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Generating atmospheric turbulence 1 

using passive grids in an expansion test 2 

section of a wind tunnel 3 
 4 

Giulio Vita1*, Hassan Hemida2, Thomas Andrianne3, Charalampos Baniotopoulos4 5 
 6 
Abstract. Generating atmospheric turbulence in wind tunnels is an important issue in the study of 7 
wind turbine aerodynamics. A turbulent inlet is usually generated using passive grids. However, to 8 
obtain an atmospheric-like flow field relatively large length scales (L~30 cm) and high turbulence 9 
intensities (I~15 %) need to be reproduced. In this work, the passive grid technique has been used in 10 
combination with a downstream expansion test section in order to investigate the generation of 11 
atmospheric like turbulence, with the possibility of varying both the turbulence intensity and the 12 
integral length scale of the flow field independently. Four passive grids with different mesh and bar 13 
sizes were used with four wind velocities and five downstream measurement positions. It was found 14 
that the flow field is isotropic and homogeneous for distances less than what is recommended in 15 
literature (x/M~5). The effect of the expansion on the turbulence characteristics is also investigated in 16 
detail for the first time. The study confirms that by adding an expansion test section it is possible to 17 
increase both turbulence intensity and integral length scale downstream from the grid with limited 18 
impact on the overall flow quality in terms of anisotropy and energy spectra. 19 

1. Introduction 20 

The generation of controlled statistics of turbulence at the inlet of wind tunnel tests is of paramount 21 
importance for many aerodynamic applications. Research on bluff body aerodynamics (Bearman and 22 
Morel, 1983; Nakamura et al., 1988), turbulence decay (Comte-Bellot and Corrsin, 1966), turbulence 23 
interaction noise (Kim et al., 2016) or wind energy (Sicot et al., 2008) requires Free Stream 24 
Turbulence (FST) with a rather faceted spectrum of length scales and turbulence intensities to be 25 
generated at the inlet. Several approaches can be used for this purpose, such as grid generated 26 
turbulence, thermal driven turbulence, the use of cross jets, and actuated foils. While each of these 27 
methods has some advantages and disadvantages, grid generated turbulence is considered as the most 28 
effective and reliable source of a turbulent inflow for wind tunnel testing (Batchelor, 1953; Hinze, 29 
1975). At least three families of grids are found in the literature: passive, active, and fractal grids.  30 
The use of a passive grid (PG) has been the elected technique of generating turbulence at the inlet of 31 
wind tunnel tests since the first pioneering works on turbulence decay (de Karman and Howarth, 32 
1938; Simmons and Salter, 1934; Taylor, 1935). Grid turbulence is generated by the shedding of 33 
vortices downstream of bars. The upstream quiescent flow undergoes a transition to a homogeneous 34 
and isotropic turbulent flow, characterised with slow rotating vortices which roughly scale to the size 35 
of the bars of the grid Lu~b (Davidson, 2004). Once the flow is fully developed, turbulence decay 36 
dominates the statistics. The rate of decay has been set by Baines and Peterson (1951) and Vickery 37 
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(1966) to -5/7, while Laneville (1973) has instead proposed a value of -8/9. Mohamed and LaRue 38 
(1990) pointed out that two distinct regions of the flow exist, namely the far-field region, where 39 
turbulence decay is the main feature of the flow, and the near-field region, where production and a 40 
strong effect of the initial conditions are present (George, 2012). All PGs undergo such an analogous 41 
behaviour. Circular rods or square bars, arranged in square meshed or parallel arrays as well as 42 
perforated plates are used to build PGs with a variety of details, sizes and materials. Their effects have 43 
been systematically addressed by Roach (1987). However, the main classification of PGs is based on 44 
the dependence of the downstream turbulence on the Reynolds number, which is predominantly 45 
dictated by the shape of bars. Circular rods have a wake pattern that varies greatly with the Reynolds 46 
number or their roughness, while blunt bars feature a given separation at sharp corners (Bearman and 47 
Morel, 1983). Square bars compared to rectangular ones are more Reynolds sensitive, as flow re-48 
attachment occurs more easily, modifying their wake (Nakamura, 1993). Smoothing or trimming the 49 
corners of square or rectangular bars has a limited impact on the turbulence characteristics (Nakamura 50 
et al., 1988). Although the use of rectangular bars is discouraged by some authors (Hancock and 51 
Bradshaw, 1983), others did not encounter any significant issues (Bearman and Morel, 1983; 52 
Nakamura, 1993; Nakamura et al., 1988; Vickery, 1966). The bar typology can be associated with 53 
different concepts for the construction of grids: Bi-planar grids (two sets of parallel bars placed side-54 
by-side); Mono-planar grids (two set of overlapping parallel bars); A single set of parallel bars, either 55 
vertical or horizontal. Hancock and Bradshaw (1983) found that a bi-planar grid is preferable as 56 
mono-planar grids produce a highly unsteady non-uniform flow, possibly because of the larger 57 
separated region behind each intersection. Bearman and Morel (1983) argued that the non-uniformity 58 
of the flow decays in a much faster way for mono-planar grids than that of the bi-planar grid. 59 
However, the two grid options generate a similar turbulent flow (Nakamura et al., 1988; Roach, 60 
1987). Nevertheless, the effect of the detailing of the grid is no longer apparent when the turbulent 61 
flow is fully developed. At what distance this occurs is still debated in research (Isaza et al., 2014). A 62 
mesh distance of x M⁄ >10 is considered by many authors (Bearman and Morel, 1983; Gartshore, 63 
1984; Laneville, 1973; Saathoff and Melbourne, 1997; Vickery, 1966), but it is arguable whether this 64 
indication is sufficient to assume an independence of statistics with respect to the chosen detailing of 65 
the grid (Frenkiel et al., 1979). 66 
The active grid (AG) concept uses a number of winglets mounted on a series of shafts, which rotate to 67 
generate a highly turbulent isotropic flow downstream of the grid (Makita, 1991; Makita and Sassa, 68 
1991). This complicated setup has been further developed (Brzek et al., 2009; Cal et al., 2010) to 69 
produce integral length scales in the order of the cross-section size of the wind tunnel Lu~H 70 
(Mydlarski and Warhaft, 2006). The turbulence characteristics can be adjusted by altering the rotating 71 
speed of the winglet-shafts (Cekli and van de Water, 2010; Kang et al., 2003; Larssen and Devenport, 72 
2011). AGs have also been successfully used recently in research on wind energy (Maldonado et al., 73 
2015). 74 
The fractal grid (FG) concept has been recently developed to produce higher turbulence intensities 75 
and integral length scales up to Lu~ H 10⁄  as well as limiting the distance from the grid at which the 76 
flow can be considered fully developed (Hurst and Vassilicos, 2007; Seoud and Vassilicos, 2007). A 77 
fractal grid of Nth order is created from a fractal generating pattern of complexity S, whose geometry 78 
is iterated N times. Mesh and bar sizes are varied accordingly. This technique is similar to that of the 79 
passive grid generation. However, a production region exists close to the grid where turbulence 80 
statistics develop toward a peak value. This does not occur for passive grids (Melina et al., 2016). The 81 
flow behind FGs resembles that of the near-field of passive grids. While the implementation of FGs 82 
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for bluff body aerodynamics is being explored (Nedić and Vassilicos, 2015), PGs are more commonly 83 
used.  84 
Thus far, many studies have investigated the effects of free stream turbulence for a variety of 85 
applications. However, only a few of them have attempted to address the effect of the turbulent 86 
statistics, taken independently of one another (Arie et al., 1981; Lee, 1975; Morenko and Fedyaev, 87 
2017; Peyrin and Kondjoyan, 2002; Younis and Ting, 2012). If PG is the methodology of choice to 88 
generate inlet turbulence, a thorough study of the turbulence statistics at the inlet is sometimes only 89 
briefly mentioned, or omitted altogether. This might depend on the limited significance of the results, 90 
since low turbulence intensities (<5 %) are normally available for large integral length scales (>20 91 
cm) (Roach, 1987), while in the atmosphere higher turbulence intensities (>15 %) are found 92 
(Antoniou et al., 1992; Kaimal et al., 1976). In order to achieve higher values for the turbulence 93 
intensity, the only possible way is to reduce the measuring distance from the grid, keeping the mesh 94 
and bar size sufficiently large to yield suitable length scales even close to the grid. However, the 95 
homogeneity and isotropy condition may not be achieved. It could be argued whether the distance 96 
limitation given in literature of x M⁄ >10 could be re-formulated for those studies not aimed at 97 
turbulence decay. Roach (1987) has warned that such limitations might be overconservative, 98 
suggesting that a homogeneous and isotropic, although not fully decaying, flow might be found closer 99 
to the grid.  100 
Nevertheless, turbulence statistics of grid turbulence show a deviation from the condition of isotropy. 101 
Comte-Bellot and Corrsin (1966) confirmed the validity of the exponential decay law of de Karman 102 
and Howarth (1938), however they used a slight contraction of the wind tunnel section to achieve 103 
turbulence intensity isotropy. Although the inhomogeneity caused by the contraction does not affect 104 
the energy transfer of the decay rate, it was noted that integral length scale isotropy is more difficult to 105 
obtain. Later, several works have introduced a contraction section downstream of the PG. While most 106 
studies about the effect of a contraction on turbulent flows focus on the design of wind tunnels 107 
(Uberoi, 1956), some more recent works (Bereketab et al., 2000; Mish and Devenport, 2006; 108 
Swalwell et al., 2004; Wang et al., 2014) apply a contraction to adjust the isotropy for the inlet of 109 
bluff body aerodynamics applications. However, this approach causes a damping of turbulence 110 
downstream of the contraction, which in turn does not guarantee isotropy condition to be met for all 111 
statistics (Kurian and Fransson, 2009). Together with contractions, also expansion test sections, or 112 
diffusers, are broadly used in wind tunnels. Diffusers are placed as exit sections downstream of the 113 
working section, to create a pressure rise. Wide-angle diffusers are also needed upstream to allow for 114 
a contraction to be placed at the inlet to obtain a desirable steady flow (Bradshaw and Pankhurst, 115 
1964). A diffuser is usually placed downstream or upstream of fans, as they need to be 2-3 times 116 
larger than the test-section to achieve a high quality flow field (Mehta, 1979). Diffusers have been 117 
tested regarding the performance in recovering pressure with reference to free stream turbulence 118 
(Hoffmann, 1981), but to the knowledge of the authors their use as a mean of modifying turbulent 119 
inlet statistics in wind tunnel testing is not yet reported in literature. 120 
This paper introduces a novel method of varying turbulence statistics at the inlet of wind tunnel tests 121 
using an expansion section. The literature review has clarified that the generation of an atmospheric-122 
like inflow is a challenging issue in the investigation of the effect of turbulence on bluff body 123 
aerodynamics, especially in obtaining large integral length scale turbulence (Lu~0.3 m) combined 124 
with high turbulence intensity (Iu~15 %). In the following, the grid generated turbulent flow upstream 125 
and downstream of an expansion test section is investigated. The aim is to show the possibility of 126 
modulating the turbulent flow to enhance statistics, without compromising them in terms of isotropy 127 
and gaussianity. The possibility of varying independently the various statistics is also assessed to 128 
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understand their compatibility with atmospheric turbulence. Thanks to a thorough study of the 129 
turbulence decay mechanism, a simple empirical relation is proposed to predict the turbulence 130 
statistics at the outlet of the expansion. In Section 2, the experimental setup is reported together with 131 
the methodology to calculate results presented in Section 3. The feasibility of using an expansion 132 
together with grid generated turbulence has been assessed with the study of turbulence decay, 133 
isotropy, gaussianity, and energy spectra, and conclusions are given in Section 4.  134 
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2. Methodology 135 

