, pp. 14–30. doi: 
10.1016/j.impact.2017.09.002. 

Geiser, M. et al. (2017) ‘Evaluating Adverse Effects of Inhaled Nanoparticles by Realistic In 
Vitro Technology’, Nanomaterials. Multidisciplinary Digital Publishing Institute, 7(3), p. 49. 
doi: 10.3390/nano7020049. 

Gheshlaghi, Z. N. et al. (2008) ‘Toxicity and interaction of titanium dioxide nanoparticles with 
microtubule protein’, Acta Biochimica et Biophysica Sinica. Oxford University Press, 40(9), pp. 
777–782. doi: 10.1111/j.1745-7270.2008.00458.x. 

Graaf, I. A. de, Groothuis, G. M. and Olinga, P. (2007) ‘Precision-cut tissue slices as a tool to 
predict metabolism of novel drugs.’, Expert opinion on drug metabolism & toxicology, 3(6), 
pp. 879–898. doi: 10.1517/17425255.3.6.879. 

de Graaf, I. A. M. et al. (2010) ‘Preparation and incubation of precision-cut liver and intestinal 
slices for application in drug metabolism and toxicity studies’, Nature Protocols, 5(9), pp. 
1540–1551. doi: 10.1038/nprot.2010.111. 



48 

 

Grafe, C. et al. (2015) ‘Intentional formation of a protein corona on nanoparticles: Serum 
concentration affects protein corona mass, surface charge, and nanoparticle-cell interaction’, 
International Journal of Biochemistry and Cell Biology, June, pp. 196–202. doi: 
10.1016/j.biocel.2015.11.005. 

Guadagnini, R. et al. (2015) ‘Toxicity screenings of nanomaterials: Challenges due to 
interference with assay processes and components of classic in vitro tests’, Nanotoxicology, 
9(S1), pp. 13–24. doi: 10.3109/17435390.2013.829590. 

Guggenheim, E. J. et al. (2016) ‘Comparison of Confocal and Super-Resolution Reflectance 
Imaging of Metal Oxide Nanoparticles’, PLOS ONE. Edited by V. E. Degtyar. Public Library of 
Science, 11(10), p. e0159980. doi: 10.1371/journal.pone.0159980. 

Han, X. et al. (2012). Assessing the relevance of in vitro studies in nanotoxicology by 
examining correlations between in vitro and in vivo data. Toxicology 297, 1-9  

Hanarp, P. et al. (2001) ‘Influence of Polydispersity on Adsorption of Nanoparticles.’, Journal 
of colloid and interface science, 241(1), pp. 26–31. doi: 10.1006/jcis.2001.7723. 

Hanot-Roy, M. et al. (2016). Oxidative stress pathways involved in cytotoxicity and 
genotoxicity of TiO2 nanoparticles on cells constitutive of alveolo-capillary barrier in vitro. 
Toxicology in Vitro. 33, pp 125-136. doi:10.1016/j.tiv.2016.01.013 

Hansjosten, I. et al. (2017) ‘Microscopy-based high-throughput assays enable multi-
parametric analysis to assess adverse effects of nanomaterials in various cell lines’, Archives 
of Toxicology. Springer Berlin Heidelberg, pp. 1–17. doi: 10.1007/s00204-017-2106-7. 

Hao, F. et al. (2017) ‘The epidermal penetration of gold nanoparticles and its underlying 
mechanism based on human reconstructed 3D EpiskinTM model’, ACS Applied Materials & 
Interfaces. American Chemical Society, p. acsami.7b13700. doi: 10.1021/ACSAMI.7B13700. 

Hayden, P. J. et al. (2015) ‘Application of MatTek In Vitro Reconstructed Human Skin Models 
for Safety, Efficacy Screening, and Basic Preclinical Research’, Applied In Vitro Toxicology. 
Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA, 1(3), pp. 
226–233. doi: 10.1089/aivt.2015.0012. 

Henriksen-Lacey, M., Carregal-Romero, S. and Liz-Marzán, L. M. (2016) ‘Current challenges 
towards in vitro cellular validation of inorganic nanoparticles’, Bioconjugate Chemistry, p. 
acs.bioconjchem.6b00514. doi: 10.1021/acs.bioconjchem.6b00514. 

Herzhaft, B. and Guazzelli, É. (1999) ‘Experimental study of the sedimentation of dilute and 
semi-dilute suspensions of fibres’, Journal of Fluid Mechanics. Cambridge University Press, 
384, pp. 133–158. doi: 10.1017/S0022112099004152. 

Herzog, F. et al. (2013) ‘Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at 
the air-liquid interface.’, Particle and fibre toxicology, 10, p. 11. doi: 10.1186/1743-8977-10-
11. 

Hinderliter, P. M. et al. (2010) ‘ISDD: A computational model of particle sedimentation, 
diffusion and target cell dosimetry for in vitro toxicity studies.’, Particle and fibre toxicology, 
7(1), p. 36. doi: 10.1186/1743-8977-7-36. 

Hirn, S. et al. (2014) ‘Proinflammatory and cytotoxic response to nanoparticles in precision-
cut lung slices’, Beilstein Journal of Nanotechnology. Beilstein-Institut, 5(1), pp. 2440–2449. 
doi: 10.3762/bjnano.5.253. 



49 

 

Ho, D. N. et al. (2012) ‘Penetration of endothelial cell coated multicellular tumor spheroids 
by iron oxide nanoparticles’, Theranostics, 2(1), pp. 66–75. doi: 10.7150/thno.3568. 

Holder, A. L. et al. (2008) ‘Cellular response to diesel exhaust particles strongly depends on 
the exposure method’, Toxicological Sciences. John Wiley & Sons, New York, 103(1), pp. 108–
115. doi: 10.1093/toxsci/kfn014. 

Huang, J. et al. (2010) ‘Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with 
PVP-Coated Iron Oxide Nanoparticles’, ACS nano, 4(12), pp. 7151–7160. doi: 
10.1021/nn101643u.Effects. 

Huang, K. et al. (2012) ‘Size-dependent localization and penetration of ultrasmall gold 
nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo’, ACS Nano, 6(5), pp. 
4483–4493. doi: 10.1021/nn301282m. 

Huk, A. et al. (2014) ‘Is the toxic potential of nanosilver dependent on its size?’, Particle and 
Fibre Toxicology. BioMed Central, 11(1), p. 65. doi: 10.1186/s12989-014-0065-1. 

Hussain, S. M. et al. (2009) ‘Toxicity evaluation for safe use of nanomaterials: Recent 
achievements and technical challenges’, Advanced Materials. WILEY-VCH Verlag, 21(16), pp. 
1549–1559. doi: 10.1002/adma.200801395. 

Hussain, S. et al. (2009). Oxidative stress and proinflammatory effects of carbon black and 
titanium dioxide nanoparticles: role of particle surface area and internalized amount. 
Toxicology 260, 142-149. 

