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Abstract 

Micro-tensile tests on single-colony specimens of Ti‒6Al‒4V alloy with a fine lamellar 

microstructure revealed that the critical resolved shear stress of the basal slip was lower 

than that of the prismatic slip. This has been attributed to easier slip transmission within 

the habit plane at the α/β boundaries. 
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1. Introduction 

Additive manufacturing (AM) processes of metallic materials that control the 

microstructure and shape of three-dimensional structures simultaneously have attracted 

much attention for application in aerospace components and biomedical devices. Ti‒

6Al‒4V alloy, which is a hexagonal close packed (hcp) α and body-centred cubic (bcc) 

β two-phase alloy, is a candidate used for metal-based AM processes. For AM Ti‒6Al‒

4V, β crystals grow preferentially along the <001> direction during solidification [1,2]. 

Moreover, below the β transus, an α or α’ martensite phase is transformed from the β 

phase according to the Burgers orientation relationship (OR): (0001)α//(110)β and [21
‒

1
‒

0]α//[11
‒

1
‒

]β [3]. Therefore, AM Ti‒6Al‒4V alloy tends to form a strong texture, leading 

to anisotropic mechanical properties [4‒6]. Although AM Ti‒6Al‒4V often suffers a 

trade-off between strength and ductility [6,7], post-AM thermal processing results in 

high strength and moderate ductility through the formation of fine lamellar 

microstructures [8,9]. For the lamellar microstructure, the yield stress increases with the 

decrease in lath spacing based on the Hall‒Petch relationship [10], whereas the 

deformation behaviour depends not only on the strong anisotropy of plasticity in the hcp 

structure but also the slip transmission at α/β interphase boundary. 

Tensile and compression tests using near-α alloys of Ti‒5Al‒2.5Sn‒0.5Fe and Ti‒
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6Al‒2Sn‒4Zr‒2Mo‒0.1Si [11‒13] reveal a strong anisotropy in the <a> slip behaviour 

on the prismatic and basal planes in the α phase. The critical resolved shear stress 

(CRSS) of the prismatic slip with the [21
‒

1
‒

0]: a1 slip direction, which is nearly parallel 

to [11
‒

1
‒

]: b1 on (11
‒

2) in the β phase, is lower than that of the other [1
‒

21
‒

0]: a2 prismatic 

slip and [1
‒

1
‒

20]: a3 prismatic slip, which are both away from <111>β [12,13]. With 

regard to basal slip behaviour, the influence of the CRSS appears different for tensile 

and compression testing [13]. A tensile test revealed that the CRSS of the a3 basal slip 

is lower than of both a1 and a2 basal slip, but the authors could not explain this 

anisotropy by considering the Burgers OR [12,13]. Recently, a micro-compression study 

by Jun et al. on the Ti‒6Al‒2Sn‒4Zr‒2Mo alloy suggested that α/β morphology can 

influence local deformation behaviour significantly [14]. 

With regard to the Ti‒6Al‒4V alloy of interest here, Ambard et al. observed [15] that 

the main deformation system in globular grains is prismatic slip, whereas in lamellar 

colonies, basal slip is activated. Micro-cantilever specimens with single colony 

structures were used under a bending moment to clarify a second-phase strengthening 

effect [16] and the anisotropy of the <c+a> slip behaviour [17,18]. However, anisotropy 

of <a> slip behaviour has not yet been clarified. It is difficult to analyse the deformation 

behaviour using micro-bending tests owing to their complicated stress conditions. In 
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contrast, micro-tensile tests have been used to elucidate the plastic behaviour of 

hierarchical microstructures such as a lath martensitic steel [19,20]. This current study 

uses micro-tensile tests with single colony specimens to understand the anisotropy of 

the <a> slip behaviour of a Ti‒6Al‒4V alloy with a fine lamellar microstructure. 

2. Material and methods 

The material used in this study was a hot-rolled Ti‒6Al‒4V (mass%) alloy. The actual 

composition measured by electron probe micro analyser was Ti–6.1Al–4.6V–0.1Fe. The 

hot-rolled plate was heated to 1323 K within the β region and was maintained for 900 s 

followed by air cooling to 993 K. Subsequently, maintaining this temperature for 7.2 ks 

led to the formation of a lamellar microstructure with an average prior β grain size of 

approximately 220 μm. Small samples were cut and thinned to less than 25 μm by 

grinding with emery paper. Both surfaces of the samples were electrochemically 

polished. The crystallographic orientation of the α phase was determined using a 

scanning electron microscope equipped with an electron back-scatter diffraction 

(EBSD) detector and orientation imaging microscopy software TSL OIM v.7.1.0. 