2.1. Experimental setup 136 

The experiments were carried out in the multi-disciplinary wind tunnel of the University of Liège. 137 
The wind tunnel was operated in closed-loop configuration. The 1.50 m high and 1.95 m wide 138 
aeronautical test section (TS1) has a total length of 5 m. The 4×4 m contraction at the inlet nozzle, 139 
together with a series of honeycomb and a series of fine-grid screens, allows a remarkably low 140 
turbulence level (0.15 %). The flow is accelerated by the 440 kW, 2.8 m diameter rotor that can drive 141 
the flow at velocity between 1 m/s and 65 m/s in closed-loop configuration. Figure 1 shows a 142 
schematic of the test section. The 5 m long TS1 has a 5.1 m expansion to bind the aeronautical cross-143 
section to the larger atmospheric boundary layer cross section TS2 which is 2.5 m wide and 1.8 m 144 
high. Therefore, a part of the TS2 section was also used for the measurements. 145 

 146 
Figure 1. Experimental setup: the aeronautical Test Section (TS1) of the Wind Tunnel of the University of Liège 147 

 148 

 149 
Figure 2. Schematic (front and side view) of the set of four grids #, with bar b and mesh M size. 150 
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2.2. Design of Passive Grids 151 

The design of a turbulent inflow to be generated with a PG requires a careful choice of at least three 152 
parameters: the width b of the bars, the mesh size M (i.e. the distance between the centreline of the 153 
bars), and the downstream distance x to the grid (Figure 2 and Figure 3), where the measurements are 154 
performed. Vickery (1966) provides an indication for the optimal mesh size of M = L/8, where L is 155 
the length of the test section. The ratio b/M can be chosen based on the definition of grid drag 156 
(Laneville, 1973) 157 

 cD= b M⁄  �2-b M⁄ �

�1-b M⁄ �
4  (1). 158 

Laneville (1973) recommends to keep cD between 3 and 4. Consistently, Vickery (1966) suggested 159 
cD~3.4, while for Baines and Peterson (1951) cD>3.4. The grid drag is connected to the definition of 160 
porosity β (or its dual, solidity) by: 161 