Ilinskaya, A. N. and Dobrovolskaia, M. A. (2016) ‘Understanding the immunogenicity and 
antigenicity of nanomaterials: Past, present and future’, Toxicology and Applied 
Pharmacology, 299, pp. 70–77. doi: 10.1016/j.taap.2016.01.005. 

Iversen, T., Skotland, T. and Sandvig, K. (2011) ‘Endocytosis and intracellular transport of 
nanoparticles : Present knowledge and need for’, Nano Today. Elsevier Ltd, 6(2), pp. 176–
185. doi: 10.1016/j.nantod.2011.02.003. 

Izak-Nau, E. et al. (2015) ‘Impact of storage conditions and storage time on silver 
nanoparticles’ physicochemical properties and implications for their biological effects’, RSC 
Adv. Royal Society of Chemistry, 5(102), pp. 84172–84185. doi: 10.1039/C5RA10187E. 

Jaccard, N. et al. (2014) ‘Automated method for the rapid and precise estimation of adherent 
cell culture characteristics from phase contrast microscopy images’, Biotechnology and 
Bioengineering, 111(3), pp. 504–517. doi: 10.1002/bit.25115. 

Jiang, J., Oberdörster, G. and Biswas, P. (2009) ‘Characterization of size, surface charge, and 
agglomeration state of nanoparticle dispersions for toxicological studies’, Journal of 
Nanoparticle Research. Springer Netherlands, 11(1), pp. 77–89. doi: 10.1007/s11051-008-
9446-4. 

Jin, C.Y., Zhu, B.S., Wang, X.F. & Lu, Q.H. (2008). Cytotoxicity of titanium dioxide nanoparticles 
in mouse fibroblast cells. Chem Res Toxicol 21, 1871-1877 

K. L. Chen, M. E. (2006) ‘Aggregation and Deposition Kinetics of Fullerene (C60) 
Nanoparticles’. American Chemical Society. doi: 10.1021/LA062072V. 

Kafshgari, M. H., Harding, F. J. and Voelcker, N. H. (2015) ‘Insights into Cellular Uptake of 
Nanoparticles.’, Current drug delivery, 12(1), pp. 63–77. doi: 
10.2174/1567201811666140821110631. 



50 

 

Kajihara, M. (1971) ‘Settling velocity and porosity of large suspended particle’, Journal of the 
Oceanographical Society of Japan. Kluwer Academic Publishers, 27(4), pp. 158–162. doi: 
10.1007/BF02109135. 

Kang, T. et al. (2016) ‘Effects of shear stress on the cellular distribution of polystyrene 
nanoparticles in a biomimetic microfluidic system’, Journal of Drug Delivery Science and 
Technology. Elsevier, 31, pp. 130–136. doi: 10.1016/j.jddst.2015.12.001. 

Karreman, M. A. et al. (2016) ‘Intravital Correlative Microscopy: Imaging Life at the 
Nanoscale’, Trends in Cell Biology. Elsevier Current Trends, pp. 848–863. doi: 
10.1016/j.tcb.2016.07.003. 

Keller, A. A. et al. (2010) ‘Stability and aggregation of metal oxide nanoparticles in natural 
aqueous matrices’, Environmental Science and Technology. American Chemical Society, 44(6), 
pp. 1962–1967. doi: 10.1021/es902987d. 

Kermanizadeh, A. et al. (2014) ‘Hepatic toxicology following single and multiple exposure of 
engineered nanomaterials utilising a novel primary human 3D liver microtissue model’, 
Particle and Fibre Toxicology. BioMed Central, 11(1), p. 56. doi: 10.1186/s12989-014-0056-2. 

Kettler, K. et al. (2014) ‘Cellular uptake of nanoparticles as determined by particle properties, 
experimental conditions, and cell type’, Environmental Toxicology and Chemistry, 33(3), pp. 
481–492. doi: 10.1002/etc.2470. 

Kim, H. et al. (2016) ‘Skin corrosion and irritation test of nanoparticles using reconstructed 
three-dimensional human skin model, EpiDermTM’, Toxicological Research. Korean Society of 
Toxicology, 32(4), pp. 311–316. doi: 10.5487/TR.2016.32.4.311. 

Kim, J. A. et al. (2012) ‘Role of cell cycle on the cellular uptake and dilution of nanoparticles 
in a cell population’. doi: 10.1038/NNANO.2011.191. 

Kim, J. A. et al. (2014) ‘Suppression of nanoparticle cytotoxicity approaching in vivo serum 
concentrations: limitations of in vitro testing for nanosafety’, Nanoscale, 6(23), pp. 14180–
14184. doi: 10.1039/C4NR04970E. 

Klein, J. (2007) ‘Probing the interactions of proteins and nanoparticles.’, Proceedings of the 
National Academy of Sciences of the United States of America. National Academy of Sciences, 
104(7), pp. 2029–2030. doi: 10.1073/pnas.0611610104. 

Kooter, I. M. et al. (2017) ‘Factors of concern in a human 3D cellular airway model exposed to 
aerosols of nanoparticles’, Toxicology in Vitro. Pergamon, 44, pp. 339–348. doi: 
10.1016/j.tiv.2017.07.006. 

Kou, L. et al. (2013) ‘The endocytosis and intracellular fate of nanomedicines: Implication for 
rational design’, Asian Journal of Pharmaceutical Sciences, 8(1), pp. 1–8. doi: 
10.1016/j.ajps.2013.07.001. 

Kreuter, J. et al. (2002) ‘Apolipoprotein-mediated transport of nanoparticle-bound drugs 
across the blood-brain barrier.’, Journal of drug targeting, 10(4), pp. 317–25. doi: 
10.1080/10611860290031877. 

Kroll, A. et al. (2009) ‘Current in vitro methods in nanoparticle risk assessment: Limitations 
and challenges’, European Journal of Pharmaceutics and Biopharmaceutics. Elsevier, pp. 370–
377. doi: 10.1016/j.ejpb.2008.08.009. 

Kuchibhatla, S. V. N. T. et al. (2012) ‘Influence of aging and environment on nanoparticle 



51 

 

chemistry: Implication to confinement effects in nanoceria’, Journal of Physical Chemistry C. 
American Chemical Society, 116(26), pp. 14108–14114. doi: 10.1021/jp300725s. 

Kuhn, D. A. et al. (2014a) ‘Different endocytotic uptake mechanisms for nanoparticles in 
epithelial cells and macrophages’, Beilstein Journal of Nanotechnology. Beilstein-Institut, 
5(1), pp. 1625–1636. doi: 10.3762/bjnano.5.174. 

Kuhn, D. A. et al. (2014b) ‘Different endocytotic uptake mechanisms for nanoparticles in 
epithelial cells and macrophages.’, Beilstein journal of nanotechnology. Beilstein-Institut, 
5(1), pp. 1625–36. doi: 10.3762/bjnano.5.174. 