Micro-tensile specimens with gauge section dimensions of approximately 20 × 20 × 50 

μm were fabricated from grains with their foil planes parallel to (0001)α and {101
‒

0}α 

using a focused ion beam (FIB). The gauge section was included within a single colony 
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of the lamellar microstructure. The loading directions were aligned at an angle of 

approximately 45 with respect to the <a> directions on the prismatic and basal planes 

in the α phase, i.e. the prismatic and basal slips, respectively, were expected to be 

primarily activated, as shown in Fig. 1. Tensile tests were performed at room 

temperature in laboratory air at atmospheric pressure and the displacement rate was set 

to 0.1 μm s
‒1

. This corresponds to an initial strain rate of 2  10
‒3

 s
‒1

. After tensile 

testing, some samples were fabricated using FIB milling. Transmission electron 

microscopy (TEM) examination was performed using a JEOL JEM-2100PLUS 

microscope operating at an accelerating voltage of 200 kV. 

3. Results and discussion 

Figure 2 shows the TEM bright-field image and selected area electron diffraction 

(SAED) pattern of a typical lamellar microstructure in this study. The average lamellar 

spacing and β lath thickness were measured to be approximately 0.73 and 0.10 μm, 

respectively, and the β phase fraction was approximately 13%. The crystallographic 

orientation of the α and β phases was confirmed to be the Burgers OR: (0001)α//(110)β 

and [21
‒

1
‒

0]α//[11
‒

1
‒

]β, as illustrated in Figs. 2b and c, i.e. the [21
‒

1
‒

0]α: a1 direction was 

nearly parallel to the [11
‒

1
‒

]β: b1 direction, the misorientation angle between [1
‒

21
‒

0]α: a2 

and [1
‒

11
‒

]β: b2 was approximately 11°, and [1
‒

1
‒

20]α: a3 had no nearly parallel <11
‒

1
‒

>β 
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direction, but was inclined at an angle of approximately 5 with respect to [001]β. 

Further, the misorientation was approximately 9 between the (01
‒

10)α prismatic plane 

and the broad face of the lamellae. 

Figures 3a and b show the nominal stress‒strain curves (nominal stresses are based 

on the load divided by the original cross-sectional area) obtained for the prismatic slip 

(Pr) and basal slip (Ba) specimens, respectively. In Pr specimens, yielding by prismatic 

slip exhibiting the highest Schmid factor was followed by slight strain-hardening 

towards the maximum nominal tensile stress applied of 790‒930 MPa, and subsequently 

the flow stress gradually decreased with an increase in strain, resulting in a fracture 

strain of 24‒40%. In contrast, the Ba specimens exhibited a linear relationship between 

stress and strain until the stress almost reached the maximum nominal tensile stress 

applied of 700‒750 MPa. Notably, a long plateau regime appeared in the Ba specimens 

through strain softening, followed by moderate strain hardening. The Ba specimens 

exhibited a large fracture strain of 80‒100% but a lower proof stress compared with the 

Pr specimens. 

Table 1 presents the tensile properties and the CRSS, which is defined as the resolved 

shear stress for yielding at a plastic strain of 0.2%. The lamellar colony is considered to 

behave as a single crystal because the α and β phases have a defined crystallographic 
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OR, i.e. the Burgers OR. When comparing the Ba and Pr specimens, it was observed 

that the CRSS of the basal slip (341‒366 MPa) was lower than that of the prismatic slip 

(376‒453 MPa). A compression test study by Williams et al. [21] on the Ti‒Al 

solid-solution single crystals revealed that, in a Ti‒6.6% Al alloy, the CRSS of the basal 

slip is nearly equivalent to that of the prismatic slip, whereas prismatic slip is the 

primary slip system in pure titanium. Figure 4 shows schematic illustrations indicating 

the difference in slip blocking by β laths. When prismatic slip is primarily activated in 

the α phase, dislocation motion is hindered by pile-up dislocations at α/β 

interphase-boundaries (Fig. 4a). With respect to Ba specimens, it is deduced that a 

segment of the slip line is retarded in the β phase (Fig. 4b). Therefore, inhibition of α 

slip activity by β phase may be smaller for Ba specimens than for Pr specimens. 

For the Pr specimens, the CRSS of the a1 slip was determined to be 376 MPa, and the 

CRSS of a2 and a3 slip was approximately 450 MPa, which is 20% higher than the 

CRSS of the a1 slip. A compression study by Savage et al. [12] on the Ti‒6Al‒2Sn‒

4Zr‒2Mo‒0.1Si single-colony specimens demonstrated that the CRSS of a2 and a3 

prismatic slip was 3 and 11% higher, respectively, than that of the a1 prismatic slip, 

depending on the incompatibility with slip in the β phase based on the Burgers OR. 

However, these differences in CRSS are somewhat smaller than those in the case of the 
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Ti‒6Al‒4V alloy used in the present study. This may perhaps be attributed to the 

difference in the frequency of slip interaction at the α/β boundaries. Figure 5 shows 

schematic illustrations of the orientation and distribution of β laths intersecting with the 

primarily activated slip plane. For Pr‒a1 specimen, the (01
‒

10) slip plane was intersected 

at a shallow angle of approximately 9 to the broad face of the β phase (Fig. 5a). Only 

six β laths were included in the area (28  20 μm
2
) swept by the a1 slip throughout the 

specimen width (Fig. 5a), whereas the numbers of β laths for the a2 and a3 specimens 

were 6 and 5 times higher, respectively, than those in the case of the a1 specimen (Figs. 