 β=�1-b/M�
2
 (2) 162 

Bearman and Morel (1983) advised a value of at least 0.5 for β, which is also confirmed by Nakamura 163 
et al. (1988) and Roach (1987). However, using β=0.5 leads to cD<2, which is a more common value 164 
to be found in research on bluff body aerodynamics. Using these brief indications, Roach (1987) has 165 
given some guidelines for designing PGs based on fitting empirical constants to a large set of data, bar 166 
sizes and grids. However, the general validity of these guidelines is not assured, since conclusions 167 
were drawn from a limited set of wind tunnels. Nevertheless, simple design guidelines provide a 168 
useful tool for a preliminary estimation of the PG configurations. The empirical formulae derived by 169 
Roach (1987) are reported in Table 1 for turbulence intensities Iu and Iv, integral length scale Lu and 170 
Taylor microscale λu, where the subscripts u, v and w indicate respectively the stream-wise, horizontal 171 
and vertical components. 172 

Table 1 Empirical relations for turbulence characteristics (after Roach, 1987) 173 

Empirical 
expression Iu=A(x b⁄ )-5 7⁄  Iv=AB(x b⁄ )-5 7⁄  Lu b⁄ =C(x b⁄ )1/2 �

λu

b
�

2

=
14F(x/b)

Reb
 

Constants A=1.13 B=0.89 C=0.20 F=1 or F=1.21 

 174 

  175 
Figure 3. Preliminary design of the flow field. The symbols vary based on the different mesh size, while the 176 

filling is relevant to the chosen setup. The red lines and symbols indicate possible alignments for the statistics. 177 
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The set of grids have been designed by a preliminary choice of the target turbulent characteristics. 178 
Following this approach, several ratios of distances and grid sizes have been studied using the 179 
empirical formulae of Table 1. Despite this simplification, the setup is still rather complex. The 180 
proposed setup and the estimated length scales and intensities are indicated in Figure 3. Possible 181 
alignments of separately varied statistics are indicated (in red). It is evident how difficult can be to 182 
achieve Lu~0.25 m together with Iu~10-15 %. Only a set of three grids is provided here, while in the 183 
final experiment a set of four bi-planar square PGs is used. 184 
The geometry and the turbulent statistics for the different grids are reported in Table 2. All results in 185 
the table refer to the distance of x/M=10, except for grid #1. All grids are placed in the same position 186 
x=0, i.e. at the inlet of TS1, without the use of any downstream contraction. 187 

Table 2 Geometry of grids as shown in Figure 2(b)  188 
with turbulence statistics at x/M=10 (x/M=6.5 for grid #1) and Ur=15m/s. 189 

Grid 
b 

[m] 
M 

[m] 
M/b 
[-] 

β 
[-] 

Cd 
[-] 

x/M 
[-] 

Iu 
[%] 

Lu/b 
[-] 

λu/b 
[-] 

Iu/Iv 
~1 

Lu/Lv 
~2 

λu/λv 
~√2 

#1 0.116 0.615 5.30 0.66 0.79 6.5 15.0 1.51 0.43 1.22 2.46 1.412 
#2 0.063 0.30 4.76 0.62 0.97 10 8.35 1.81 0.68 1.14 2.13 1.320 
#3 0.036 0.15 4.17 0.58 1.27 10 9.0 1.84 0.91 1.19 1.86 1.135 
#4 0.116 0.4 3.45 0.5 1.95 10 11.0 1.39 0.32 1.2 1.81 1.0 

 190 
A set of wooden bars have been overlapped in a bi-planar array and fixed firmly to an aluminium 191 
frame screwed to the inlet of TS1 Figure 2. The flow has been measured at 5 different positions, as 192 
indicated in Table 3, which have been shifted to respect the requirement of x/M>5. 193 

Table 3 Position of measurements and mesh distance. 194 
Position 
reference 

x 
(m) 

x/M 
#1 

x/M 
#2 

x/M 
#3 

x/M 
#4 

x1 1.5 - 5 10 - 
x2 3 4.8 10 20 7.5 
x3 4 6.5 13.34 26.67 10 
x4 9.1 14.8 30.34 60.67 22.75 
x5 11.1 - - - 30 

 195 
A total number of 15 measurements have been made for 4 different rotor wind speeds Ur, for a total of 196 
60 tests. The different sets of grids are shown in Figure 2. The name of the grids and their different 197 
mesh sizes are also represented. The velocity measurements have been performed at the half-height of 198 
the wind tunnel h = 0.74 m. Measurements have been also made at the additional height of h=1.07 m 199 
to briefly assess the uniformity of the flow. This adds up to 9×4 tests for a total number of 96 tests. 200 
Measurements have been made using a dynamic multi-hole pressure probe (Cobra Probe by Turbulent 201 
Flow Instrumentation inc., TFI), which allows the measurement of the three components of flow 202 
velocity from 2 to 100 m/s ±1 m/s within a flow angle of ±45 deg with a sampling frequency of up to 203 
2 kHz. A proprietary software (TFI Device Control) is used as a data acquisition system (A/D card) to 204 
operate the probe. The sampling frequency chosen for this experiment is 500 Hz over a duration of the 205 
recorded signal of t = 60.0 s. This gives a range of non-dimensional time units, Ut/b, between 1,000 206 
and 33,500, where U is the average velocity, b the bar width and t the duration of the signal. The wind 207 
speed has been varied from 5 to 20 m/s in four steps. 208 
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2.3. Calculation of statistics 209 

The turbulent flow is described using both one- and two-point statistics for the stream-wise, horizontal 210 
and vertical components of velocity u, v and w. The fluctuating velocity u is calculated using the 211 
Reynolds decomposition u = u(t) – U, where u(t) is the velocity realisation as measured, and U =u(t)����� 212 
is the mean velocity. One-point statistics include the statistical moments, such as the variance u2� , the 213 

standard deviation �u2� , the skewness Su= u3� �u2� �
3/2

� , the flatness (or kurtosis) Ku= u4� �u2� �
2

� , and the 214 

excess kurtosis γu=Ku-3. The energy in a turbulent flow field can be assessed from �u2� , in the form of 215 
turbulence intensity: 216 

 Iu=�u2� U�  ; Iv=�v2� U�  ; Iw=�w2��� U�  (3). 217 
The integral length scale Lu is a measure of the largest energy containing vortices. Lu can be estimated 218 
from the autocorrelation coefficient ρ(τ)=  Ruu(τ) u2�⁄ , where Ruu(τ)=u(t)u(t + τ)�������������� is the 219 
autocorrelation function, and τ is the time lag. In this case Lu=UTu where Tu is the integral time scale, 220 
obtained from the area subtended by the ρ(τ) curve, which is usually approximated with: 221 

 Lu=U∫  ρ(τ)d𝜏𝜏τ0
0  (4), 222 

where ρ(τ0)=0. Tu can also be estimated using a simplified relation, where ρ(Tu)=1/e (Conan, 2012). 223 
The power spectral density or spectrum Eu is defined from the Wiener-Khintchine theorem: 224 

 Eu(n)= 1
2π∫ e-inτRuu(τ)dτ∞

-∞  (5), 225 

where n is the frequency. Lu can be estimated using the best fit of Eu with the von Kármán formula: 226 

 Eu(n)= 4Luu2��� U⁄
(1+70.8(nLu U⁄ )2)5 6⁄  (6), 227 

which only applies for homogeneous isotropic turbulence. All approaches yield results with a relative 228 
error <15 %, hence the 1/e rule is used in the following. 229 
Since turbulence is composed of a broad band of frequencies, it is important to have also a reference 230 
to the energy distribution for a given frequency band. The Taylor microscale λu is commonly used for 231 
this purpose, as it represents the largest dissipative length scale. λu can be found from the dissipation 232 
rate ε: 233 