L.K., L. et al. (2005) ‘Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle 
size, agglomeration, and diffusion at low concentrations’, Environmental Science and 
Technology, 39(23), pp. 9370–9376. doi: 10.1021/es051043o. 

Lamberty, A. et al. (2011) ‘Interlaboratory comparison for the measurement of particle size 
and zeta potential of silica nanoparticles in an aqueous suspension’, Journal of Nanoparticle 
Research. Springer Netherlands, pp. 7317–7329. doi: 10.1007/s11051-011-0624-4. 

Langevin, D. et al. (2017) ‘Inter-laboratory comparison of nanoparticle size measurements 
using dynamic light scattering and differential centrifugal sedimentation. Standard operating 
procedures to improve reproducibility.’ 

Lara, S. et al. (2017) ‘Identification of Receptor Binding to the Biomolecular Corona of 
Nanoparticles’, ACS Nano. American Chemical Society, 11(2), pp. 1884–1893. doi: 
10.1021/acsnano.6b07933. 

Latvala, S. et al. (2016) ‘Optimization of an air–liquid interface exposure system for assessing 
toxicity of airborne nanoparticles’, Journal of Applied Toxicology, 36(10), pp. 1294–1301. doi: 
10.1002/jat.3304. 

Lefebvre, D. E. et al. (2015) ‘Utility of models of the gastrointestinal tract for assessment of 
the digestion and absorption of engineered nanomaterials released from food matrices’, 
Nanotoxicology. Taylor & Francis, pp. 523–542. doi: 10.3109/17435390.2014.948091. 

Lenz, A. G. et al. (2013) ‘Inflammatory and oxidative stress responses of an alveolar epithelial 
cell line to airborne zinc oxide nanoparticles at the air-liquid interface: A comparison with 
conventional, submerged cell-culture conditions’, BioMed Research International. Hindawi, 
2013, p. 652632. doi: 10.1155/2013/652632. 

Lesniak, A. et al. (2010) ‘Serum heat inactivation affects protein corona composition and 
nanoparticle uptake’, Biomaterials, 31(36), pp. 9511–9518. doi: 
10.1016/j.biomaterials.2010.09.049. 

Lesniak, A. et al. (2012) ‘Effects of the presence or absence of a protein corona on silica 
nanoparticle uptake and impact on cells’, ACS Nano. American Chemical Society, 6(7), pp. 
5845–5857. doi: 10.1021/nn300223w. 

Lesniak, A. et al. (2013) ‘Nanoparticle adhesion to the cell membrane and its effect on 
nanoparticle uptake efficiency’, Journal of the American Chemical Society. American Chemical 
Society, 135(4), pp. 1438–1444. doi: 10.1021/ja309812z. 

Lison, D. et al. (2008) ‘Nominal and effective dosimetry of silica nanoparticles in cytotoxicity 
assays’, Toxicological Sciences, 104(1), pp. 155–162. doi: 10.1093/toxsci/kfn072. 

Lison, D. and Huaux, F. (2011) ‘In vitro studies: Ups and downs of cellular uptake.’, Nature 



52 

 

nanotechnology, 6(6), pp. 332–3. doi: 10.1038/nnano.2011.81. 

Loehr, J. et al. (2016) ‘Magnetic guidance of the magnetotactic bacterium Magnetospirillum 
gryphiswaldense.’, Soft matter. Royal Society of Chemistry, 12(15), pp. 3631–5. doi: 
10.1039/c6sm00384b. 

Loret, T. et al. (2016) ‘Air-liquid interface exposure to aerosols of poorly soluble 
nanomaterials induces different biological activation levels compared to exposure to 
suspensions’, Particle and Fibre Toxicology, 13(1), p. 58. doi: 10.1186/s12989-016-0171-3. 

Lynch, I. et al. (2013) ‘The bio-nano-interface in predicting nanoparticle fate and behaviour in 
living organisms: towards grouping and categorising nanomaterials and ensuring nanosafety 
by design’, BioNanoMaterials. De Gruyter, 14(3–4), pp. 195–216. doi: 10.1515/bnm-2013-
0011. 

Lynch, I. et al. (2014) ‘Macromolecular Coronas and Their Importance in Nanotoxicology and 
Nanoecotoxicology’, Frontiers of Nanoscience, 7, pp. 127–156. doi: 10.1016/B978-0-08-
099408-6.00004-9. 

Lynch, I., Salvati, A. and Dawson, K. A. (2009) ‘Protein-nanoparticle interactions: What does 
the cell see?’, Nature Nanotechnology. Nature Publishing Group, 4(9), pp. 546–547. doi: 
10.1038/nnano.2009.248. 

Mahon, E., Salvati, A.,  Bombelli, F. B., Lynch, I and Dawson, K. (2012) 'Designing the 
nanoparticle – biomolecule interface for targeting and therapeutic delivery'. Journal of 
Controlled Release, 161(2), pp 164-179. doi:org/10.1016/j.jconrel.2012.04.009. 

Manshian, B. B. et al. (2015) ‘High content analysis at single cell level identifies different 
cellular responses dependent on nanomaterial concentrations’, Scientific Reports. Nature 
Publishing Group, 5, p. 13890. doi: 10.1038/srep13890. 

Marano, F. et al. (2011) ‘Nanoparticles: Molecular targets and cell signalling’, Archives of 
Toxicology, pp. 733–741. doi: 10.1007/s00204-010-0546-4. 

Marucco, A. et al. (2014) ‘Fibrinogen enhances the inflammatory response of alveolar 
macrophages to TiO2, SiO2 and carbon nanomaterials.’, Nanotoxicology. Informa Healthcare, 
5390(November), pp. 1–9. doi: 10.3109/17435390.2014.978405. 

Mason, M. and Weaver, W. (1924) ‘The settling of small particles in a fluid’, Physical Review, 
23(3), pp. 412–426. doi: 10.1103/PhysRev.23.412. 

Mathes, S. H., Ruffner, H. and Graf-Hausner, U. (2014) ‘The use of skin models in drug 
development’, Advanced Drug Delivery Reviews, pp. 81–102. doi: 
10.1016/j.addr.2013.12.006. 

Matuszewski, L. et al. (2005) ‘Cell tagging with clinically approved iron oxides: feasibility and 
effect of lipofection, particle size, and surface coating on labeling efficiency.’, Radiology. 
Radiological Society of North America, 235(1), pp. 155–161. doi: 10.1148/radiol.2351040094. 

Mazzolini, J. et al. (2016) ‘Protein corona modulates uptake and toxicity of nanoceria via 
clathrin-mediated endocytosis e’, The Biological Bulletin. 