5b and c). With regard to the Ba specimens, the frequency of slip interaction at the α/β 

boundaries was the same, whereas angles of intersection of β laths differed from each 

other (Figs. 1d‒f). Therefore, it is deduced that the difference in CRSS in Ba specimens 

reflects the difficulty of slip transmission based on the Burgers OR. 

Figure 6 shows optical micrographs captured at a given strain during the plastic 

deformation process and the inverse pole figure maps along the loading direction after 

failure in the Pr‒a1 and Ba‒a1 specimens. In the Pr-a1 specimen, the specimen width 

decreased with activation of the a1 prismatic slip beyond the first apex in the stress–

strain curve (Figs. 6a and b) and subsequently, in the plateau regime of stress‒strain 

behaviour (Fig. 3a), this initial yielding region spread through the gauge length and 
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deformation now occurred symmetrically with respect to the neutral plane along the 

loading axis (Fig. 6c). Further, fractographic observation demonstrated no shrinkage in 

the thickness of the Pr specimens. Therefore, crystal rotation owing to the a1 prismatic 

slip activated the a2 prismatic slip in turn, as the Schmid factor of the a1 slip decreased. 

This is supported by the EBSD observation of the fracture specimen (Fig. 6d). 

For the Ba-a1 specimens, local yielding occurred during the strain softening regime 

(Figs. 6e and f), and this locally yielding region spread uniformly throughout the gauge 

length (Fig. 6g), corresponding to moderate strain hardening (Fig. 3b). Finally, necking 

occurred through the specimen thickness (Fig. 6h). The EBSD observation revealed 

significant crystal rotation from the shoulder of the specimen to the fracture location 

(regions 1 to 4 in Fig. 6i). Between regions 1 and 2, a boundary was formed with a 

rotation angle of approximately 18.5 with respect to the [01
‒

10] axis. From regions 1 to 

3, crystal rotation occurred with the activation of the a1 basal slip. In region 3, the a1 

direction was aligned at an angle of 18.7 with respect to the loading direction. In region 

4, the crystal was rotated at approximately 30 with respect to the c axis. This indicates 

that prismatic slip was activated in the region near the fracture surface. Further, crystal 

rotation owing to the basal slip reduced its own Schmid factor, but increased that for 

prismatic slip. Therefore, in the Ba-a1 specimen, a large uniform elongation was 
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deduced to be attained by activation of the basal slip, such as a Lüders elongation in 

mild steel, followed by onset of prismatic slip during necking. 

4. Conclusions 

  In summary, the CRSS for basal slip was determined to be 341‒367 MPa, which is 

lower than that for prismatic slip (376‒453 MPa) in single-colony lamellar structures of 

the Ti‒6Al‒4V alloy. This is attributed to easier slip transmission within the habit plane 

(0001)α//(110)β. The difference in CRSS for different <a> slip directions was smaller on 

the basal plane than on the prismatic plane. This is attributed to the difference in the 

frequency of α/β slip interaction. Elongation of basal slip specimens at fracture was 

measured to be 80‒100%, which is approximately three times higher than that of 

prismatic slip specimens. Thus <a> slip behaviour is deduced to contribute to 

strengthening without reducing a moderate ductility. 
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Fig. 1 Schematic illustrations of crystallographic orientations of slip planes and 

directions. 

Fig. 2 TEM bright-field micrograph and SAED pattern showing crystallographic 

orientation relationship between the α and β phases. 

Fig. 3 Stress‒strain curves for (a) Pr and (b) Ba specimens. 

Fig. 4 Schematic illustrations showing different slip blocking morphologies at β laths 

which intersect with primarily activated slip. 

Fig. 5 Schematic illustrations showing orientation and distribution of β laths which 

intersect with primarily activated slip for Pr specimens. 

Fig. 6 Optical microscopy images captured during micro-tensile testing and EBSD map 

colour-coded along the loading direction after failure in (a‒d) Pr‒a1 and (e‒i) Ba‒a1. 
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Table 1 0.2% proof stress, maximum nominal tensile stress applied, fracture strain, and 

resolved shear stress (RSS) for yielding. 

 

 

 0.2% proof stress 

(MPa) 

Maximum nominal tensile 

stress applied (MPa) 

Fracture strain 

(%) 

RSS for yielding 

(MPa) 

Pr-a1 753 785 40.0 376 

Pr-a2 907 934 32.1 453 

Pr-a3 895 929 23.7 447 

Ba-a1 684 703 100.3 341 

Ba-a2 715 729 79.5 357 

Ba-a3 733 752 85.4 366 