  ε=15ν∫ κ2Eu(κ) dκ∞
0  (7), 234 

where κ=2πn/𝑈𝑈 is the wave number and Eu(κ)=UEu(n)/2π is the wave number power spectral 235 
density. In isotropic turbulence, the following relation applies: 236 

 1
λu

2 = ε
15νu2���= 1

u2��� ∫ κ2Eu(κ)dκ∞
0 = 2π2

U2u2��� ∫ n2Eu dn (8), 237 

where Eu might represent either the computed or the fitted spectrum. However, Roach (1987) warns 238 
that in order to obtain an accurate estimation of ε using the relations which are valid for homogeneous 239 
isotropic turbulence, a sampling rate of 10-100 kHz has to be chosen when collecting the data, which 240 
is often unpractical. Alternatively, ε can be estimated fitting the spectrum with its inertial sub-range 241 

Eu(κ)=Cε2 3⁄ κ-5 3⁄  (Pope, 2000). The multiplicative constant is C= 18 55⁄ Cκ~0.49 for the stream-wise 242 
spectrum and C= 24 55⁄ Cκ~0.65 for the horizontal spectrum. Cκ~1.5 is the Kolmogorov universal 243 
constant (Sreenivasan, 1995). Another way of calculating λu is using the Taylor’s hypothesis and the 244 
intercept of ρ(τ) with a parabola at the origin (Pope, 2000): 245 

 λu
2= u2� (∂u ∂x⁄ )2������������ = U2u2� (du dt⁄ )2������������  (9). 246 
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Both Equations 8 and 9 are estimations based on assumptions, and a careful study should be 247 
undertaken for the most suitable approach. In this work, Equation 9 has been chosen for the 248 
calculation of λu. The smallest turbulent motion, named Kolmogorov microscale η, is another useful 249 
value which is defined from the dissipation rate ε: 250 

  η=�ν3 ε⁄ �1 4⁄
 (10). 251 

The transversal and horizontal integral and Taylor length scales, respectively Lv, Lw, λv, and λw, are 252 
calculated with formulae, analogous to the previously introduced ones (Hinze, 1975; Pope, 2000). 253 
Further conclusions on the behaviour of a turbulent flow can be drawn by calculating the Reynolds 254 
stress tensor uiuj�����. In particular, the tensor aij, first introduced by Lumley (1979), gives a measure of 255 
the deviation of the flow field from the isotropy definition of uiuj�����= 1 3⁄ q2δij, where q2=2k=ukuk����� is 256 
twice the turbulent kinetic energy. The anisotropy tensor aij is defined by 257 

 aij=
uiuj�����
q2 - 1

3
δij (11). 258 

The second and third invariant of aij, respectively IIa=aijaji and IIIa=aijajkaki, are used to define an 259 
anisotropy invariant map, which defines precisely the rate and the typology of turbulent flow 260 
(Jovanović, 2004), varying from pure isotropy IIa=IIIa=0 to one-component turbulence. This map has 261 
confirmed that grid turbulence yields a highly isotropic flow field (Geyer et al., 2016). 262 

3. Results and discussion 263 

Results are presented in this section considering the following topics of investigation: the decay of 264 
turbulence, the isotropy and the gaussianity of the flow, and the spectrum of statistics varied 265 
separately one another. Results are presented in scatter plots and the symbols used to refer to the 266 
different parameters are introduced in Table 4. Four different symbols are used indicating the four 267 
different grids and the colour represents either the wind speed used, or the distance referred to the 268 
expansion test section, when wind speed does not affect the statistics. In Table 4, the legend for 269 
results is reported. 270 

Table 4 Legend for results 271 
Grid 

Symbols 
 Wind Speed 

ur (m/s) 
 

Distance 

#1 +  5  x/M ≤ 10 
#2   10 x ≥ 9.1 m 
#3   15 x M⁄ >10 ∪ 

x<9.1 m #4   20 
 272 
Results are plotted against the distance from the grid x. In literature, x is often translated into mesh 273 
distance x/M or Reynolds mesh distance x/M 1/ReM first introduced by Comte-Bellot and Corrsin 274 
(1966). The bar size b can be also used to define x/b or x/b 1/Reb, however results are better fitted 275 
using the mesh distance. The mesh Reynolds number reads ReM= UM ν⁄ , and it highlights any 276 
dependence from the wind speed. Another useful parameter is the turbulent Reynolds number, which 277 

can be defined using λu or Lu, which yield Reλ=�u2� λu ν�  and ReΛ=�u2� Lu ν� , respectively. Reλ and 278 
ReΛ are used to underline the role of dissipation in the development of statistics. Whenever suitable, 279 
data is fitted with the approach used in von Kármán and Howarth (1938) using the formula f(x)=A x p. 280 
  281 
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3.1. Turbulence Decay 282 

The decay of turbulence is shown in Figure 4 a) and b), and Figure 5 a) and b) in terms of Iu, Lu M⁄ , 283 
λu M⁄ , and η M⁄ , respectively. The data is plotted along with the predictive formulae reported in Table 284 
1, which have been converted to the mesh distance. It has been found that the data collapses better 285 
using x/M rather than x/b. The empirical formulae have also been compared with the least square fit of 286 
the data. 287 

 288 
Figure 4 a) Turbulence Intensity decay with empirical fitting after Roach (1987) for grids #2 and #3 (- -) and 289 
after Laneville (1979) for grid #4 (- -). Least Square fitting of data is also provided for grids #2 and #3 (—) and 290 
grid #4 (—) as detailed in the text. b) Integral length scale decay with least square (—) and empirical fitting 291 
after Roach (1987) (- -) as detailed in the text. Markers are filled with a grey hatch if x≥9.1 m and coloured 292 
after wind speed (Table 4).  293 

In Figure 4 a), the decay of Iu is plotted against the mesh distance x/M. Turbulence Intensity decays in 294 
a similar way for grids #2 and #3. The empirical formula given by Roach (1987) is close to the least 295 

square fit of the data Iu =0.5(x M⁄ )-3 4⁄ . Grid #4 shows a similar behaviour, although Iu decays faster. 296 