Mejia, J. et al. (2012) ‘Are stirring and sonication pre-dispersion methods equivalent for in 
vitro toxicology evaluation of SiC and TiC?’, Journal of Nanoparticle Research. Springer 
Netherlands, 14(4), p. 815. doi: 10.1007/s11051-012-0815-7. 

Merz, L. et al. (2017) ‘Tumor tissue slice cultures as a platform for analyzing tissue-



53 

 

penetration and biological activities of nanoparticles’, European Journal of Pharmaceutics 
and Biopharmaceutics, 112, pp. 45–50. doi: 10.1016/j.ejpb.2016.11.013. 

Millard, M. et al. (2017) ‘Drug delivery to solid tumors: The predictive value of the 
multicellular tumor spheroid model for nanomedicine screening’, International Journal of 
Nanomedicine. Dove Press, pp. 7993–8007. doi: 10.2147/IJN.S146927. 

Misra, S. K. et al. (2012) ‘The complexity of nanoparticle dissolution and its importance in 
nanotoxicological studies’, Science of the Total Environment, 438, pp. 225–232. doi: 
10.1016/j.scitotenv.2012.08.066. 

 

Monopoli, M. P. et al. (2011) ‘Physical-Chemical aspects of protein corona: Relevance to in 
vitro and in vivo biological impacts of nanoparticles’, Journal of the American Chemical 
Society, 133(8), pp. 2525–2534. doi: 10.1021/ja107583h. 

Monopoli, M. P. et al. (2012) ‘Biomolecular coronas provide the biological identity of 
nanosized materials’, Nature Nanotechnology, 7. doi: 10.1038/NNANO.2012.207. 

Moore, T. L. et al. (2015) ‘Nanoparticle colloidal stability in cell culture media and impact on 
cellular interactions’, Chem. Soc. Rev. Royal Society of Chemistry, 44(17), pp. 6287–6305. doi: 
10.1039/C4CS00487F. 

Mortensen, N. P. et al. (2013) ‘Dyanmic development of the protein corona on silica 
nanoparticles: composition and role in toxicity’, Nanoscale, 5(14), pp. 6372–6380. doi: 
10.1039/c3nr33280b. 

Mudunkotuwa, I. A. and Grassian, V. H. (2011) ‘The devil is in the details (or the surface): 
impact of surface structure and surface energetics on understanding the behavior of 
nanomaterials in the environment’, Journal of Environmental Monitoring, 13(5), pp. 1135–
1144. doi: 10.1039/c1em00002k. 

Mukherjee, D. et al. (2014) ‘Modeling physicochemical interactions affecting in vitro cellular 
dosimetry of engineered nanomaterials: application to nanosilver’, Journal of Nanoparticle 
Research, 16(10). doi: 10.1007/s11051-014-2616-7. 

Mülhopt, S. et al. (2016) ‘Toxicity testing of combustion aerosols at the air-liquid interface 
with a self-contained and easy-to-use exposure system’, Journal of Aerosol Science, 96, pp. 
38–55. doi: 10.1016/j.jaerosci.2016.02.005. 

Nasser, F. and Lynch, I. (2016) ‘Secreted protein eco-corona mediates uptake and impacts of 
polystyrene nanoparticles on Daphnia magna’, Journal of Proteomics, 137, pp. 45–51. doi: 
10.1016/j.jprot.2015.09.005. 

Nel, A. E. et al. (2009) ‘Understanding biophysicochemical interactions at the nano-bio 
interface’, Nature materials, 8(7), pp. 543–557. doi: 10.1038/nmat2442. 

Neves, A. R. et al. (2017) ‘Apo E-Functionalization of Solid Lipid Nanoparticles Enhances Brain 
Drug Delivery: Uptake Mechanism and Transport Pathways’, Bioconjugate Chemistry. 
American Chemical Society, 28(4), pp. 995–1004. doi: 10.1021/acs.bioconjchem.6b00705. 

Nur, Y., Lead, J. R. and Baalousha, M. (2015) ‘Evaluation of charge and agglomeration 
behavior of TiO2 nanoparticles in ecotoxicological media’, Science of the Total Environment. 
Elsevier, 535, pp. 45–53. doi: 10.1016/j.scitotenv.2014.11.057. 

Oberdörster, G. (2010) ‘Safety assessment for nanotechnology and nanomedicine: Concepts 



54 

 

of nanotoxicology’, in Journal of Internal Medicine, pp. 89–105. doi: 10.1111/j.1365-
2796.2009.02187.x. 

Oberdörster, G., Oberdörster, E. and Oberdörster, J. (2007) ‘Concepts of nanoparticle dose 
metric and response metric [1]’, Environmental Health Perspectives. National Institute of 
Environmental Health Science, p. A290. doi: 10.1289/ehp.115-a290a. 

OECD (2016) Draft of OECD TEST GUIDELINE FOR THE TESTING OF CHEMICALS : 
Agglomeration Behaviour of Nanomaterials in Different Aquatic Media. Available at: 
https://www.oecd.org/env/ehs/testing/Draft TG on agglomeration behaviour of NMs_for 
WNT commenting.pdf (Accessed: 3 November 2017). 

Ong, K. J. et al. (2014) ‘Widespread nanoparticle-assay interference: Implications for 
nanotoxicity testing’, PLoS ONE. Edited by S. Hussain. Public Library of Science, 9(3), p. 
e90650. doi: 10.1371/journal.pone.0090650. 

Pallardy, M. J., Turbica, I. and Biola-Vidamment, A. (2017) ‘Why the immune system should 
be concerned by nanomaterials?’, Frontiers in Immunology. Frontiers Media SA, p. 544. doi: 
10.3389/fimmu.2017.00544. 

Panariti, A., Miserocchi, G. and Rivolta, I. (2012) ‘The effect of nanoparticle uptake on cellular 
behavior: Disrupting or enabling functions?’, Nanotechnology, Science and Applications. Dove 
Press, pp. 87–100. doi: 10.2147/NSA.S25515. 

Park, M. et al. (2009) ‘The status of in vitro toxicity studies in the risk assessment of 
nanomaterials’, Nanomedicine. Future Medicine Ltd London, UK, 4(6), pp. 669–685. doi: 
10.2217/nmm.09.40. 

Petosa, A. R. et al. (2010) ‘Aggregation and deposition of engineered nanomaterials in 
aquatic environments: Role of physicochemical interactions’, Environmental Science and 
Technology. American Chemical Society, 44(17), pp. 6532–6549. doi: 10.1021/es100598h. 

Pike, J. A. et al. (2017) ‘Quantifying receptor trafficking and colocalization with confocal 
microscopy’, Methods. doi: 10.1016/j.ymeth.2017.01.005. 

Pino, P. del et al. (2014) ‘Protein corona formation around nanoparticles - from the past to 
the future’, Materials Horizons. Royal Society of Chemistry, 1(3), pp. 301–313. doi: 
10.1039/C3MH00106G. 