The least square fit of the data Iu =1.41(x M⁄ )-1.11 is closer to the formula Iu =2.54(x b⁄ )-8 9⁄  given by 297 
Laneville (1979). This difference in the behaviour seems to depend on the porosity β, respectively 298 
0.62 and 0.58 for grids #2 and #3, and 0.50 for grid #4. Grid #1 shows a rather different behaviour, 299 

and a fit of the data reads Iu =0.2(x M⁄ )-1, which is not plotted in Figure 4 a). A likely explanation for 300 
this may be the large size of the mesh compared to the wind tunnel section, which in turn causes the 301 
mean flow to be highly non-uniform. This is the reason for the inclusion of grid #4, in the 302 
experimental setup.  303 
In Figure 4 b), the decay of Lu is plotted against x/M. In this case all grids behave consistently, and the 304 
fit of the data yields Lu M⁄  =0.1(x M⁄ )3 5⁄ , while the empirical formula given by Roach (1987) 305 
slightly underestimates Lu M⁄ . In Figure 4, data is coloured after wind speed to highlight possible 306 
Reynolds effects. All results behave consistently for every wind speed, and only a small scatter of the 307 
data is noticeable for Ur=5 m/s (data in cyan in Figure 4). This is possibly due to the limitations of 308 
Cobra probes in measuring velocities ~2 m/s, therefore this velocity range is eliminated in the next 309 
figures. 310 
The Taylor λu M⁄  and Kolmogorov η M⁄  microscales are plotted in Figure 5 a) and b), respectively. 311 
The empirical formulae overestimate λu M⁄  when F is taken as given in Table 1, i.e. F=1 for isotropic 312 

a) b) 
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turbulence or F=1.21 otherwise. A formula which fits all grids at all distances for this setup is 313 
λu M⁄ =(14 3 2⁄  x M⁄ 1 ReM⁄ )3 5⁄ . In the same way, η M⁄  can be accurately predicted for all data using 314 
the formula η M⁄ =0.8(x M⁄ 1 ReM⁄ )1/2, which holds for homogeneous turbulence (Pope, 2000).  315 

 316 
Figure 5 a) Taylor microscale decayand c) Taylor microscale against distance, with empirical fit as detailed in 317 
and b) Kolmogorov the text (Table 1) (—,- -). Colours after wind speed (Table 4). a) Turbulence Intensity decay 318 

with empirical fitting after Roach (1987) for grids #2 and #3 (- -) and after Laneville (1979) for grid #4 (- -). 319 
Least Square fitting of data is also provided for grids #2 and #3 (—) and grid #4 (—) as detailed in the text. b) 320 
Integral length scale decay with least square (—) and empirical fitting after Roach (1987) (- -) as detailed in 321 

the text. Markers are filled with a grey hatch if x≥9.1 m and coloured after wind speed (Table 4). 322 

The behaviour of the length scale decay can be also interpreted with Figure 6 also, where the turbulent 323 
Reynolds numbers ReΛ and Reλ are plotted against x M⁄ 1 ReM⁄ . All data taken at x≤4 m is fitted by 324 

Reλ=6.97(x M⁄ 1 ReM⁄ )-0.38 and ReΛ=5.6(x M⁄ 1 ReM⁄ )-0.72, regardless of distance or grid typology. 325 
Reλ is very close to the results of Kurian and Fransson (2009), although they used grids with different 326 
bar shapes, while ReΛ seems to converge towards their fit only at highest mesh distances. This 327 
confirms that the behaviour of the small scales has rather universal properties, which are independent 328 
of the initial conditions in which turbulence is created. The decay of the large scales seems to vary 329 
with the typology of the grid, at least for 5≤ x M⁄ ≤10, but the decay law seems not to depend on the 330 
porosity of the grid. 331 

a) b) 
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 332 
Figure 6 Turbulent Reynolds number relative to a) Taylor and b) integral scale against mesh distance, with fit 333 

of data (—) and fit by Kurian and Fransson (2009) (- -). Colours after distance (Table 4). 334 

The ratio of integral and Taylor length scale, as shown in Figure 7 a), is proportional to the local 335 
turbulent Reynolds number Reλ, with a proportionality coefficient of C~0.08. Isaza et al. (2014) argue 336 
that Lu λu⁄ ∝ Reλ means that the data is measured in the far-field region of the flow, where only 337 
dissipation takes place and the effect of initial conditions posed by the construction of the grids have 338 
vanished. The constant of proportionality is given by C= Cε K⁄  where Cε= εLu Su⁄  and K is a fitting 339 
constant. No effect of the different wind speeds is noticeable. Therefore, data is coloured based on the 340 
distance to the grid. 341 

 342 
Figure 7. a) Integral and Taylor scale ratio dependence on the turbulent Reynolds number, with fit relation 343 

after Isaza et al. (2014) (—); b) Mean velocity ratio against mesh distance, with least square fit for grids #1, 344 
#2, and #3 (- -), and for grid #4 (—). Colours after distance (Table 4). 345 

In Figure 4, Figure 5, Figure 6 and Figure 7, some data deviate from the empirical formulae in an 346 
apparent scatter. This is marked with a grey hatch in Figure 4 a) and b), and Figure 5 a). All the 347 
measurements which show this behaviour are taken at x≥9.1 m, i.e. at the outlet of the expansion test 348 

a) b) 

a) b) 
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section of the wind tunnel of Liège. At x≥9.1 m, Iu recovers to values measured closer to the grid, 349 
while Lu increases with respect of what expected for such a setup. The increase rate of λu is 350 
comparable for all grids, unlike the other statistics. This confirms that dissipation is a phenomenon 351 
which exclusively depends on the Reynolds regime of the flow. Remarkably, the expansion has a very 352 
limited effect on the decay rate of λu, since the non-dimensional plot shows that the data is only 353 
affected by the Reynolds number, and this confirms that λu is extremely susceptible to changes in the 354 
wind speed. In Figure 6, the effect of the expansion is more visible, as data taken at x≥9.1 m is shifted 355 
from the empirical fit. Unlike data taken upstream to the expansion, a different slope is noticeable for 356 
different grid typologies. This could be explained with a definition of a parameter xL=4/M, where 357 
x=4 m is the distance from the grid of the inlet of the expansion section, which reads xL=6.50, 13.34, 358 
26.67, and 10 for grid #1, #2, #3, and #4, respectively. xL represents the state of the flow at which the 359 
expansion section is encountered, which varies with the geometry of the grid. Turbulence generated 360 
by grids #2 and #3 encounters the expansion inlet for x/M>10, unlike grids #1 and #4, and a different 361 
effect on the decay mechanism is expected. 362 
The effect of the expansion on the turbulent flow field can be explained looking at the mean flow 363 
evolution with distance. In the investigation of turbulence decay, passive grids are designed to limit 364 
any gradients in the mean velocity so that only dissipative phenomena take place (George, 1992). 365 
However, this is achieved when any production process has vanished, i.e. at x/M>>10. At these 366 
distances turbulence characteristics are not representative of atmospheric turbulence, and distances of 367 
x/M~10 are most commonly found in research on bluff body aerodynamics. In this region, a change in 368 
the mean flow cannot be ruled out in principle. The change of the mean flow with distance is plotted 369 
in Figure 7 b). The mean velocity taken at the centreline of the wind tunnel U is divided by the 370 
reference wind speed Ur as given in Table 4. Besides the uniform case, the mean flow profile might 371 
resemble that of a jet or a wake, depending on the porosity of the grid. For self-preserving jets, an 372 

inversely proportional relation is defined: U Ur⁄ =CU(x M⁄ )-1 (Hussein et al., 1994). It is therefore 373 
reasonable to assume a relation of the type U Ur⁄ =CU(x M⁄  1 ReM⁄ )n for grid generated turbulence, 374 
where CU and n vary with the grid geometry (Pope, 2000). In this work, the fitting coefficients read 375 
CU=0.25 and n= -0.09 for grids #1, #2 and #3, and CU=0.45 and n= 0.03 for grid #4. For n<0 the 376 
mean flow resembles a jet, while for n>0 a wake-like profile is present. Therefore, the flow regime 377 
which is created is strongly affected by the initial conditions, and it seems that a lower porosity is 378 
beneficial in obtaining a more uniform flow. Nevertheless, the effect of the expansion on the mean 379 
flow might help understanding its effect on the turbulence decay. In Figure 7 b), a sudden drop in the 380 
mean velocity occurs at x=9.1 m (data in red). The Venturi effect which occurs due to the change in 381 
the cross-section causes the mean velocity to decrease, and the turbulent vortices to stretch. Results 382 
presented in this Section do not show different behaviours for different Reynolds regimes, and the 383 
turbulence decay only depends on distance. 384 
The effect of the expansion on grid generated turbulence seems to be limited to the rate of decay of 385 
turbulence, due to the changes occurring in the mean flow. Little effect is noticed on the small scales, 386 
confirming that dissipation is only affected by the Reynolds regime and not the initial conditions in 387 
which turbulence is created, namely the geometry of the grid. 388 