Polk, W. W. et al. (2016) ‘Aerosol generation and characterization of multi-walled carbon 
nanotubes exposed to cells cultured at the air-liquid interface’, Particle and Fibre Toxicology, 
13(1), p. 20. doi: 10.1186/s12989-016-0131-y. 

Prabhakarpandian, B. et al. (2011) ‘Microfluidic devices for modeling cell-cell and particle-cell 
interactions in the microvasculature’, Microvascular Research. NIH Public Access, pp. 210–
220. doi: 10.1016/j.mvr.2011.06.013. 

Raghnaill, M. N. et al. (2014) ‘Paracrine signalling of inflammatory cytokines from an in vitro 
blood brain barrier model upon exposure to polymeric nanoparticles.’, The Analyst. The Royal 
Society of Chemistry, 139(5), pp. 923–30. doi: 10.1039/c3an01621h. 

Ramirez-Garcia, S. et al. (2011) ‘A new methodology for studying nanoparticle interactions in 
biological systems: Dispersing titania in biocompatible media using chemical stabilisers’, 
Nanoscale. Royal Society of Chemistry, 3(11), p. 4617. doi: 10.1039/c1nr10488h. 

Rejman, J. et al. (2004) ‘Size-dependent internalization of particles via the pathways of 



55 

 

clathrin- and caveolae-mediated endocytosis.’, The Biochemical journal, 377(Pt 1), pp. 159–
69. doi: 10.1042/BJ20031253. 

Rennert, K. et al. (2015) ‘A microfluidically perfused three dimensional human liver model’, 
Biomaterials, 71, pp. 119–131. doi: 10.1016/j.biomaterials.2015.08.043. 

des Rieux, A. et al. (2007) ‘An improved in vitro model of human intestinal follicle-associated 
epithelium to study nanoparticle transport by M cells’, European Journal of Pharmaceutical 
Sciences, 30(5), pp. 380–391. doi: 10.1016/j.ejps.2006.12.006. 

Rischitor, G. et al. (2016) ‘Quantification of the cellular dose and characterization of 
nanoparticle transport during in vitro testing’, Particle and Fibre Toxicology, 13(1), p. 47. doi: 
10.1186/s12989-016-0157-1. 

Ritz, S. et al. (2015) ‘Protein Corona of Nanoparticles: Distinct Proteins Regulate the Cellular 
Uptake’, Biomacromolecules. American Chemical Society, 16(4), pp. 1311–1321. doi: 
10.1021/acs.biomac.5b00108. 

Roebben, G. et al. (2011) ‘Interlaboratory comparison of size and surface charge 
measurements on nanoparticles prior to biological impact assessment’, Journal of 
Nanoparticle Research. Springer Netherlands, pp. 2675–2687. doi: 10.1007/s11051-011-
0423-y. 

Rossi, A. et al. (2016) ‘Negatively charged gold nanoparticles as a dexamethasone carrier: 
stability in biological media and bioactivity assessment in vitro’, RSC Adv. Royal Society of 
Chemistry, 6(101), pp. 99016–99022. doi: 10.1039/C6RA19561J. 

Rosslein, M. et al. (2015) ‘Use of cause-and-effect analysis to design a high-quality 
nanocytotoxicology assay’, Chemical Research in Toxicology, pp. 21–30. doi: 
10.1021/tx500327y. 

Rushton, E. K. et al. (2010) ‘Concept of assessing nanoparticle hazards considering 
nanoparticle dosemetric and chemical/biological response metrics.’, Journal of toxicology 
and environmental health, Part A, 73(5), pp. 445–461. doi: 10.1080/15287390903489422. 

Sahay, G., Alakhova, D. Y. and Kabanov, A. V (2010) ‘Endocytosis of nanomedicines’, Journal of 
Controlled Release, pp. 182–195. doi: 10.1016/j.jconrel.2010.01.036. 

Saleh, N. B., Pfefferle, L. D. and Elimelech, M. (2008) ‘Aggregation kinetics of multiwalled 
carbon nanotubes in aquatic systems: Measurements and environmental implications’, 
Environmental Science and Technology, 42(21), pp. 7963–7969. doi: 10.1021/es801251c. 

Salvati, A. et al. (2011) ‘Experimental and theoretical comparison of intracellular import of 
polymeric nanoparticles and small molecules: Toward models of uptake kinetics’, 
Nanomedicine: Nanotechnology, Biology, and Medicine, 7(6), pp. 818–826. doi: 
10.1016/j.nano.2011.03.005. 

Salvati, A. et al. (2012) ‘Biomolecular coronas provide the biological identity of nanosized 
materials’, Nature Nanotechnology. Nature Research, 7(12), pp. 779–786. doi: 
10.1038/nnano.2012.207. 

Salvati, A. et al. (2017) ‘Quantitative measurement of nanoparticle uptake by flow 
cytometry’. 

Sandin, P. et al. (2012) ‘High-speed imaging of Rab family small GTPases reveals rare events 
in nanoparticle trafficking in living cells.’, ACS nano. American Chemical Society, 6(2), pp. 



56 

 

1513–21. doi: 10.1021/nn204448x. 

Sano, M. and Okamura, J. (2001) ‘Colloidal nature of single-walled carbon nanotubes in 
electrolyte solution: The Schulze− Hardy rule’, Langmuir, 17(12), pp. 7172–7173. doi: 
10.1021/la010698+. 

dos Santos, T. et al. (2011) ‘Effects of transport inhibitors on the cellular uptake of 
carboxylated polystyrene nanoparticles in different cell lines’, PLoS ONE, 6(9). doi: 
10.1371/journal.pone.0024438. 

Sarathy, V. et al. (2008) ‘Aging of iron nanoparticles in aqueous solution: Effects on structure 
and reactivity’, Journal of Physical Chemistry C, 112(7), pp. 2286–2293. doi: 
10.1021/jp0777418. 

Schmid, O. and Stoeger, T. (2016) ‘Surface area is the biologically most effective dose metric 
for acute nanoparticle toxicity in the lung’, Journal of Aerosol Science, 99, pp. 133–143. doi: 
10.1016/j.jaerosci.2015.12.006. 

Seaton, A. et al. (2010) ‘Nanoparticles, human health hazard and regulation.’, Journal of the 
Royal Society, Interface / the Royal Society. The Royal Society, 7 Suppl 1(3), pp. S119-29. doi: 
10.1098/rsif.2009.0252.focus. 

Shannahan, J. H., Podila, R. and Brown, J. M. (2015) ‘A hyperspectral and toxicological 
analysis of protein corona impact on silver nanoparticle properties, intracellular 
modifications, and macrophage activation’, International Journal of Nanomedicine, 10, pp. 
6509–6520. doi: 10.2147/IJN.S92570. 

Shapero, K. et al. (2011) ‘Time and space resolved uptake study of silica nanoparticles by 
human cells.’, Molecular bioSystems, 7(2), pp. 371–8. doi: 10.1039/c0mb00109k. 

Sharma, G. et al. (2014) ‘Iron oxide nanoparticle agglomeration influences dose rates and 
modulates oxidative stress-mediated dose-response profiles in vitro.’, Nanotoxicology. Taylor 
& Francis, 8(6), pp. 663–75. doi: 10.3109/17435390.2013.822115. 

Shin, S., Song, I. and Um, S. (2015) ‘Role of Physicochemical Properties in Nanoparticle 
Toxicity’, Nanomaterials, 5(3), pp. 1351–1365. doi: 10.3390/nano5031351. 

Simkó, M., Nosske, D. and Kreyling, W. G. (2014) ‘Metrics, dose, and dose concept: The need 
for a proper dose concept in the risk assessment of nanoparticles’, International Journal of 
Environmental Research and Public Health. Multidisciplinary Digital Publishing Institute 
(MDPI), 11(4), pp. 4026–4048. doi: 10.3390/ijerph110404026. 

Skardal, A., Shupe, T. and Atala, A. (2016) ‘Organoid-on-a-chip and body-on-a-chip systems 
for drug screening and disease modeling’, Drug Discovery Today. Elsevier Current Trends, pp. 
1399–1411. doi: 10.1016/j.drudis.2016.07.003. 

Smalley, K. S. M., Lioni, M. and Herlyn, M. (2006) ‘Life isn’t flat: taking cancer biology to the 
next dimension.’, In vitro cellular & developmental biology. Animal. Springer-Verlag, 42(8–9), 
pp. 242–247. doi: 10.1290/0604027.1. 

Smith, P. J. et al. (2012a) ‘Cellular entry of nanoparticles via serum sensitive clathrin-
mediated endocytosis, and plasma membrane permeabilization’, International Journal of 
Nanomedicine, 7, pp. 2045–2055. doi: 10.2147/IJN.S29334. 

Smith, P. J. et al. (2012b) ‘Cellular entry of nanoparticles via serum sensitive clathrin-
mediated endocytosis, and plasma membrane permeabilization.’, International journal of 



57 

 

nanomedicine, 7, pp. 2045–55. doi: 10.2147/IJN.S29334. 

Snijder, B. and Pelkmans, L. (2011) ‘Origins of regulated cell-to-cell variability’, Nature 
reviews. Molecular cell biology, 12(2), pp. 119–125. doi: 10.1038/nrm3044. 

Soenen, S. J. H. et al. (2010) ‘High intracellular iron oxide nanoparticle concentrations affect 
cellular cytoskeleton and focal adhesion kinase-mediated signaling’, Small, 6(7), pp. 832–842. 
doi: 10.1002/smll.200902084. 

Soenen, S. J. H. et al. (2010) ‘Intracellular nanoparticle coating stability determines 
nanoparticle diagnostics efficacy and cell functionality’, Small, 6(19), pp. 2136–2145. doi: 
10.1002/smll.201000763. 

Sokolov, S. V et al. (2015) ‘Reversible or Not? Distinguishing Agglomeration and Aggregation 
at the Nanoscale’, Analytical Chemistry, 87(19), pp. 10033–10039. doi: 
10.1021/acs.analchem.5b02639. 

Sood, A. et al. (2011) ‘Signalling of DNA damage and cytokines across cell barriers exposed to 
nanoparticles depends on barrier thickness’, Nature Nanotechnology, 6(12), pp. 824–833. 
doi: 10.1038/nnano.2011.188. 

Spyrogianni, A. et al. (2016) ‘Quantitative analysis of the deposited nanoparticle dose on cell 
cultures by optical absorption spectroscopy.’, Nanomedicine (London, England), 11(19), pp. 
2483–96. doi: 10.2217/nnm-2016-0243. 

Stefaniak, A. B. et al. (2013) ‘Nanoscale reference materials for environmental, health and 
safety measurements: Needs, gaps and opportunities’, Nanotoxicology. Taylor & Francis, 7(8), 
pp. 1325–1337. doi: 10.3109/17435390.2012.739664. 

Sterling, M. C. et al. (2005) ‘Application of fractal flocculation and vertical transport model to 
aquatic sol-sediment systems’, Water Research, 39(9), pp. 1818–1830. doi: 
10.1016/j.watres.2005.02.007. 

Stone, V., Johnston, H. and Schins, R. P. F. (2009) ‘Development of in vitro systems for 
nanotoxicology: methodological considerations.’, Critical reviews in toxicology, 39(July 2015), 
pp. 613–626. doi: 10.1080/10408440903120975. 

Stuyven, B. et al. (2009) ‘Magnetic field assisted nanoparticle dispersion’, Chemical 
Communications, (1), pp. 47–49. doi: 10.1039/b816171b. 

Summers, H. D. et al. (2011) ‘Statistical Analysis of Nanoparticle Dosing in a Dynamic Cellular 
System.’, Nature nanotechnology, 6(3), pp. 170–174. doi: 10.1038/nnano.2010.277. 

Summers, H. D. et al. (2013) ‘Quantification of nanoparticle dose and vesicular inheritance in 
proliferating cells’, ACS Nano. American Chemical Society, 7(7), pp. 6129–6137. doi: 
10.1021/nn4019619. 

Swaminathan, T. N. et al. (2012) ‘Sedimentation of an ellipsoid inside an infinitely long tube 
at low and intermediate Reynolds numbers’, Journal of Fluid Mechanics. Cambridge 
University Press, 551(2006), pp. 357–385. doi: 10.1017/S0022112005008402. 

Sykes, E. A. et al. (2016) ‘Tailoring nanoparticle designs to target cancer based on tumor 
pathophysiology’, Proceedings of the National Academy of Sciences. National Academy of 
Sciences, 113(9), pp. E1142–E1151. doi: 10.1073/pnas.1521265113. 

Takasato, M. et al. (2016) ‘Generation of kidney organoids from human pluripotent stem 
cells.’, Nature protocols, 11(9), pp. 1681–92. doi: 10.1038/nprot.2016.098. 



58 

 

Teeguarden, J. G. et al. (2007a) ‘Particokinetics in vitro: Dosimetry considerations for in vitro 
nanoparticle toxicity assessments’, Toxicological Sciences. Oxford University Press, pp. 300–
312. doi: 10.1093/toxsci/kfl165. 

Teeguarden, J. G. et al. (2007b) ‘Particokinetics in vitro: Dosimetry considerations for in vitro 
nanoparticle toxicity assessments’, Toxicological Sciences, pp. 300–312. doi: 
10.1093/toxsci/kfl165. 