3.2. Isotropy 389 

The isotropy of a turbulent flow field can be assessed through turbulence intensity (Comte-Bellot and 390 
Corrsin, 1966), Taylor microscale and integral length scale (Roach, 1987), or a more comprehensive 391 
approach, such as the anisotropy invariant map (Banerjee et al., 2007). 392 
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 393 
Figure 8 Turbulence Intensity anisotropy, a) horizontal and b) vertical component against non-dimensional 394 

mesh distance in logarithmic scale. Colours after distance (Table 4). 395 

The isotropy of turbulence intensity is defined as the ratio of the standard deviation for the different 396 
velocity components, i.e. Iv Iu⁄ ≈ Iw Iu⁄ ≈1. The isotropy of turbulence intensity is illustrated in Figure 397 
8 a) and b) against x/M 1/ReM. for both the horizontal and vertical component, v and w. The data show 398 
that distance does not improve isotropy substantially. Isotropy reaches ≈ 80 % for Iu/Iv and ≈ 90 % for 399 
Iu/I𝑤𝑤 already relatively close to the grids, around x/M~5. 400 

 401 
Figure 9 Integral length scale anisotropy for a) horizontal and b) vertical component against mesh distance. 402 

Colours after distance (Table 4). 403 

The integral length scale isotropy condition reads Lu Lv⁄ ≈ Lu Lw⁄ ≈2. Both in Figure 9 a) and b), the 404 
isotropy rates Lu Lv⁄  and Lu Lw⁄  are very close to the theoretical condition for most data at around 405 
x/M~10.  406 

a) b) 

a) b) 
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 407 
Figure 10 Taylor microscale anisotropy for a) horizontal and b) vertical component against mesh distance. 408 

Colours after distance (Table 4). 409 

The isotropy condition for the Taylor microscale reads λu λv⁄ ≈ λu λw⁄ ≈√2  ≈ 1.414, and it is plotted 410 
in Figure 10 against x/M 1/ReM. Most data show a value of around ~1.2 for both components 411 
regardless of the distance from the grid. 412 
It is rather difficult to draw conclusions on the effect of the expansion on the isotropy of the flow from 413 
Figure 8, Figure 9, and Figure 10, as results seems to contradict each another. The anisotropy of Iu 414 
seems to confirm that the expansion increases the anisotropy. This increase seems stronger for Lu as 415 
most data measured at x≥9.1 m deviates significantly from 2. However, the expansion seems to 416 
improve the isotropy when looking at λu. Therefore, no convincing trends are found using the ratio 417 
of the different components of the statistics. Nevertheless, the results shown in Figure 8, 9 and Figure 418 
10 are aligned to results found in literature for grid turbulence measured at distances x/M>10. Kurian 419 
and Fransson, (2009) have found good level of isotropy for x/M >30, however this longer distance can 420 
be due to the bar type used in the measurements (woven metal wires). Nevertheless, high isotropy has 421 
been observed for large wind tunnel configurations, for high (Kistler and Vrebalovich, 2006) and low 422 
Reynolds numbers (Wang et al., 2014), as well as for small wind tunnel configurations (Laneville, 423 
1973). However, only few studies investigated distances x/M<10 with regard to the isotropy of the 424 
flow, as the estimation of the difference in the decay rate from the near- and far-field region is most 425 
commonly considered (Mohamed and Larue, 1990). 426 

a) b) 
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 427 
Figure 11 a) Anisotropy invariant map; b) zoom close to the isotropy condition. c) Second and d) third invariant 428 
plotted against x. Colours after a), b) wind speed and c), d) distance (Table 4). 429 

A more comprehensive view of the anisotropy rate of the flow is given by considering the second IIa 430 
and third IIIa invariants of the aij tensor, as defined in Equation (11). An anisotropy invariant map is 431 
shown in Figure 11 a) and b). To understand the effect of the distance on the anisotropy, IIa and IIIa 432 
are plotted separately against the mesh distance in Figure 11 c) and d). A very good rate of isotropy is 433 
found for all grids, regardless of distance, as the invariants of the data taken at x≤4 m are close to the 434 
condition of perfect isotropy, IIa=IIIa=0, this is also true for x/M~5-10, which confirms that a non-435 
uniform flow field might still present highly isotropic turbulence. In Figure 11 c) and d), data taken at 436 
x≥9.1 m (shown in red) diverges from the isotropy condition, being closer to mildly axisymmetric 437 
turbulence, a condition which is typical for vortices being stretched as they are forced through an 438 
expansion (or a contraction) (Batchelor, 1953). It is interesting to note that for the empty wind tunnel 439 
IIa=0.5 and IIIa=0.15, which holds for highly axisymmetric turbulence.  440 
The flow field shows a high isotropy closer to the grid than what is commonly suggested in literature, 441 
at x/M~5 instead of x/M~10. This result might represent a favourable feature in the investigation of 442 
the effect of atmospheric-like turbulence on bluff body aerodynamics. The expansion of the test 443 
section has a limited effect in the isotropy of turbulence, as the anisotropy indicates a light axial-444 

a) b) 

c) d) 
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symmetry. This result confirms that the quality of the turbulence flow field is comparable upstream 445 
and downstream of a slow variation in the cross-section of the wind tunnel. 446 

3.3. Gaussianity 447 

In homogeneous and isotropic turbulence, the probability distribution function is analogous to the 448 
normal distribution. This has been shown to hold true even for decaying grid generated turbulence 449 
(Wilczek et al., 2011). This means the skewness of the velocity components yields Su=Sv=Sw=0 and 450 
the kurtosis Ku=Kv=Kw=3. The latter, in particular, only applies if the flow is purely gaussian. 451 

 452 
Figure 12 Skewness of velocity components for all grids and velocities. Colours after distance (Table 4). 453 

The skewness of all components is plotted in Figure 12. Although a different behaviour is observed 454 
for the different grids, the skewness tends to become zero for x/M>10. The stream-wise component 455 
only seems affected by the distance, as data taken at x/M<10 shows to gradually converge towards 456 
zero. For grid #1, Su<0 indicates an enhanced production of vorticity characteristic of a point in an 457 
oscillating or unstable shear layer. Arguably, this occurs due to the large mesh size, which in turn 458 
produces a non-uniform velocity cross-profile (Isaza et al., 2014). Data taken at x≥9.1 m differs from 459 
Su=0. However, this only occurs for grids #2 and #3. Arguably, the lower β of grids #1 and #4 allows 460 
the near-field region characteristics to persist. This would also explain the negative values of Su for 461 
grids #2 and #3 at x/M<10. The other components show a more pronounced gaussian behaviour, but 462 
Su≠0 is observed after the expansion for grids #2 and #3. 463 
The kurtosis (or flatness) of the flow is shown in Figure 13 for all components. The behaviour is more 464 
gaussian than for skewness, although after the expansion the data differs from Ku=3 for grids #2 and 465 
#3 after the expansion. Kv and Kw, unlike the skewness case, differ more than Ku for all ranges of 466 
data. These results are consistent with the anisotropy of the flow: the expansion stretches the vortices 467 
and it affects the isotropy of turbulence. Another possible explanation for the deviation from the 468 
normal distribution can be explained by a lack of flow homogeneity due to the particular grid 469 
arrangement. A lack in homogeneity causes the velocity field to be strained and it is believed this 470 
effect is also registered in the statistics (Mydlarski and Warhaft, 2006). The non-uniformity of the 471 
mean flow can be roughly assessed from Figure 7 b), where the change in the centreline value is 472 
plotted against distance. However, the uniformity of grid turbulence is a topic which would deserve a 473 
more thorough investigation (Carbó Molina et al., 2017). 474 

a) b) c) 
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 475 
Figure 13 Kurtosis of velocity components for all grids and velocities. Colours after distance (Table 4). 476 

 477 

3.4. Independently varied statistics 478 

The use of a set of grids combined with an expansion section allows atmospheric-like highly isotropic 479 
turbulence to be reproduced, i.e. a flow field having Iu~10÷15 % and Lu~25÷30 cm. The study on the 480 
turbulence decay, which has been proposed in Section 3.1, can be used to plot a turbulence intensity 481 
versus integral length scale diagram. This defines a design chart, which is useful when choosing the 482 
needed turbulence characteristics. In Figure 14 a), a simple empirical relation is proposed to fit the 483 
data, which might be useful to design an experimental setup combined with an expansion. The 484 

proposed model is based on the summation of two power laws in the form of f(x)=Ax -p+Bx+n, where 485 
the negative power law is obtained from the least square fits of Iu and Lu, shown in Figure 4. A 486 

combination of the fits which holds for all grids is Iu=0.025(Lu M⁄ )-3/2, which is plotted in Figure 14 487 
a). This curve is not able to model the effect of the expansion. Therefore, a second positive power law 488 
is summed to the fit of the data, and the following formula has been derived: 489 

   Iu=A ��β b
M
�

2
�Lu

M
�

-2
+ B

xL
�Lu

M
�

α
� (12), 490 

where A=0.6 and B=1.5 are two fitting constants, β b M⁄ = b M⁄ �1- b M⁄ �
2
 is a parameter based on the 491 

porosity of the grid, xL= 4 M⁄  is the expansion mesh distance, and  α=1.45 is the ratio of the 492 
expansion outlet and inlet cross section area (2.5×1.8) (2×1.5)⁄ . Equation 12 is plotted in Figure 14 493 
a) along with the least square fit of the data. With this simple model, the turbulence statistics found at 494 
the outlet of the expansion can be accurately estimated for grids #2, #3 and #4, while a significant 495 
mismatch is noticeable for grid #1, as expectable from previous results. The model is able to only 496 
estimate statistics straight at the outlet of the expansion section. For larger distances, no further 497 
conclusions can be made with this dataset. Equation 12 is then valid for xL>10 and for β>0.5 only. 498 
The fit proposed in Equation 12 is used to plot a dimensional design chart in Figure 14 b). The 499 
measured data is also plotted. Several alignments are found and plotted in the graph, where statistics 500 
can be varied independently of one another. In Figure 14 b), multiple points of interest are shown, 501 
where integral length scales up to 33cm can be reached and a turbulence intensity of 15-16% can be 502 

a) b) c) 

18 



achieved. The use of an expansion test section has an important role in obtaining such a variation in 503 
the statistics, and it might allow for constant Iu and varying Lu to be obtained using a single grid, as it 504 
is particularly evident for grids #3 grid #2. However, grid #4 does not show the same behaviour, and 505 
turbulence intensity monotonically decreases due to the lower porosity. Although it behaves 506 
differently, grid #1 is also shown together with its least square fit. It seems that turbulence intensity 507 
can be substantially increased placing the grid at xL<10, which in turn does not affect substantially the 508 
quality of the flow field. 509 

 510 
Figure 14 Turbulence Intensity versus Integral Length Scale of turbulence in a) non-dimensional, and b) 511 

dimensional form. Least square fit of all data (- -; - -; - -; - -; for grids #1, #2, #3 and #4, respectively), and of 512 
data at x≤4 m (- -) is plotted together with Equation 12 (—; —;—;— for grids #1, #2, #3 and #4, 513 

respectively). Circles and dashed black lines in b) refer to Table 5. 514 

The statistics varied independently in Figure 14 need to show similar turbulence characteristics to be 515 
useful for wind tunnel tests. The Power Spectral Density (PSD) of the velocity measurements Eu is 516 
useful for this purpose. The spectra are estimated using the Welch overlapped segment FFT averaging 517 
technique. To reduce noise at higher frequencies, a Hanning window is used to split the signal into 518 
segments of length 0.6042 s, which is 1/100th of the total realisation length of u(t). The segments are 519 
overlapped by 50 %. The number of Discrete Fourier Transform (DFT) used in the PSD estimate is 520 
given by the greater of 28 or the first exponent of power of 2n greater than the length of the 521 
overlapped segment, i.e. 1/2 0.6042 s, which yields 151.05 Hz. This allows for a frequency step size 522 
of 3.33 Hz to be reached. A correction to exclude potential large scales from the wind tunnel was not 523 
necessary, as the turbulent flow characteristics in the empty wind tunnel test section are respectively: 524 
Lu=0.013 m, λu=0.004 m with Iu=1.03 %, Iv=0.4 %, Iw=0.32 % and U=16.3 m s⁄ . The estimated 525 
PSD is fitted to the von Kármán formulation given in Equation 6, to give a comparison with 526 
atmospheric turbulence. 527 
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 528 
Figure 15 Wave number spectrum a) at the inlet of the expansion x= 4 m, and b) at the outlet x=9.1 m; 529 
Continuous line for grid #1 (—), #2 (—), #3 (—), and #4 (—); dashed line for von Kármán fitting; (- -) -5/3 530 
power law. 531 

The longitudinal wave number spectrum, non-dimensionalised using ε and η, is plotted in Figure 15 532 
for measurements at the inlet (a) and at the outlet (b) of the expansion. This plot emphasizes the 533 
vicinity of the measurements with the -5/3 power law for the inertial subrange of the spectrum. For 534 
comparison, the von Kármán fit is plotted with dashed lines. All grids show a close match with the -535 
5/3 law, consistently with previous results from literature (Isaza et al., 2014). This behaviour suggests 536 
that the isotropy and development of the energy cascade of the chosen experimental setup is not 537 
affected by the distance from the grid. A closer look might detect a slightly larger deviation from the -538 
5/3 law for data measured at x≤4 m, which could be interpreted as a contradiction to findings shown 539 
in Figure 11. However, this might depend on the low sampling rate used in the experiments (Roach, 540 
1987).  541 