Tenzer, S. et al. (2011) ‘Nanoparticle size is a critical physicochemical determinant of the 
human blood plasma corona: A comprehensive quantitative proteomic analysis’, ACS Nano, 
5(9), pp. 7155–7167. doi: 10.1021/nn201950e. 

Tedja, R., Lim, M., Amal, R. & Marquis, C. (2012). Effects of Serum Adsorption on Cellular 
Uptake Profile and Consequent Impact of Titanium Dioxide Nanoparticles on Human Lung 
Cell Lines. Acs Nano 6, 4083-4093  

Tenzer, S. et al. (2013) ‘Rapid formation of plasma protein corona critically affects 
nanoparticle pathophysiology.’, Nature nanotechnology, 8(10), pp. 772–81. doi: 
10.1038/nnano.2013.181. 

Tian, W.-C. and Finehout, E. (2008) ‘Microfluidic Systems for Cellular Applications’, in 
Microfluidics for Biological Applications. Boston, MA: Springer US, pp. 185–221. doi: 
10.1007/978-0-387-09480-9_6. 

Treuel, L. et al. (2014) ‘Impact of protein modification on the protein corona on nanoparticles 
and nanoparticle-cell interactions’, ACS Nano. American Chemical Society, 8(1), pp. 503–513. 
doi: 10.1021/nn405019v. 

Vankoningsloo, S. et al. (2010) ‘Cytotoxicity of multi-walled carbon nanotubes in three skin 
cellular models: effects of sonication, dispersive agents and corneous layer of reconstructed 
epidermis.’, Nanotoxicology, 4(March), pp. 84–97. doi: 10.3109/17435390903428869. 

Vinardell, M. et al. (2017) ‘In Vitro Comparative Skin Irritation Induced by Nano and Non-
Nano Zinc Oxide’, Nanomaterials. Multidisciplinary Digital Publishing Institute, 7(3), p. 56. 
doi: 10.3390/nano7030056. 

Vippola, M. et al. (2009) ‘Preparation of nanoparticle dispersions for in-vitro toxicity testing’, 
Human & Experimental Toxicology, 28(6–7), pp. 377–385. doi: 10.1177/0960327109105158. 

Wagner, S. et al. (2012) ‘Uptake mechanism of ApoE-modified nanoparticles on brain 
capillary endothelial cells as a blood-brain barrier model’, PLoS ONE. Edited by M. A. Deli. 
Imperial College Press, 7(3), p. e32568. doi: 10.1371/journal.pone.0032568. 

Wang, F., Yu, L., et al. (2013) ‘The biomolecular corona is retained during nanoparticle uptake 
and protects the cells from the damage induced by cationic nanoparticles until degraded in 
the lysosomes’, Nanomedicine: Nanotechnology, Biology, and Medicine. Elsevier Inc., 9(8), 
pp. 1159–1168. doi: 10.1016/j.nano.2013.04.010. 

Wang, F., Bexiga, M. G., et al. (2013) ‘Time resolved study of cell death mechanisms induced 
by amine-modified polystyrene nanoparticles’, Nanoscale, 5(22), p. 10868. doi: 
10.1039/c3nr03249c. 

Watson, C. Y. et al. (2016) ‘Buoyant Nanoparticles: Implications for Nano-Biointeractions in 
Cellular Studies’, Small, 12(23), pp. 3172–3180. doi: 10.1002/smll.201600314. 

Weitz and Lin, M. Y. (1986) ‘Dynamic scaling of cluster-mass distributions in kinetic colloid 



59 

 

aggregation’, Physical Review Letters, 57. Available at: 
https://weitzlab.seas.harvard.edu/publications/dynamic-scaling-cluster-mass-distributions-
kinetic-colloid-aggregation (Accessed: 18 July 2017). 

Wiemann, M. et al. (2016) ‘An in vitro alveolar macrophage assay for predicting the short-
term inhalation toxicity of nanomaterials’, Journal of Nanobiotechnology, 14(1), p. 16. doi: 
10.1186/s12951-016-0164-2. 

Wilhelm, C. et al. (2003) ‘Intracellular uptake of anionic superparamagnetic nanoparticles as 
a function of their surface coating’, Biomaterials, 24(6), pp. 1001–1011. doi: 10.1016/S0142-
9612(02)00440-4. 

Wills, J. W. et al. (2016) ‘Genetic toxicity assessment of engineered nanoparticles using a 3D 
in vitro skin model (EpiDermTM).’, Particle and fibre toxicology. BioMed Central, 13(1), p. 50. 
doi: 10.1186/s12989-016-0161-5. 

Wilmer, M. J. et al. (2016) ‘Kidney-on-a-Chip Technology for Drug-Induced Nephrotoxicity 
Screening’, Trends in Biotechnology. Elsevier Current Trends, pp. 156–170. doi: 
10.1016/j.tibtech.2015.11.001. 

Wittmaack, K. (2007) ‘In search of the most relevant parameter for quantifying lung 
inflammatory response to nanoparticle exposure: Particle number, surface area, or what?’, 
Environmental Health Perspectives. National Institute of Environmental Health Science, 
115(2), pp. 187–194. doi: 10.1289/ehp.9254. 

Wittmaack, K. (2011) ‘Novel dose metric for apparent cytotoxicity effects generated by in 
vitro cell exposure to silica nanoparticles’, Chemical Research in Toxicology. American 
Chemical Society, pp. 150–158. doi: 10.1021/tx100331w. 

Wolfram, J. et al. (2014) ‘The nano-plasma interface: Implications of the protein corona’, 
Colloids and Surfaces B: Biointerfaces. NIH Public Access, 124, pp. 17–24. doi: 
10.1016/j.colsurfb.2014.02.035. 

Yallapu, M. M. et al. (2015) ‘Implications of protein corona on physico-chemical and 
biological properties of magnetic nanoparticles’, Biomaterials, 46, pp. 1–12. doi: 
10.1016/j.biomaterials.2014.12.045. 

Yang, R. S. H. et al. (2007) ‘Persistent tissue kinetics and redistribution of nanoparticles, 
quantum Dot 705, in Mice: ICP-MS quantitative assessment’, Environmental Health 
Perspectives, 115(9), pp. 1339–1343. doi: 10.1289/ehp.10290. 

Yoshii, Y. et al. (2011) ‘The use of nanoimprinted scaffolds as 3D culture models to facilitate 
spontaneous tumor cell migration and well-regulated spheroid formation’, Biomaterials, 
32(26), pp. 6052–6058. doi: 10.1016/j.biomaterials.2011.04.076. 

Zaki, N. M. and Tirelli, N. (2010) ‘Gateways for the intracellular access of nanocarriers: a 
review of receptor-mediated endocytosis mechanisms and of strategies in receptor 
targeting.’, Expert opinion on drug delivery. Taylor & Francis, 7(8), pp. 895–913. doi: 
10.1517/17425247.2010.501792. 