 542 
Figure 16. Power Spectral Density of turbulence for positions a) x/M =5, b) x/M=10 and c) x/M>25 and wind 543 
speed urot=15m/s. Continuous line for grid #1 —, #2 —, #3 —, and #4 —; dashed line for von Kármán fitting. 544 

Nevertheless, the turbulence field is sufficiently developed and broad-banded for all distances, 545 
abnormal peaks in the spectra are absent, suggesting the absence of a residual effect of the bar wakes, 546 
even for small mesh distances, i.e. at x/M~5. 547 

a) b) 
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The evolution of the spectra with the mesh distance is reported in Figure 16. The spectra are non-548 
dimensionalised using Eun u2�⁄  and nM U⁄  and plotted at (a) x/M=5, (b) x/M=10 and (c) x/M>25 for 549 
all grids. Grid #1 is plotted at slightly different distances: (a) x/M=5, (b) x/M=6.5, and (c) x/M=15. 550 
Grid #2 is the only one in the setup, which deviates from the von Kármán fit more evidently at the low 551 
frequency end of the spectrum. Nevertheless, neither x/M or the expansion test section appear to affect 552 
the deviation of the statistics from theory. The PSD of the three components of velocity u, v and w is 553 
plotted in Figure 17 at x=9.1 m. The vicinity to the von Kármán fit is analogous to that shown in 554 
Figure 16 and Figure 15. 555 

 556 
Figure 17 Non-dimensional PSD of all velocity components at x=9.1m and for ur = 15m/s; Continuous line for 557 

grid #1 —, #2 —, #3 —, and #4 —; dashed line for von Kármán fitting. 558 

The results confirm that the spectra maintain the properties of isotropy and uniformity as they are 559 
shown to have the same shape and easily fit with the von Kármán formulation. In Figure 18, the 560 
spectra are reported for statistics varied separately. Constant integral length scale associate with (a), 561 
(b), (c), and (d) plots, while constant turbulence intensity associate with (e), (f), (g), and (h). In the 562 
case of Lu, the maximum position of the spectra is located at the same frequency for a given scale, 563 
while for Iu the spectra are roughly overlapped at lower frequencies. 564 

Table 5 Indepentely varied turbulence intensity and integral length scale, with relevant grid and position. 565 
 Constant Integral Length Scale Constant Turbulence Intensity 

Grid 
#(pos.) 

Figure 14b 

#3(x2) 
#2(x1) 

#3(x3) 
#2(x2) 

#2(x3) 
#4(x2) 
#1(x2) 

#3(x4) 
#4(x3) 
#1(x3) 

#4(x5) 
#1(x4) 

#3(x2) 
#3(x4) 

#2(x3) 
#4(x5) 

#3(x1) 
#2(x2) 
#4(x4) 

#2(x1) 
#4(x2) 
#1(x3) 
#1(x4) 

Legend 
Figure 18 

a) 
—; 
—; 

Not 
shown 

b)  
—; —; 

—; 

c) 
—; —; 

—; 

d) 
—; 
—; 

e) 
—; 
—; 

f) 
—; 
—; 

g) 
—; —; 

—; 

h) 
—; —; 
—; —; 

Lu 
(m) 

0.085 0.11 0.145 0.175 0.33 
0.09 

0.175 
0.165 
0.33 

0.065 
0.11 
0.29 

0.08 
0.135 
0.175 
0.33 

Iu 
(%) 

5.5 
15 

4.5 
8.3 

7.25 
14.5 
15.7 

5.0 
11.0 

14.75 

7.0 
14.75 

5.25 7.25 8.5 14.75 

a) b) c) 
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 566 
Figure 18. Power Spectral Density of velocity for constant integral length scale (a, b, c, d) and turbulence 567 
intensity (e, f, g, h); Colours as reported in Table 5. 568 

 569 

4. Conclusions 570 

The effect of an expansion test section on the turbulence characteristics of grid generated turbulence 571 
has been addressed in this study. To the knowledge of the authors, such a setup has not been discussed 572 
in literature. Results of measurements of the turbulent flow taken downstream of the expansion 573 
suggest following conclusions: 574 

- A decrease of the mean velocity downstream of the expansion occurs due to the Venturi 575 
effect. 576 

- Due to the change in the mean velocity, the turbulence intensity downstream of the expansion 577 
recovers to upstream values, instead of decaying proportionally to the distance. 578 

- The stretching of vortices in the expansion also acts on the integral length scale, which is 579 
approximately doubled from what is normally encountered in literature. 580 

- The flow behaviour changes from a pure isotropic one, to a slightly axisymmetric one. 581 
- For lower porosity, the turbulence decay deviates less markedly from literature. 582 
- The Taylor microscale is insensitive to the presence of the expansion, as dissipation remains 583 

the main phenomenon involved in the turbulence decay. 584 
- Velocity Skewness and Kurtosis deviate from the normal distribution due to the expansion for 585 

lower grid drags for higher porosity.  586 
- The energy spectra fit well to the von Kármán formulation downstream of the expansion, 587 

although a limited effect on the slope of the inertial sub-range is noticeable. 588 

The possibility of separately varying both turbulence intensity and integral length scale has also been 589 
discussed with reference to the quality of the turbulent field. The flow field is acceptably close to the 590 
theoretical behaviour of homogeneous and isotropic turbulence throughout the measurements. The 591 
following conclusions can be made regarding grid generated turbulence as measured in this study: 592 

Lu = 0.085m Lu = 0.145m Lu = 0.175m Lu = 0.33m 

Iu = 5.25% Iu = 7.25% Iu = 8.5% Iu = 14.75% 

a) b) c) d) 

e) f) g) h) 
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- The near-field region is located at distances less than x/M<5, as for x/M~5 the flow is found 593 
to be fully developed and dissipation only drives the decay of turbulence. 594 

- The flow field is broadly Gaussian. This feature persists with distance and Reynolds number. 595 
However, some form of anisotropy occurs for values at x/M<10, which confirms that 596 
uniformity is a difficult property of the flow field to be achieved. This is a feature worth 597 
further investigation. 598 

- Flow field statistics varied independently have shown similar behaviour against isotropy, 599 
gaussianity or the turbulence decay. The expansion is of great help in achieving a turbulent 600 
flow field with large integral length scale combined with high turbulence intensity, which 601 
otherwise would require closeness of measurements to grids with large bar size, i.e. to take 602 
measurements in the near-field region of the flow, where dissipation is not the main driver of 603 
turbulence decay. 604 

Some limitations of grid turbulence generation can be overcome by modifying the cross section of the 605 
wind tunnel. The turbulent flow field is easily fitted to the von Kármán formulation for all distances, 606 
grids and combinations considered. Therefore, this technique is suggested to reproduce atmospheric 607 
turbulence conditions for the study of the effect of free stream turbulence for a variety of aerodynamic 608 
applications, such as wind energy harvesting. 609 
 610 
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