Zervantonakis, I. K. and Arvanitis, C. D. (2016) ‘Controlled Drug Release and Chemotherapy 
Response in a Novel Acoustofluidic 3D Tumor Platform’, Small, 12(19), pp. 2616–2626. doi: 
10.1002/smll.201503342. 

Zhu, J. et al. (2013) ‘Size-dependent cellular uptake efficiency, mechanism, and cytotoxicity of 



60 

 

silica nanoparticles toward HeLa cells.’, Talanta, 107, pp. 408–15. doi: 
10.1016/j.talanta.2013.01.037.



61 

 

 

Particle 

Size (nm) 
Preparation Characterization 

Cell 

density 

Exp 

Timing (h) 

NM 

concentration 

Vol of 

exposure 

media 

Area 

(cm²) 

NM Cellular 

Dose 
Ref 

3-104 

Probe sonicated 

(750w, 20kHz, 

29%)  10-15 s (x2) 

DLS, TEM, BET 
100000 until 70-80% 

confluency 
24 2-100 µg/mL Not stated 9.6/3.9/1.9 Not known Han 2012 

15 

Probe sonicated 3 

min. Stored at -

20°C/ Son. 3x20 s 

(60w) 

DLS, zeta potential 
10000 

cell/cm
2 

72 h 24 5-160 µg/cm
2 Not stated 3.9 Not known Hussain 2009 

20 Milling 
DLS, TEM, (XRD, BET 

previously) 

16000 

cell/cm
2 

~15 h 24 150-3000 µg/mL Not stated 9.6/0.32 Not known Tedja 2012 

5 Sonicated 5 min 
TEM, XRD, PCS, 

ICP-AES 
3000 cell/well 24/48 3-600 µg/mL 200 µL 0.32 

Could be 

calculated 
Jin 2008 

400 

(measured 

by DLS) 

Probe 10 min (10 x 

1 min) 60w with ice 

water bath 

DLS, Zeta potential, PDI, 

TEM 
10000-600000 cell/well 24 

5-800 µg/mL 

1-160 µg/cm
2 

Not stated 25/0.32 Not known Hanot Roy, 2016 

Table 1. Summary of the experimental information gathered from 5 research articles aimed at assessing TiO2 uptake in cell lines. Taken from Han 2012, 

Hussain 2009, Tedja 2012 and Jin 2008, Hanot-Roy, 2016. 
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 Preparation/ 
dispersion 

Submerged cell 
culture 

Inverted cell 
culture 

Air liquid presentation 
Surface 
presentation 

Parameter 
obtained in 
method 

Distributed 
sonication 
energy 

Delivery by 
sedimentation and 
diffusion 

 

Buoyant NM 
exposure 

 

Delivered dose determination 
using QCM 

Dynamic delivery 

Bypasses agglomeration 

NM dose known 

Bypasses 
agglomeration 

To be 
reported 

Characterization 
(size, charge) 

Agglomeration 
potential 
(modelled, 
estimated or 
measured) 

 

Calculation of dose delivered (using 
model e.g. DeLoid 2017) 

Necessary information to calculate dose 
(media height / total volume / well plate 
used, area) 

Duration of exposure 

Number of cells at plating and exposure 
/ size of cells 

Make and type of culturewear 

 

Report the recorded dose 
(QCM) 

Cell number at plating and 
exposure 

Information on culturewear 
(area of exposure) and 
conditions (make of transwell 
insert, membrane type) 

Exposure duration 

Report dose 
fabricated onto well 

Cell number at 
plating and 
exposure 

Exposure duration 

Well type (make and 
size / area) 

Table 2. Summary of how preparation and different NM exposure systems offer specific parameters and the different minimal information that needs to be 

reported in each case to ensure comparability of data generated. 
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Figure 1. The dosing of cells with NMs in an upright (standard) configuration. The NMs must first be 

appropriately dispersed, diluted in the cell medium and then applied to cells. A variety of factors will 

impact on the transport rate of NMs to cells and therefore the delivered dose, including: 1) diffusion, 

2) Sedimentation, 3) dissolution in media and 4) agglomeration state (both homoagglomeration with 

other particles and potentially heteroagglomeration with the walls of the exposure chamber). 
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Figure 2. Depiction of receptor mediated endocytosis (adapted from (Banerjee, Berzhkovskii and 

Nossal, 2014). NMs coated in biomolecules come into contact with cell surface receptors of which 

there are a finite number of on the cell surface. Interactions between an NM surface protein and a 

receptor at the cell surface result in the formation of a NM-receptor complex. This complex can then 

recruit more cargo, coat proteins and adaptor molecules, increasing in size. These are then ‘pinched 

off’ to form intracellular vesicles that can transport within the cell through the endolysosomal sys-

tem, where these NMs remain unless they manage to illicit endolysosomal escape. 
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Figure 3. Comparison of the available methods for exposure of NM in adherent cell cultures. Methods include the described standard upright exposure 

configurations, NM surface presentation whereby NMs are fixed at the well surface and cells plated above the NM layer of known density. The inverted cul-

ture system is ideal for buoyant NMs, and the ALI system allows modelling of airborne exposure via specialised chambers. 3D spheroid/organoid generation 

is also depicted, which allows for mimicking of 3D culture systems resembling tumour delivery or complex organ structure, respectively. Some of the ad-

vantages and disadvantages or each approach are stated. 
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Figure 4. Depiction of the sedimentation and diffusion of NMs. Sedimentation varies with NM diam-

eter and density and media density (drag force Fd and buoyance Fb opposite gravitational force Fg).The 

covered distance ξs is determined by the sedimentation velocity vs and the time t. Diffusion depends 

upon the height of the media and the NM properties such as density and size. The covered distance 

ξd is proportional to the square root of Diffusion D and time t. 
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Figure 5. Comparison of sedimentation of NMs in different submerged culture formats 

A) Fluorescent overview images of fluorescent PS-COOH NMs for 96 well plates, 8 well slides, petri-

dish and channel slides (left: not rinsed right: after rinsing). B) Model of experimental data of rate of 

sedimentation of fibres as a function of the shape of the respective container. Open container (96 

well plate, 8 well, petri dish) show meniscus effects and hence a inhomogeneous NM surface 

distribution, whereas closed containers (channel) exhibit a homogenous NM distribution. 
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Figure 6. Schematic representation of the NM surface preparation: A. NMs are injected and sedi-

mented inside a µ-channel in order to avoid meniscus effects. B, C. Homogeneous distributions of 

NMs (B) and cells (C) are achieved all along the channel. Scale bars correspond to 50 µm. D, E, F. NM 

surface density with varying NM concentration in solution (D) 100 pM, (E) 25 pM and (F) 12.5 pM. 

Scale bars correspond to 5 µm. (Reprint from (Alberola and Rädler, 2009)). 

 
 

 

 


